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Université de Montréal, H3C 3J7, Canada

patrick.holloway@umontreal.ca
2 DIRO and University of McGill Computer Science

swensonk@iro.umontreal.ca
3 Center for Computational Biology, School of Natural Sciences,

5200 North Lake Road, University of California, Merced, CA 95343
dardell@ucmerced.edu

4 DIRO
mabrouk@iro.umontreal.ca

Abstract. We present a comparative genomics approach for inferring
ancestral genome organization and evolutionary scenarios, based on a
model accounting for content-modifying operations. More precisely, we
focus on comparing two ordered gene sequences with duplicated genes
that have evolved from a common ancestor through duplications and
losses; our model can be grouped in the class of “Block Edit” models.
From a combinatorial point of view, the main consequence is the possi-
bility of formulating the problem as an alignment problem. On the other
hand, in contrast to symmetrical metrics such as the inversion distance,
duplications and losses are asymmetrical operations that are applicable
to one of the two aligned sequences. Consequently, an ancestral genome
can directly be inferred from a duplication-loss scenario attached to a
given alignment. Although alignments are a priori simpler to handle
than rearrangements, we show that a direct approach based on dynamic
programming leads, at best, to an efficient heuristic. We present an exact
pseudo-boolean linear programming algorithm to search for the optimal
alignment along with an optimal scenario of duplications and losses. Al-
though exponential in the worst case, we show low running times on real
datasets as well as synthetic data. We apply our algorithm in a phylo-
genetic context to the evolution of stable RNA (tRNA and rRNA) gene
content and organization in Bacillus genomes. Our results lead to various
biological insights, such as rates of ribosomal RNA proliferation among
lineages, their role in altering tRNA gene content, and evidence of tRNA
class conversion.
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1 Introduction

During evolution, genomes continually accumulate mutations. In addition to
base mutations and short insertions or deletions, genome-scale changes affect
the overall gene content and organization of a genome. Evidence of these lat-
ter kinds of changes are observed by comparing the completely sequenced and
annotated genomes of related species. Genome-scale changes can be subdivided
into two categories: (1) the rearrangement operations that shuffle gene orders
(inversions, transpositions, and translocations), and (2) the content-modifying
operations that affect the number of gene copies (gene insertions, losses, and
duplications). In particular, gene duplication is a fundamental process in the
evolution of species [25], especially in eukaryotes [5,9,12,16,22,34], where it is
believed to play a leading role for the creation of novel gene function. In parallel,
gene losses through pseudogenization and segmental deletions, appear generally
to maintain a minimum number of functional gene copies [5,9,10,12,16,22,25].
Transfer RNAs (tRNAs) are typical examples of gene families that are con-
tinually duplicated and lost [3,28,31,35]. Indeed, tRNA clusters (or operons in
microbial genomes) are highly dynamic and unstable genomic regions. In Es-
cherichia coli for example, the rate of tRNA gene duplication/loss events has
been estimated to be about one event every 1.5 million years [3,35].

One of the main goals of comparative genomics is to infer evolutionary his-
tories of gene families, based on the comparison of the genomic organization of
extant species. Having an evolutionary perspective of gene families is a key step
towards answering many fundamental biological questions. For example, tRNAs
are essential to establishing a direct link between codons and their translation
into amino-acids. Understanding how the content and organization of tRNAs
evolve is essential to the understanding of the translational machinery, and in
particular, the variation in codon usage among species [20,11].

In the genome rearrangement approach to comparative genomics, a genome
is modeled as one or many (in case of many chromosomes) linear or circular
sequences of genes (or other building blocks of a genome). When each gene
is present exactly once in a genome, sequences can be represented as permu-
tations. In the most realistic version of the rearrangement problem, a sign
(+ or -) is associated with a gene, representing its transcriptional orientation.
Most genome rearrangement studies have focused on signed permutations. The
pioneering work of Hannenhalli and Pevzner in 1995 [17,18], has led to efficient
algorithms for computing the inversion and/or translocation distance between
two signed permutations. Since then, many other algorithms have been devel-
oped to compare permutations subject to various rearrangement operations and
based on different distance measures. These algorithms have then been used
from a phylogenetic perspective to infer ancestral permutations [24,6,8,23,30]
and evolutionary scenarios on a species tree. An extra degree of difficulty is in-
troduced in the case of sequences containing multiple copies of the same gene,
as the one-to-one correspondence between copies is not established in advance.
A review of the methods used for comparing two ordered gene sequences with
duplicates can be found in [14,15]. They can be grouped into two main classes.
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The “Match-and-Prune” model aims at transforming strings into permutations,
so as to minimize a rearrangement distance between the resulting permutations.
On the other hand, the “Block Edit” model consists of performing the minimum
number of “allowed” rearrangement and content-modifying operations required
to transform one string into the other. Most studied distances and ancestral
inference problems in this category are NP-complete [15].

