
Modular Specification and Checking of Structural
Dependencies

Ralf Mitschke
Technische Universität

Darmstadt
Darmstadt, Germany

mitschke@st.informatik.tu-
darmstadt.de

Michael Eichberg
Technische Universität

Darmstadt
Darmstadt, Germany

eichberg@informatik.tu-
darmstadt.de

Mira Mezini
Technische Universität

Darmstadt
Darmstadt, Germany

mezini@informatik.tu-
darmstadt.de

Alessandro Garcia
Pontifical Catholic University

of Rio de Janeiro
Rio de Janeiro, Brazil

afgarcia@inf.puc-rio.br

Isela Macia
Pontifical Catholic University

of Rio de Janeiro
Rio de Janeiro, Brazil

ibertran@inf.puc-rio.br

ABSTRACT
Checking a software’s structural dependencies is a line of
research on methods and tools for analyzing, modeling and
checking the conformance of source code w.r.t. specifications
of its intended static structure. Existing approaches have fo-
cused on the correctness of the specification, the impact of
the approaches on software quality and the expressiveness
of the modeling languages. However, large specifications
become unmaintainable in the event of evolution without
the means to modularize such specifications. We present
Vespucci, a novel approach and tool that partitions a speci-
fication of the expected and allowed dependencies into a set
of cohesive slices. This facilitates modular reasoning and
helps individual maintenance of each slice. Our approach is
suited for modeling high-level as well as detailed low-level
decisions related to the static structure and combines both
in a single modeling formalism. To evaluate our approach
we conducted an extensive study spanning nine years of the
evolution of the architecture of the object-relational map-
ping framework Hibernate.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Tech-
niques; D.2.4 [Software Engineering]: Software/Program
Verification—Validation; D.2.11 [Software Architectures]:
Information Hiding

Keywords
Software Architectures, Modularity, Scalability, Structural
Dependency Constraints, Static Analysis

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AOSD’13, March 24–29, 2013, Fukuoka, Japan.
Copyright 2013 ACM 978-1-4503-1766-5/13/03 ...$15.00.

1. INTRODUCTION
A documented software architecture is an acknowledged

success factor for the development of large, complex sys-
tems [29]. Traditionally, architecture description languages
(ADLs) have been used to specify the architecture and ver-
ify its properties. Generally, this process has been detached
from coding and the architecture specification has been con-
sidered as a means to prescribe the structure of the code re-
sulting from programming or eventually to generate a first
skeleton of that code. However, as systems evolve over time,
due to new requirements or corrections, the implemented ar-
chitecture starts to diverge from the intended architecture
[11, 15, 22] — resulting in architecture erosion [26].

To combat architecture erosion, several approaches have
emerged that focus on structural dependencies [10, 25, 28,
32] and whose proponents argue for automated checking of
architecture specifications w.r.t. the static structure of the
source code. These approaches generally allow to group1

source code elements into building blocks — cohesive units
of functionality in the software system — and to specify in
which way a building block is allowed to statically depend on
which other building block. The specification formalisms in
these approaches vary and can be summarized as: (i) a flat
graph with building blocks as nodes and allowed dependen-
cies as edges [25]; (ii) a matrix notation with building blocks
in rows/columns and their dependencies in the cells [28]; (iii)
a graph with hierarchical nodes and component-connector
style ports to manage internal/external dependencies [10];
(iv) a textual specification of access restrictions on target
building blocks [32].

Such specifications are used either analytically [25] — to
analyze already written code for conformance with an in-
tended static structure — or constructively [10, 32] to en-
force the code’s compliance with the specification of the
static structure continuously during development. Construc-
tive approaches were proven to help developers in realizing
the intended architecture. Several case studies [16, 19, 20]
show that constructive approaches can prevent structural
erosion [27, 33].

Though current approaches have proven to be valuable,

1using, e.g., regular expressions over classes or source files

85

they all share the property that a single monolithic spec-
ification is used and – as in case of a monolithic software
system — a monolithic description of the structure does not
scale and becomes unmaintainable once the software reaches
a certain complexity. Sangal et al. [28] explicitly try to solve
the maintainability and scalability issues using a special no-
tation called dependency structure matrices (DSMs). How-
ever, we believe that the problem is not so much the nota-
tion. The root of the problem is the monolithic nature of the
specifications. Based on some preliminary experience with
modeling the architecture of real systems, such as Hibernate
[5], we doubt that any such approach can scale, even with
compact notations such as dependency structure matrices.
As a result, typically only the highest level of components
and/or libraries is considered [32, 27]; requiring different
notations and tools for different levels of the design. This
precludes a seamless design at various granularity levels.

