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ABSTRACT

This paper presents a general scheme for the building of anatomical atlases. We propose to use specific and
stable features, the crest lines (or ridge lines) which are automatically extracted froni 3D images by differential
geometry operators. We have developed non-rigid registration technics based on polynomial transformations to
find correspondences between lines. We got encouraging results for the building of atlases of the crest lines of the
skull and of the brain based on several CT-Scan and MRI images of different patients.

1 INTRODUCTION

In order to improve the diagnosis and therapy planning, the physician needs to compare 3D medical images
coming from Computed Tomography, Magnetic Resonance Imagery or Nuclear Medicine.1 We will not discuss
here the problem of multimodality registration but we will still distinguish between three kinds of comparisons:
comparison of images of the same patient to study the evolution of a disease, comparison of images of different
patients to contrast a healthy and a pathologic person, registration of images with an anatomical atlas.

The aim of anatomical atlas books (for example,2) is to compile medical observations and give a qualitative
description convenient for a skilled physician. In some cases, they can provide some quaiititative information
about the localization as the atlas of the brain of Talairach & Tournoux.3 The next step is to use variability
parameters to detect pathologies.

3D medical images provide a tremendous opportunity to improve those atlases and to broaden the scope
of their applications. However, medical images can be huge (for instance, a CT-Scan of the skull including
144 x 512 x 512 voxels is 18 Mbytes large); we must therefore develop automatic tools to manage such quantity
of data. Furthermore, far better precision can be achieved with 3D image processing technics than with manual
ones.

The first attempts to register a 3D image with an electronic atlas are quite old. In 1989, Bajcsy and al.4
proj)osed to use an automatic multiresolution elastic deformations process to match a very simplified brain
atlas. Marret et al.5 generalized the concept of deformable Region Of Interest (ROT) templates to construct a
tridimensional Volume Of Interest (VOl) brain atlas. In 1991, Greitz et al.6 developed a precise computerized
brain atlas including 11 deformation types. In these two last cases, the matching process remains semi-automatic.
We can also notice the head atlas described in7 which is very detailed but only allows 3D visualization of organs.
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In this paper, we present our project of an entirely automatic building and use of a quantitative atlas from 3D
medical images. Our goal is also to quantify the variabilities of the atlas elements which could lead to automatic
diagnosis and surgical planning. After a presentation of the general scheme, we detail the type of features used
and also describe precisely a non-rigid registration algorithm. At last, we show some very encouraging results for
the automatic building of an atlas of the crest lines extracted from 3D CT-Scan images of skulls and MRI images
of brains.

2 GENERAL SCHEME

Our project may be decomposed into two parts (see figure 1):

BUILDING

USE

• the building: data 1 is a set of representative objects (for instance, normal patients) which are registered. By
making comparisons between the data, the registration algorithm seeks for some features that are shared by
the set (or a significant subset). The features "average" will then compose the atlas. A statistical analysis
precises the "acceptable difference" in relation to the atlas.

• the use: the registration algorithm permits to compare data 2 (for instance, a pathological patient) and
the atlas. The statistical parameters give precious information about the level of "abnormality". These
results could be sent to a diagnosis module to detect some pathologies. For now, we plan to integrate the
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Figure 1: General scheme



3D visualization of the skull atlas in the craniofacial surgery simulation testbed developed in the Epidaure
project8 in order to help the physician to plan operations.

3 THE ATLAS STRUCTURE

3.1 The features

Raw medical images are stored in a discrete 3D matrix I = f(x,y, z). By thresholding I, isosurfaces of organs
are computed (for instance, the surface of the skull for CT-Scan, of the brain or the face for MRI). The problem
is then to compute specific features of these surfaces. Several methods have been proposed to achieve this:

. surface features: the mean and Gaussian curvatures are used to segment the isosurface into patches of some
fundamental types. Such a decomposition permits to study the deformations of the left ventricle9 or to
describe the faces.'°

. line features: Hosaka'1 reports a wide range of characteristic lines based on differential geometry. The 3D
Medial Axis Transform gives also sets of lines, charting for instance the gyral anatomy.'2

. point features: the "extremal points" based on geometric invariants are used to perform 3D rigid regs-
tration.

A first example of clinical application can be found in Cutting et al.'4 where line and point features are both
used to compute "an average" skull. In that study, however, the features are semi-automatically extracted.