In this paper, we focus on comparing two ordered gene sequences with du-
plicates that have evolved from a common ancestor through duplications and
losses. In contrast to the approaches cited above and reviewed in [15], only
content-modifying operations are considered. Such a simplified model is required
to study the evolution of gene families mainly affected by duplications and losses,
for which a general model involving rearrangement events may be misleading.
From a combinatorial point of view, the main consequence of removing rearrange-
ment operations is the fact that gene organization is preserved, which allows us to
reformulate the problem of comparing two gene orders as an alignment problem.
On the other hand, in contrast to symmetrical metrics such as the Hamming dis-
tance for nucleotide sequences, or the inversion distance for ordered sequences,
duplication and loss are asymmetrical operations that are applicable to one of
the two aligned sequences. Consequently an ancestral genome can directly be
inferred from a duplication-loss scenario attached to a given alignment.

Although alignments are a priori simpler to handle than rearrangements,
there is no direct way of inferring optimal alignments together with a related
duplication-loss scenario for two gene orders, as detailed in Section 4. Even
our simpler goal of finding an alignment is fraught with difficulty as a naive
branch-and-bound approach to compute such an alignment is non-trivial; trying
all possible alignments with all possible duplication and loss scenarios for each
alignment is hardly practicable. As it is not even clear how, given an alignment,
we can assign duplications and losses in a parsimonious manner, we present in
Section 4.1 a pseudo-boolean linear programming (PBLP) approach to search
for the optimal alignment along with an optimal scenario of duplications and
losses. The disadvantage of the approach is that, in the worst case, an expo-
nential number of steps could be used by our algorithm. On the other hand,
we show in Section 5.2 that for real data, and larger simulated genomes, the
running times are quite reasonable. Further, the PBLP is flexible in that a mul-
titude of weighting schemes for losses and duplications could be employed to,
for example, favor certain duplications over others, or allow for gene conversion.
In Section 5.1, we apply our algorithm in a phylogenetic context to infer the
evolution of stable RNA (tRNA and rRNA) gene content and organization in
various genomes from the genus Bacillus, a so-called “low G+C” gram-positive
clade of Firmicutes that includes the model bacterium B. subtilis as well as the
agent of anthrax. Stable RNA operon organization in this group is interesting
because it has relatively fewer operons that are much larger and contain more
segmental duplicates than other bacterial groups. We obtained results leading
to various biological insights, such as more accurate quantification of ribosomal
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RNA operon proliferation, their role in altering tRNA gene content, and evidence
of tRNA gene class conversion.

2 Research Context

The evolution of g genomes is often represented by a phylogenetic (or species)
tree T , binary or not, with exactly g leaves, each representing a different genome.
When such a species tree T is known for a set of species, then we can use the gene
order information of the present-day genomes to infer gene order information
of ancestral genomes identified with each of the internal nodes of the tree. This
problem is known in the literature as the “small” phylogeny problem, in contrast
to the “large” phylogeny problem which is one of finding the actual phylogenetic
tree T .

Although our methods may be extended to arbitrary genomes, we consider
single chromosomal (circular or linear) genomes, represented as gene orders with
duplicates. More precisely, given an alphabet Σ where each character represents
a specific gene family, a genome or string is a sequence of characters from
Σ where each character may appear many times. As the content-modifying op-
erations considered in this paper do not change gene orientation, we can as-
sume, w.l.o.g. that genes are unsigned. For example, given Σ = {a, b, c, d, e},
A =“ababcd” is a genome containing two gene copies from the gene family iden-
tified by a, two genes from the gene family b, and a single gene from each family
c and d. A gene in a genome A is a singleton if it appears exactly once in A
(for example c and d in A), and a duplicate otherwise (a and b in A above).

Let O be a set of “allowed” evolutionary operations. The set O may include
organizational operations such as Reversals (R) and Transpositions (T), and
content-modifying operations such as Duplications (D), Losses (L) or Insertions
(I). For example, O = {R,D,L} is the set of operations in an evolutionary model
involving reversals, duplications and losses. In the next section, we will formally
define the operations involved in our model of evolution.

Given a genome A, a mutation on A is characterized by an operation O
from O, the substring of A that is affected by the mutation, as well as possibly
other characteristics such as the position of the re-inserted, removed (in case
of transposition), or duplicated substring. For simplicity, consider a mutation
O(k) to be characterized solely by the operation O from O, and the size k of
the substring affected by the mutation. Consider c(O(k)) to be a cost function
defined on mutations. Finally, given two genomes A and X , an evolutionary
history OA→X from A to X is a sequence of mutations (possible of length 0)
transforming A into X .

Let A,X be two strings on Σ with A being a potential ancestor ofX , mean-
ing that there is at least one evolutionary history OA→X = {O1(k1), · · · , Ol(kl)}
from A to X . Then the cost of OA→X is:

C(OA→X ) =

l∑

i=1

c(Oi(ki))
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Now let OA→X be the set of possible histories transforming A into X . Then we
define:

C(A → X) = min
OA→X∈OA→X

C(OA→X)

Then, the small phylogeny problem can be formulated as one of finding strings
at internal nodes of a given tree T that minimize the total cost:

C(T ) =
∑

all branches bi of T

C(Xi,1 → Xi,2)

where Xi,1, Xi,2 are the strings labeling the nodes of T adjacent to the branch
bi, with the node labeled Xi,1 being the parent of the node labeled Xi,2.