In this paper, we argue that modeling a software’s static
structure should consist of multiple views, that focus on dif-
ferent parts and on different levels of detail. We take the po-
sition that like programming languages, architecture mod-
eling languages in general should support modularity and
scoping mechanisms to support modular reasoning about
different architectural concerns and information hiding to
facilitate evolution.

Accordingly, we propose a novel modeling approach and
tool, called Vespucci, that allows to separate the specifica-
tion of a software’s static structure into multiple comple-
mentary views, called slices throughout this paper. Each
slice can be reasoned over in separation. Multiple slices can
express different views on the same part of the software and
each slice can be evolved individually. Hence, evolution of
large scale specifications consisting of several slices is fa-
cilitated by distributing work to systematically update the
architecture in a modular fashion. Contrary to a mono-
lithic specification, our approach also has the benefit that
individual concerns can remain stable. Stable parts can be
modularized into different slices to be separated from archi-
tectural “hot-spots”, i.e., slices that require frequent changes
during the evolution.

The contributions of this paper are:

• A first approach towards the specification of a soft-
ware’s structural dependencies that supports a modu-
larized specification by means of individual slices.

• A new approach for modeling a software’s structural
dependencies that combines the advantages of hierar-
chical and graph-based modeling approaches to enable
reasoning over a software’s static structure at different
abstraction levels.

• Discussion of an implementation of the proposed ap-
proach that enables the specification and checking of
a software’s structural dependencies.

The remainder of the paper is organized as follows. In
Section 2, we briefly introduce the Hibernate framework
[5], which we use to illustrate concepts of the proposed ap-
proach and to evaluate its effectiveness. Section 3 introduces
Vespucci’s specification language. In Section 4 we present
an in-depth evaluation of Vespucci. After that, we discuss
related work in Section 5. Finally, we give a summary and
discuss future work.

2. ARCHITECTURE OF HIBERNATE
As part of the development of Vespucci, we did a compre-

hensive analysis of the architecture of the object-relational
mapping framework Hibernate [5]. We provide a short over-
view of Hibernate and its architecture in this section since
we will refer to it to discuss and motivate various features
of Vespucci.

We chose Hibernate as it is a large, mature, widely-adopted
software system, which has been continually updated and
enhanced. We reengineered the architecture of the core of
Hibernate in version 1.0.1 (July 2002) and played back its
evolution until version 3.6.6 (July 2011)2. During this time
the core grew from 2 000 methods in over 255 classes orga-
nized in 18 packages to 17 700 methods in over 1 954 classes
in 100 packages.

In the following, the major building blocks of Hibernate’s
architecture are presented. A building block is a logical
grouping of source code elements that provide a cohesive
functionality, independent of the program’s structuring, e.g.,
in packages or classes. The scope of a building block depends
on the considered abstraction level and ranges from a few
source code elements up to several hundreds. For example,
Hibernate’s support for different SQL dialects is represented
by one top-level building block with many source code el-
ements, but further structured into smaller building blocks
for elements that abstract over the support for concrete di-
alects and those that actually implement the support.

Table 1: Overview of Hibernate 1.0

Top-level Building Block 2
L

B
u
il
d

in
g

B
lo

ck
s

C
la

ss
es

co
n
ta

in
ed

E
le

m
en

ts
co

n
ta

in
ed

R
el

a
ti

o
n

to
P

a
ck

a
g
es

Cache 4 6 60 ≡
CodeGeneratorTool 0 9 68 ⊂
ConnectionProvider 3 5 51 ≡
DatabaseActions 3 9 59 ⊂
DataTypes 10 37 410 ≡
DeprecatedLegacy 2 2 6 ⊂
EJBSupport 0 1 22 ≡
HibernateORConfiguration 2 2 39
HibernateORMapping 12 33 389 ≡
HQL (Hibernate Query Lang.) 3 9 130 ≡
IdentifierGenerators 4 12 92 ≡
MappingGeneratorTool 0 19 233 ⊂
PersistenceManagement 6 35 674
PropertySettings 0 1 43
Proxies 0 3 23 ⊂
SchemaTool 2 5 34 ⊂
SessionManagement 6 10 312
SQLDialects 3 12 119 ≡
Transactions 2 4 37 ≡
UserAPI 9 9 63
UtilitiesAndExceptions 2 33 235
XMLDatabinder 0 2 21

The architectural model of Hibernate 1.0 consists of the
22 top-level building blocks shown in Table 1. Of these 22
top-level building blocks, 16 were further structured. In to-
tal, we identified 73 second-level building blocks. Given the
size of Hibernate 1.0, we did not analyze lower levels. On

2Hibernate 4.0 was released after the case study.