3.2 The crest lines

We decided first to use only line features: the crest lines introduced in.15 They are defined as the successive
loci of a surface whose largest principal curvature is locally maximal in the direction of its principal direction
(see figure 2). Let k, be the principal curvature with maximal curvature in absolute value and the associated

principal direction, each point of a crest line verifies: V k,. t, = 0.

These lines are automatically extracted from an isosurface by the "marching lines" algorithm.'6

As we can see in the figure 4, crest lines are anatomically meaningful: on the skull, the crest lines represent
the salient lines (the orbits, the nose, the mandible or the temples) as emphasized in17; on the brain, the crest
lines follow the convolutions, the sulci and the giry patterns described in Ono et al. 18

4 THE REGISTRATION ALGORITHM

4.1 Previous work

The 3D curves registration algorithm is a key point in our scheme: given two sets S and 5' composed of
the crest lines C and extracted from images of two different patients, we want to find which lines C of
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S (or portions P,k) correspond to which lines G (or portions P,1) of 8' (see figure 3). Two difficulties arise:
the number of lines of each set is quite important (several hundreds, sometimes more than a thousand) and the
registration between S and 8' is not rigid.

Figure 3: The registration algorithm has to find the portions P"j and respectively the kth portion of C2
which corresponds to the portion of C3 and vice versa.

In19 and,2° 3D curves matching enables to recognize rigid synthetic objects First, boundary curves are
smoothed and then matched with prestored models but the registration is only rigid. In,21 the algorithm smoothes
curves by using non-uniform B-Splines. Then the two sets of curves are matched with an hashing table indexed
by euclidean differential invariants. Results are very good22 especially with sets of crest lines but the method
only succeeds in finding a rigid displacement and cannot be generalized easily to the non-rigid case. Zhang in23
and independently Bes124 introduced an "iterative closest points" matching method. It consists in three steps:
for each point M2 of 8, find the closest point M of 8'. Then, compute the global rigid displacement between
the two sets of matched points (M1 .. . M7) and (M ... M,) by a least-squares technique. Apply this motion to
S and iterate until the motion is "small". Both authors use the algorithm to register free-form curves but once
again for the rigid case. Nevertheless, we can inprove and generalize this method to our problem.
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4.2 The algorithm

Our algorithm follows the steps of the "iterative closest point" method:

. Points matching: each point of S is linked with its closest neighbour in S' according to the euclidean
distance. We plan also to use in the distance computation the differential curve parameters as the tangent,
normal. curvature and torsion21 or surface parameters as the normal, the principal directions and principal
curvatures as described in.25 We apply some heuristics to make the links symmetrical and consistent along
the curves.

With these couples of points, two coefficients are computed: p and which are the proportion of the
curve i of S matched with the curve j of 5' and vice versa. Thus, by thresholding, p � thr and p thr,
we can determine the curves "registered" at thr percent. For instance, curves can be considered completely
registered when p � 0.5 and p 0.5.

. Least-squares transformation: as the registration is not rigid and even not affine, we try to register S and
SF with a 2-order polynomial transformation as in26 and27:

I x' = a1x2 +a2y2 +a3z2 +a4xy +a5yz +a6xz +a7x +a8y +agz +a10' YF = b1x2 +b2y2 +b3z2 +b4xq +b5yz +b6xz +b7x +b8y +b9z +b10
I, z' = c1x2 +c2y2 +c3z2 +c4xy +c5yz +c6xz +c7x +csy +cgz +c10

As these polynomials are linear in their coefficients, we can use the least-squares method,2829 to compute
a, b and c2.
We tried to use higher order polynomials but large unexpected undulations then occur as emphasized in.30
2-order polynomial transformations give accurate registration but we are not able to decompose them into
intuitive physical meaning transformations such as rotation, translation or scaling. Notice that at each
iteration, we compose the transformation with a 2-order polynomial and so, we obtain after n iterations a
2'-order polynomial transformation.

. Updating: the transformation is applied, then the algorithm iterates again or stop according to several crite-
na (mean value of the distance distribution between matched points, stability of the registration coefficients
p and threshold on the matrix norm JT — IdIl where T is the transformation and Id the identity
matrix).