For most restrictions on genome structure and models of evolution, the sim-
plest version of the small phylogeny problem — the median of three genomes
— is NP-hard [7,26,32]. When duplicate genes are present in the genomes, even
finding minimum distances between two genomes is almost always an NP-Hard
task [19]. In this paper, we focus on cherries of a species tree (i.e. on subtrees
with two leaves). The optimization problem we consider can be formulated as
follows:

Two Species Small Phylogeny Problem:
Input: Two genomes X and Y .
Output: A potential common ancestor A of X and Y minimizing C(A →
X) + C(A → Y ).

Solving the Two Species Small Phylogeny Problem (2-SPP) can be
seen as a first step towards solving the problem on a given phylogenetic tree T .
The most natural heuristic to the Small Phylogeny Problem, that we will call the
SPP-heuristic, is to traverse T depth-first, and to compute successive ancestors
of pairs of nodes. Such a heuristic can be used as the initialization step of the
steinerization method for SPP [30,4]. The sets of all optimal solutions output
by an algorithm for the 2-SPP applied to all pairs of nodes of T (in a depth-first
traversal) can alternatively be used in an iterative local optimization method,
such as the dynamic programming method developed in [21].

3 The Duplication and Loss Model of Evolution

Our evolutionary model accounts for two operations, Duplication (denoted D)
and Loss (denoted L). In other words O = {D,L}, where D and L are defined
as follows. Let X [i . . . i+ k] denote the substring XiXi+1 · · ·Xi+k of X .

– D: A Duplication of size k+1 on X = X1 · · ·Xi · · ·Xi+k · · ·XjXj+1 · · ·Xn

is an operation that copies the substring X [i . . . i + k] to a location j of X
outside the interval [i, i+k] (i.e. preceding i or following i+k). In the latter
case, D transforms X into

X ′ = X1 · · ·Xi · · ·Xi+k · · ·Xj−1Xi · · ·Xi+kXj+1 · · ·Xn
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We call the original copy X [i . . . i+ k] the origin, and the copied string the
product of the duplication D.

– L: A Loss of size k is an operation that removes a substring of size k
from X .

Notice that gene insertions could be considered in our model as well. In par-
ticular, our linear programming solution is applicable to an evolutionary model
involving insertions, in addition to duplications and losses. We ignore insertions
for two main reasons: (1) insertions and losses are two symmetrical operations
that can be interchanged in an evolutionary scenario. Distinguishing between in-
sertions and losses may be possible on a phylogeny, but cannot be done by com-
paring two genomes; (2) gene insertions are usually due to lateral gene transfer,
which may be rare events compared to nucleotide-level mutations that eventually
transform a gene into a pseudogene.

As duplication and loss are content-modifying operations that do not shuffle
gene order, the Two Species Small Phylogeny Problem can be posed as
an alignment problem. However, the only operations that are “visible” on an
alignment are the events on an evolutionary history that are not obscured by
subsequent events. Moreover, as duplications and losses are asymmetrical oper-
ations, an alignment of two genomes X and Y does not reflect an evolutionary
path from X to Y (as operations going back to a common ancestor are not de-
fined), but rather two paths going from a common ancestor to both X and Y .
A precise definition follows.

Definition 1. Let X and Y be two genomes. A visible history of X and Y is a
triplet (A,OA→X , OA→Y ) where A is a potential ancestor of both X and Y , and
OA→X (respectively OA→Y ) are evolutionary histories from A to X (respectively
from A to Y ) verifying the following property: Let D be a duplication in OA→X

or OA→Y copying a substring S. Let S1 be the origin and S2 be the product
of D. Then D is not followed by any other operation inserting (by duplication)
genes inside S1 or S2, or removing (by loss) genes from S1 or S2. We call
a visible ancestor of X and Y a genome A belonging to a visible history
(A,OA→X , OA→Y ) of X and Y .

We now define an alignment of two genomes.

Definition 2. Let X be a string on Σ, and let Σ− be the alphabet Σ augmented
with an additional character “ − ”. An extension of A is a string A− on Σ−

such that removing all occurrences of the character “ − ” from A− leads to the
string A.

Definition 3. Let X and Y be two strings on Σ. An alignment of size α of
X and Y is a pair (X−, Y −) extending (X,Y) such that |X−| = |Y −| = α, and
for each i, 1 ≤ i ≤ α, the two following properties hold:

– If X−
i �= “− ” and Y −

i �= “− ” then X−
i = Y −

i ;
– X−

i and Y −
i cannot be both equal to “− ”.
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Let A = (X−, Y −) be an alignment of X and Y of size α. It can be seen as a
2×α matrix, where the ith column Ai of the alignment is just the ith column of
the matrix. A column is a match iff it does not contain the character ‘-’, and a

gap otherwise. A gap
[
Xi

−
]
is either part of a loss in Y , or part of a duplication

in X (only possible if the character Xi is a duplicate in X). The same holds

for the column
[
−
Yj

]
. An interpretation of A as a sequence of duplications and

losses is called a labeling of A. The cost of a labeled alignment is the sum
of costs of all underlying operations.

As duplications and losses are asymmetric operations that are applied explic-
itly to one of the two strings, each labeled alignment A of X and Y leads to a
unique common ancestor A for X and Y . The following theorem (whose proof
is left to the appendix) shows that this, and the converse is true.

Theorem 1. Given two genomes X and Y , there is a one-to-one correspondence
between labeled alignments of X and Y and visible ancestors of X and Y .

See Figure 1 for an example.

a bX: a b a c d−

a da−−−a bY:

Y: abaad

A: abacd

X: ababacd

duplication

abad
duplication

loss

duplicationLoss

duplication

Fig. 1. Left: a labeled alignment between two strings X = ababacd and Y = abaad.
Right: the ancestor A and two histories respectively from A to X and from A to Y
obtained from this alignment. The order of operations in the history from A to Y is
arbitrary.

In other words, Theorem 1 states that the Two Species Small Phylogeny
Problem reduces in the case of the Duplication-Loss model of evolution to the
following optimization problem.

Duplication-Loss Alignment Problem:
Input: Two genomes X and Y on Σ.
Output: A labeled alignment of X and Y of minimum cost.

4 Method

Although alignments are a priori simpler to handle than rearrangements, a
straightforward way to solve the Duplication-Loss Alignment Problem
is not known. We show in the following paragraphs, that a direct approach
based on dynamic programming leads, at best, to an efficient heuristic, with no
guarantee of optimality.
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Let X be a genome of size n and Y be a genome of size m. Denote by X [1 . . . i]
the prefix of size i of X , and by Y [1 . . . j] the prefix of size j of Y . Let C(i, j) be
the minimum cost of a labeled alignment of X [1 . . . i] and Y [1 . . . j]. Then the
problem is to compute C(m,n).

DP: A natural idea would be to consider a dynamic programming approach
(DP), computing C(i, j), for all 1 ≤ i ≤ n and all 1 ≤ j ≤ m. Consider
the variables M(i, j), DX(i, j), DY (i, j), LX(i, j) and LY (i, j) which reflect the
minimum cost of an alignment Ai,j of X [1 . . . i] and Y [1 . . . j] satisfying respec-
tively, the constraint that the last column of Ai,j is a match, a duplication in X ,
a duplication in Y , a loss in X , or a loss in Y . Consider the following recursive
formulae.

– M(i, j) =

{
C(i − 1, j − 1) if X [i] = Y [j]
+∞ otherwise

– LX(i, j) = min0≤k≤i−1[C(k, j) + c(L(i− k))]
(the corresponding formula holds for LY (i, j))

– DX(i, j) =

{
+∞ if X [i] is a singleton
minl≤k≤i−1[C(k, j) + c(D(i − k))] otherwise,

where X [l . . . i] is the longest suffix of X [1 . . . i] that is a duplication
(the corresponding formula holds for DY (i, j)).

The recursions for DX and DY imply that duplicated segments are always in-
serted to the right of the origin. Unfortunately, such an assumption cannot be
made while maintaining optimality of the alignment. For example, given the cost
c(D(k)) = 1 and c(L(k)) = k, the optimal labeled alignment of S1 = abxabxab
and S2 = xabx aligns ab of S2 with the second ab of S1, leading to an optimal
history with two duplications inserting the second ab of S1 to its left and to its
right. Such an optimal scenario cannot be recovered by DP.

DP-2WAY: As a consequence of the last paragraph, consider the two-way dy-
namic programming approach DP-2WAY that computes DX(i, j)
(resp. DY (i, j)) by looking for the longest suffix of X [1 . . . i] (resp. Y [1 . . . j])
that is a duplication in the whole genome X (resp. Y ). Unfortunately, DP-
2WAY may lead to invalid cyclic evolutionary scenarios, as the same scenario
may involve two duplications: one with origin S1 and product S2, and one with
origin S2 and product S1, where S1 and S2 are two duplicated strings. This is
described in more detail in Section 4.1.

DP-2WAY-UNLABELED: The problem mentioned above with the output
of DP-2WAY is not necessarily the alignment itself, but rather the label of
the alignment. As a consequence, one may think about a method, DP-2WAY-
UNLABELED, that would consider the unlabeled alignment output by DP-
2WAY, and label it in an optimal way (e.g. find an evolutionary scenario of
minimum cost that is in agreement with the alignment). Notice first that the
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problem of finding a most parsimonious labeling of a given alignment, is not a
priori an easy problem, and there is no direct and simple way to do it. Moreover,
although DP-2WAY-UNLABELED is likely to be a good heuristic algorithm
to the Duplication-Loss Alignment Problem, it would not be an exact al-
gorithm, as an optimal cyclic alignment is not guaranteed to have a valid labeling
leading to an optimal labeled alignment. Figure 2 shows such an example; an
optimal cyclic duplication and loss scenario can be achieved by both alignments
(5 operations), while the optimal acyclic scenario can only be achieved by the
alignment of Figure 2b.

4.1 The Pseudo-Boolean Linear Program

Consider genome X of length n and genome Y of length m. We show how
to compute a labeled alignment of X and Y by use of pseudo-boolean linear
programming (PBLP). The alignment that we compute is guaranteed to be
optimal. While in the worst case our program could take an exponential number
(in the length of the strings) of steps to find the alignment, our formulation has
a cubic number of equations variables, and is far more efficient than scoring all
possible alignments along with all possible duplication/loss scenarios. We show
that practical running times can be achieved on real data in Section 5.2.