13y incrementing the threshold value thr at each iteration, for instance, from 0 to 0.5 by step of 0.025 and by
taking only in account the matched point couples (M, M') belonging to "registered" curves at thr percent, the
algorithm tends to improve the registration of already matched curves and to discard isolated ones. Moreover, we
caii begin to apply rigid transformations to align the two sets of lines, then affine tranformations to scale them
and, at last, quadratic transformations to refine the registration.

4.3 Results

We applied this algorithm to two sets of the longest crest lines (for easier visualization) of the skulls of two
different patients. We can notice in figure 5 (left) that the number of lines of the two sets (42 and 31 lines) and
their shape (notice, in particular, the nose) are different and also that the two skulls are quite shifted.

One set of lines S is then deformed to be registered with the second 5'. To evaluate the result, we display in
figure 5 (right) the registered lines of 5' and S after deformation. The matched points are linked by segments.
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The registration takes a few minutes on a DEC-Alpha workstation. The algorithm detects and matches similar
lines (12 lines) as the orbits, the mandible, the nose, the temples and the occipital foramen.

In figure 6, we show (left) the registered lines of the set S' and of the set S not deformed in order to check the
accuracy of the algorithm. We display (right) the deformation applied to a regular mesh. We notice that such a
deformation is quite more complex than an affine one.

5 THE ATLAS BUILDING

Given n sets of lines, we can register all the sets two by two. Then, we construct a graph where the nodes are
the lines L where i is the number of the set and j the index of the line in the set S and the vertices represent
the relation "is registered with" . Then, we search for the connected parts of this graph having at least a line of
each set. Hence, we have determined the subsets of similar lines that will compose the "atlas".

We have experienced this method with six sets of lines extracted from CT-Scan images of six different dry
skulls (figure 7). Notice the difference of size, of shape and orientation. Each set of crest lines is composed from
515 to 544 curves and more than 18000 points. We found 48 subsets of similar lines (figure 8) including the
mandible, the nose, the orbits, the cheekbones, the temples, the occipital formaen and the sphenoid and temporal
bones. As we labelled some lines of the first skull, we are able to label automatically the subsets and the lines of
the other skulls. Notice than the left and right mandible bottom (LMB and RMB) have merged into a unique
mandible subset (LMB+RMB).

We also try to obtain the subsets of common lines of three brains automatically segmented from MRI data
( figure 9). Each set of crest lines is composed of around 350 curves and 13500 points. In the figure 10, we can
distinguish the left and right ventricles and the medulla automatically detected and labelled.

6 FUTURE WORK

Averaging the subsets of line is quite difficult because there is not always a unique line of each set in the
subsets and only parts of curves are really registered and have to be taken into account. So, before averaging,
we have to find the topology of the common line, i.e. its number of connected parts. Moreover, the curves are
sampled independently. So, we will have to construct a consensual coordinate system as emphasized in14 and, in
particular, fix a reference frame.

To compute statistical parameters between the atlas and the data, we are studying the modal decomposition
method introduced by Nastar31 which is well adapted to curves deformations. We can cite also others interesting
references as32 (morphometry applications of shape transformations) ,33(decomposition of deformations in princi-
pal warps),34 (Principal Components Analysis on points coordinates) or35 (shape analysis of the brain based on
experimental modes).

This work was partially supported by Digital Equipment Corporation and the Esprit European project Bra-
Viva. We thank General-Electric and Bruce Latimer, Director at the Gleveland Museum of Natural History,
Court Cutting, David Dean and André Guéziec for the CT-Scan data of the skulls. Jacques Feldmar gave a
substantial help in this work.
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Figure 4: Crest lines of a skull and of a brain.



Figure 5: Left: The longest crest lines of the two skulls superimposed. Right: Registration of similar lines after
the deformation.
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Figure 6: Left: Registration of similar lines in their original position. Right: The registration deformation applied
to a regular mesh.
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Figure 7: Six different skulls segmented from CT-Scan data. Notice the difference of shape.
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Figure 8: The structure of the atlas is displayed for the two first skulls. Some subsets of common lines have been
automatically labelled and highlighted: the mandible (bottom and up), the nose, the orbits, the cheekbones, the
temples, the occipital foramen and the sphenoid and temporal bones.
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Figure 10: The structure of the atlas is automatically computed from the three different brains. In particular, the
medulla, the left and right ventricles are detected and labelled.
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Figure 9: Three different brains automatically segmented from MRI data of heads. The shape are very different.