For any alignment, an element of the string X could be considered a loss
(this corresponds to gaps in the alignment), a match with an element of Y ,
or a duplication from another element in X (these also appear as gaps in the
alignment). Thus, in a feasible solution, every element must be “covered” by one
of those three possibilities. The same holds for elements of Y . Figure 2 shows two

z  x  y  z  x  y  a  x  b  w  a  x  b

z  x  y      x w b z

10 11 12 13987654321

321 4 5 6 7

X:

Y:
(a) 3 duplications and 3 losses

z  x  y  z  x  y  a  x  b  w  a  x  b

z  x  y w bx z

10 11 12 13987654321

321 4 5 6 7

X:

Y:
(b) 3 duplications and 2 loss

Fig. 2. Alignments for strings X = “zxyzxyaxbwaxb” and Y = “zxyxwb”. We con-
sider the following cost: c(D(k)) = 1 and c(L(k)) = k for any integer k. Matches are
denoted by a vertical bar, losses denoted by an “L”, and duplications denoted by bars,
brackets, and arrows. Alignment (a) yields 6 operations and implies ancestral sequence
“zxyxwaxbz”, while (b) yields 5 operations and implies ancestral sequence “zxyaxwbz”.
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possible alignments for a given pair of strings, along with the corresponding set
of duplications and losses. In the alignment of Figure 2a, character x8 is covered
by the duplication of x12, character a11 is covered by a loss, and character x5 is
covered by a match with character x4 in Y .

Let M i
j signify the match of characterXi to character Yj in the alignment. Say

character Xi could be covered by matches M i
1,M

i
2, . . . ,M

i
pi

or by duplications

DX i
1, DX i

2, . . . , DX i
si . If we consider each of those to be a binary variable (can

take value 0 or 1) and take the binary variable LX i as corresponding to the
possibility that Xi is a loss, then we have the following equation to ensure that
character Xi is covered by exactly one operation:

LX i +M i
1 +M i

2 + · · ·+M i
pi
+DX i

1 +DX i
2 + · · ·+DX i

si = 1, (1)

where pi and si are the number of matches and duplications that could cover
characterXi. A potential duplication inX (DX i

l for some l) corresponds to a pair
of distinct, but identical, substrings in X . Each pair of such substrings yields two
potential duplications (substring A was duplicated from substring B or substring
B was duplicated from substring A). Each of the possible O(n3) duplications gets
a variable. Each position in Y gets a similar equation to Equation 1.

The order of the matches with respect to the order of the strings must be
enforced. For example, in Figure 2 it is impossible to simultaneously match
w10 and x12 from X with w5 and x4 of string Y ; the assignment of variables
corresponding to this case must be forbidden in the program. Thus, we introduce
equations enforcing the order of the matches. Recall that M i

j is the variable
corresponding to the match of the ith character from X with the jth character
from Y . The existence of match M i

j implies that any match Mk
l where k ≥ i and

l ≤ j (or k ≤ i and l ≥ j) is impossible, so must be forbidden by the program.
The constraints can be written as:

M i
j +Mk1

l1
≤ 1, M i

j +Mk2

l2
≤ 1, . . . , M i

j +M
kti

lti
≤ 1 (2)

where ti is the number of matches conflicting with M i
j , and for any Mku

lu
we

have either ku ≥ i and lu ≤ j, or ku ≤ i and lu ≥ j. There are at most a linear
number of inequalities for each of the possible O(n2) matches.

Equality 1 ensures that each character will be covered by exactly one D, M ,
or L. Our objective function minimizes some linear combination of all Ls and
all Ds:

min c1LX
1+ · · ·+cnLX

n+cn+1LY
1+ · · ·+cn+mLY m+cn+m+1D1+ · · ·+cn+m+qDq

(3)

where cl is a cost of the lth operation and q is the total number of duplications
for all positions of X and Y (i.e. Dl = DX i

s or Dl = DY j
r for some i, j, s,

and r). The full PBLP (excluding the trivial integrality constraints) is then:
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min c1LX
1 + · · ·+ cnLX

n + cn+1LY
1 + · · ·+ cn+mLY m+

cn+m+1D1 + cn+m+2D2 + · · ·+ cn+m+qDq

s.t. LXi +M i
1 +M i

2 + · · ·+M i
pi +DXi

1 + · · ·+DXi
si = 1, 0 ≤ i ≤ n

LY j +M1
j +M2

j + · · ·+M
qj
j +DY j

1 + · · ·+DY j
rj = 1, 0 ≤ j ≤ m

M i
j +Mk1

l1
≤ 1, M i

j +Mk2
l2
≤ 1, . . . ,M i

j +M
kti
lti
≤ 1 , ∀i, j s.t. Xi = Yj and

(km ≥ i and lm ≤ j), or

(km ≤ i and lm ≥ j)

In the example illustrated in Figure 2 — where X = “zxyzxyaxbwaxb” and
Y = “zxyxwb” — there are 17 variables corresponding to matches, 20 variables
corresponding to losses, and 24 variables corresponding to duplications.

Cyclic Duplications. Recall the definition of the product of a duplication; in
Figure 2b, the product of the leftmost duplication is z4, x5, and y6. Consider a
sequence of duplications D1, D2, . . . , Dl and characters a1, a2, . . . , al such that
character ai is in the product of Di and is the duplication of the character ai−1

(a1 is the duplication of some character a0). We call this set of duplications cyclic
if D1 = Dl. Consider the set of duplications {D1, D2} where D1 duplicates the
substring X1X2 to produce the substring X3X4 and D2 duplicates the substring
X4X5 to produce the substring X1X2. This implies the sequence of characters
X2, X4, X1, X3 corresponding to the cyclic duplication D1, D2, D1.

Theorem 2. A solution to the PBLP of Section 4.1 that has no cyclic set of
duplications is an optimal solution to the Duplication-Loss Alignment problem.

Proof. Equation 1 ensures that each character of X is either aligned to a charac-
ter of Y , aligned to a loss in Y , or the product of a duplication. The similar holds
for each character of Y . Since there exists no cyclic set of duplications, then the
solution given by the PBLP is a feasible solution to the Duplication-Loss Align-
ment problem. The minimization of Formula 3 guarantees optimality. ��

However, if there does exist a cyclic duplication set, the solution given by the
PBLP is not a feasible solution since the cycle implies a scenario that is impos-
sible; the cycle implies a character that does not exist in the ancestor but does
appear in X . A cyclic duplication set {D1, D2, . . . , Dl} can be forbidden from a
solution of the PBLP by the inclusion of the following inequality:

D1 +D2 + · · ·+Dl ≤ l − 1. (4)

The following algorithm guarantees an acyclic solution to the PBLP.
It simply runs the PBLP and each time it finds a cyclic set of duplications, it

adds the corresponding constraint to forbid the set and reruns the PBLP. It is
clear that the algorithm of Figure 1 guarantees an acyclic solution:
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Algorithm 1 Pairwise-Alignment(PBLP)

get solution S to the PBLP
while S has a cycle do

for each cycle D1 +D2 + · · ·+Dl in S do
PBLP ← PBLP plus constraint D1 +D2 + · · ·+Dl ≤ l − 1

end for
get solution S to the PBLP

end while
return S

Theorem 3. Algorithm 1 returns an optimal solution to the Duplication-Loss
Alignment problem.

Note that the constraints to forbid all possible cyclic sets of duplications, given
a particular X and Y , could be added to the PBLP from the start, but in the
worst case there is an exponential number of such constraints. We will see in
Section 5.2 that in practice we do not have to rerun the PBLP many times to
find an acyclic solution.

5 Applications

5.1 Evolution of Stable RNA Gene Content and Organization in
Bacillus

The stable RNAs are chiefly transfer RNAs (tRNAs) and ribosomal RNAs
(rRNAs), which are essential in the process of translating messenger RNAs (mR-
NAs) into protein sequences. They are usually grouped in the genome within
clusters (or operons in the case of microbial genomes), representing highly repeti-
tive regions, causing genomic instability through illegitimate homologous recom-
bination. In consequence, stable RNA families are rapidly evolving by duplication
and loss [35,3,28].

We applied Algorithm 1 in a phylogenetic context, using the SPP-heuristic
described at the end of Section 2, to analyze the stable RNA content and orga-
nization of 5 Bacillus lineages: Bacillus cereus ATCC 14579 (NC4722), Bacil-
lus cereus E33L (NC6274), Bacillus anthracis (NC7530), Bacillus licheniformis
ATCC 14580 (NC6322) and Bacillus subtilis (NC964). The overall number of
represented RNA families in these genomes is around 40, and the total number
of RNAs in each genome is around 120. Our PBLP algorithm processes each pair
of these genomes in a few seconds. We used the following cost for duplications
and losses: c(D(k)) = 1 and c(L(k)) = k, for any integer k representing the size
of an operation. The phylogeny in Figure 3 reflects the NCBI taxonomy. Each
leaf is labeled by a block representation of the corresponding genome. Details on
each colored block is given in Figure 4 of the appendix.

The costs and evolutionary scenarios given in Figure 3 are those output by our
algorithm after interpretation. In particular, the five Bacillus genomes all show



106 P. Holloway et al.

a large inverted segment in the region to the left of the origin of replication (the
right part of each linearized representation in Figure 3). As our algorithm does
not handle inversions, we preprocessed the genomes by inverting this segment.
The genome representations given in Figure 3 are, however, the true ones. Signs
given below the red bars represent their true orientations. Consequently, the du-
plication of the right-most red bar to the left-most position should be interpreted
as an inverted block duplication that occurred around the origin of replication.
On the other hand, some duplications of the red bar have been reported by our
algorithm as two separate duplications of two segments separated by a single
gene. After careful consideration (see Figure 5 of the appendix), these pairs of
duplications are more likely a single duplication obscured by subsequent substi-
tution, functional shift or loss of a single tRNA gene. Also, when appropriate
(e.g. when a lone gene is positioned in a lone genome), we interpreted some of
the losses in our alignments as insertions.

The ancestral genomes given in Figure 3 are those output by our algorithm.
They reflect two separate inverted duplications that would have occurred in-
dependently in each of the two groups (cereus , anthracis) and (licheniformis ,
subtilis). We could alternatively infer that the ancestral Bacillus genome al-
ready contained both the origin and product of the inverted duplication. The
consequence would be the simultaneous loss of the leftmost red bar in three of
the five considered genomes. Moreover, nucleotide sequence alignment of the red
bars in subtilis and cereus ATCC reveal a higher conservation of pairs of paralo-
gous bars versus orthologous ones, which may indicate that inverted duplications
are recent. Whatever the situation is, our inference of a duplication around the
origin of replication is in agreement with the observation that has been largely
reported in the literature that bacterial genomes have a tendency to preserve
a symmetry around the replication origin and terminus [13,33,1]. The results
also show independent proliferation of ribosomal RNA gene-containing operons
in Bacillus, which has been associated to selection for increased growth rate [2].
They also show that in Bacillus, growth-selection on ribosomal RNA operon
expansions may significantly alter tRNA gene content as well. The results given
in Figure 5 of the appendix also suggest that some tRNA genes may have been
affected by substitutions leading to conversions of function. Such tRNA func-
tional shifts have been detected in metazoan mitochondrial genomes [27] and
bacteria [29].

5.2 Execution Time

Running times were recorded using a 12-core AMD 2.1GHZ processor, with
256GB of RAM, and the (multithreaded) IBM CPLEX solver under the default
settings. Note that a significant amount of memory (> 1GB) was required only
for sequences of several thousand genes; all tests reported here could be run on
a standard laptop with 2 GB of memory. Alignments of all pairs of genomes
for each of three sets of stable RNA gene orders were computed. The average
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Fig. 3. An inferred evolutionary history for the five Bacillus lineages identified with
each of the five leaves of the tree. Circular bacterial genomes have been linearized ac-
cording to their origin of replication (e.g. the endpoints of each genome is its origin of
replication). Bar length is proportional to the number of genes in the corresponding
cluster. A key for the bars is given in Figure 4, except for white bars that represent
regions that are perfectly aligned inside the two groups (cereus, anthracis) and (licheni-
formis, subtilis), but not between the two groups. More specifically, the 27 duplications
and losses reported on the top of the tree are obtained from the alignment of these
white regions. Finally, each Δ represents a loss and each ∇ is an insertion.

computation time for the Bacillus pairs was under thirty seconds. The average
computation time for pairs from 13 Staphylococcus was under a second. Pairs
from a dataset of Vibrionaceae which had a very high number of paralogs and a
large number of rearrangements took a couple of days.

5.3 Simulations

Simulations were run in order to explore the limits of our method (full results
not shown due to space limitations). A random sequence R was drawn from the
set of all sequences of length n and alphabet size a. l moves were then applied
to R to obtain the ancestral sequence A. To obtain the extant sequences X and
Y , l more moves were applied to A for each. The set of moves were segmental
duplications and single gene losses. The length of a duplication was drawn from a
Gaussian distribution with mean 5 and standard deviation 2; these lengths were
consistent with observations on Bacillus and Staphylococcus. Average running
times for sequences with a fixed ratio of 2l/n = 1/5 and a/n = 1/2 (statistics
similar to those observed in Bacillus) were always below 6 minutes for n < 800.
Sequences of length 2000 took less than 2 hours and sequences of length 5000
took a couple of days. When varying l, n, and a the most telling factor for
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running time was the ratio a/n. This explains the high running times for the
set of Vibrionaceae which had, on average, nearly 100 moves for a sequence of
length 140.

The distance of our computed ancestor to the simulated ancestor was found
by computing an alignment between the two. For values of n = 120, a = 40,
and l = 15 (values that mimic the statistics of more distant pairs of the Bacillus
data) we compute ancestors that are, on average, 5 moves away from the true
ancestor. In general, for sequences with ratios 2l/n = 1/5 and a/n = 1/2, the
average distance to the true ancestor stays at about 15% of l.

6 Conclusion

We have considered the two species small phylogeny problem for an evolutionary
model reduced to content-modifying operations. Although exponential in the
worst case, our pseudo-boolean linear programming algorithm turns out to be
fast on real datasets, such as the RNA gene repertoire of bacterial genomes.
We have also explored avenues for developing efficient non-optimal heuristics.
As described in Section 4, a dynamic programming approach can be used to
infer a reasonable, though not necessarily optimal unlabeled alignment of two
genomes. An important open problem is then to discern the complexity of finding
a minimum labeling for a given alignment. The implication being that if this
problem is NP-hard, then the two species small phylogeny problem is not even
in NP.

Application to the Bacillus lineages has pointed out a number of generaliza-
tions that could be introduced to the evolutionary model, such as inversions,
inverted duplications, gene conversion (substitutions), and insertions. Substitu-
tions can easily be accommodated in our PBLP by allowing matching of different
genes, and attributing a cost according to the likelihood of that gene conversion.
Our boolean programming model is also likely to handle “visible”, in term of
non-crossing inversions and inverted duplications. As for insertions, they can not
be distinguished from losses by the comparison of pairs of genomes. A determin-
istic methodology could, however, be established to distinguish between them
based on results obtained on a complete phylogenetic tree.
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A Proof of Theorem 1

Proof. Let A be a visible ancestor of X and Y and (A,OA→X , OA→Y ) be a
visible history of X and Y . Then construct a labeled alignment A of X and Y
as follows:

1. Initialization: Define the two strings X− = Y − = A on Σ−, and define A
as an alignment with all matches between X− and Y − (i.e. self-alignment
of A).

2. Consider each operation of OA→X in order.

– If it is a duplication, then add the inserted string at the appropriate
position in X−, and add gaps (“ − ” characters) at the corresponding
positions in Y −. Label the inserted columns of A as a duplication in X ,
coming from the columns of the alignment representing the origin of the
duplication.

– If it is a loss, then replace the lost characters in X− by gaps. Label the
modified columns as a loss in X .

3. Consider each operation of OA→Y and proceed in a symmetrical way.

As (A,OA→X , OA→Y ) is a visible history of X and Y , by definition the origins
and products of duplications remain unchanged by subsequent operations on
each of OA→X and OA→Y . Therefore, all intermediate labellings remain valid in
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the final alignment. Therefore, the constructive method described above leads
to a labeled alignment of X and Y .

On the other hand, a substring Xi · · ·Xj (resp. Yi · · ·Yj) that is labeled as
a duplication in X (resp. Y ) should not be present in A, as it is duplicated on
the branch from A to X (resp. from A to Y ). Also, a substring Xi · · ·Xj (resp.
Yi · · ·Yj) that is labeled as a loss in Y (resp. X) should be present in A, as it
is lost on the branch from A to Y (resp. from A to X). This implies an obvious
algorithm to reconstruct a unique ancestor. ��

B Alignment Details

Ribosomal RNAs are grouped in bacteria into three families: the 16S, 5S and
23S rRNAs. As the major role of tRNAs is to serve as adapters between codons
along the mRNA and the corresponding amino acids, we group them according to
their anticodon. More precisely, the four-letter designation starts with one letter
indicating functional class (either an IUPAC one-letter code for a charged amino
acid, “X” for initiator or “J” for a special class of isoleucine tRNA) followed by
an anticodon sequence in a DNA alphabet. The full alignment as given by our
program can be retrieved at: http://lcbb4.epfl.ch/web/BacillusAlignements/.

: 16S; IGAT, ATGC; 23S; 5S; STGA; 16S ; IGAT, ATGC; 23S; 5S; MCAT, ETTC

: 16S; 23S; 5S, ATAC, TTGT, KTTT, LTAG, GGCC, LTAA, RACG, PTGG, ATGC

: RACG, PTGG, ATGC; 16S; 23S; 5S; 16S; 23S; 5S

: 16S; 23S, 5S

: −ETTC, −SGCT, −NGTT, −IGAT, −GTCC

: −FGAA, −DGTC, −XCAT, −STGA, −JCAT, −MCAT

: −RCCG; −FGAA, −DGTC, −ETTC, −KTTT

: NGTT, TGGT

: XCAT, DGTC

, CGCA, LTAA, LCAA, GTCC : SGGA, ETTC, ATAC, XCAT, DGTC, FGAA, TTGT, YGTA, WCCA, HGTG, QTTG, GGCC 

Fig. 4. The RNA gene clusters represented by each colored bar of Figure 3. Ribosomal
RNAs are identified by their families’ names: 16S, 23S, 5S. Each tRNA is identified by
its anticodon preceded by the letter corresponding to the corresponding amino-acid.
The symbol ’,’ (respectively ’;’) separates two genes that are inside (resp. not inside)
the same operon.
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cereus ATCC − 4722

cereus − 6274

anthracis − 7530

licheniformis ATCC − 6322

subtilis − 0964

2c 3c1c

2c’ 3c’

2a 3a

3l

1s 3s

2c, 2c’ : 16S;  23S; 5S, ATAC, YGTA, QTTG,  KTTT, LTAG, GGCC, LTAA, RACG, PTGG, ATGC

2a : 16S;  23S; 5S, ATAC,              QTTG,  KTTT, LTAG, GGCC, LTAA, RACG, PTGG, ATGC

: 16S; 23S; 5S; ATAC,                TTGT, KTTT,  LCAG, GGCC, LTAA, RACG, PTGG, ATGC3s

: 16S; 23S; 5S; ATAC,                TCGT, KTTT,  LCAG, GGCC,             RACG, PTGG, ATGC     3l

3c, 3c’, 3a : 16S; 23S; 5S, ATAC,                TTGT, HGTG, LTAG, GGCC, LTAA, RACG, PTGG, ATGC   

  1c, 1s : 16S; 23S; 5S, ATAC,                TTGT, KTTT,  LTAG, GGCC, LTAA, RACG, PTGG, ATGC

*
* * *

*

*

Fig. 5. (a) Genomes of Figure 3 restricted to their red bars; (b) An alignment of all
red bars, reflecting one gene insertion (or alternatively 5 gene losses) and substitutions,
indicated by ‘*’
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