86

average each top-level building block already only contains
11 classes and the 2nd level building blocks consist of even
fewer classes. The key figures of the architecture are given
in Table 1. In the following, we discuss those elements of
the architecture that are most relevant when considering the
modeling of architectures. The complete architecture can be
downloaded from the project’s website [2].

For Hibernate 1.0 nine of the building blocks have a one-
to-one mapping to a package (cf. Table 1 – Relation to
Packages ≡). Six building blocks map to a subset (⊂) of
the code of some non-cohesive package. For example, the
package cirrus.hibernate.impl contains classes for creat-
ing proxies as well as classes related to database actions.
These sets of classes have no interdependencies and belong
to different building blocks. The source code elements of the
remaining building blocks are spread across several packages.
For example, the code related to session handling is spread
across two packages in version 1.0.

Overall, the architecture features several well modular-
ized building blocks, such as the Cache, HQL or Transac-
tions building blocks, which are only coupled with at most
three other building blocks. The number of well modularized
building blocks with few dependencies is, however, small.
The majority of Hibernate’s functionality belongs to build-
ing blocks that exhibit high coupling, such as PersistenceM-
anagement, SessionManagement and DataTypes.

3. THE VESPUCCI APPROACH
In this section, we first describe the three major parts

Vespucci [2] consists of: (1) a declarative source code query
language to overlay high-level abstractions over the source
code, (2) an approach that enables the modular, evolvable,
and scalable modeling of an application’s structural depen-
dencies, and (3) a runtime for checking the consistency be-
tween the modeled and the implemented dependencies. Af-
ter that, we present in Section 3.4 the different modeling
approaches supported by Vespucci. Finally, we discuss in
Section 3.5 how the proposed approach facilitates the evo-
lution of the specification and the underlying software and
how it supports large(r) scale software systems.

3.1 High-level abstractions over source code
Vespucci is concerned with modeling and controlling struc-
tural dependencies at the code level. But, it does so at a
high-level of abstraction.
Ensembles are Vespucci’s representation of high-level build-
ing blocks of an application, whose structural dependencies
are modeled and checked. Specifically, Vespucci’s ensembles
are groups of source code elements, namely type, method,
and field declarations. The definition of an ensemble in-
volves the specification of source code elements that belong
to it by means of source code queries. We refer to the set
of source code elements that belong to an ensemble as the
ensemble’s extension.

The visual notation of an ensemble is a box with a name
label. For example, Figure 1 shows two ensembles, one called
SessionManagement and one called HQL. Vespucci explicitly
predefines the so-called empty ensemble that never matches
any source elements and is depicted using a simple gray box
(). The empty ensemble supports some common modeling
tasks, e.g., to express that a utility package should not have
any dependencies on the rest of the application’s code.
The source code query language is introduced – mostly

example-driven – in the following paragraphs. The language
is not the primary focus of this paper, which is rather on
modularity mechanisms for modeling structural dependen-
cies. In fact, the approach as a whole is parameterized by
the query language, in the sense that the modularization
mechanisms can be reused with other more expressive query
languages and more sophisticated query engines. For a more
systematic definition of the current query language, the in-
terested reader is referred to the website of the project [2].

The query language provides a set of basic predicates that
can select individual fields or methods, entire classes, pack-
ages, or source files. Predicates take quoted parameters,
which filter respective code elements by their signature, e.g.,
the predicate package(’cirrus.hibernate.helpers’) se-
lects code elements in Hibernate’s helpers package, using
the package name as the filter. The query defines the Utili-
ties ensemble, which we have used in modeling Hibernate’s
structural dependencies.

In the above example, source code elements are precisely
specified by their fully qualified signature. Furthermore,
wildcards (“*”) can be used to abstract over individual pred-
icate parameters. For example, the field predicate below
selects field declarations in class Hibernate with any name
(the second parameter is “*”), of a type that ends with the
suffix Type. We have used the query to define an ensemble
called TypeFactory which serves as a factory for Hibernate’s
built-in types.

field(’*. Hibernate ’,’*’,’*Type’)

Queries can be composed using the standard set theoretic
operations (union, intersection, difference), or by passing a
query as an argument to a type parameter of another query.
This form of composition is useful to reason over inheritance
for selecting all sub-/supertypes of a given type. For exam-
ple, consider the query:

class_with_members(subtype +(’Dialect ’))

It uses the basic predicate class_with_members, which
selects a class and all it’s members. Since the predicate
expects a type to be selected, we can instead pass a sub-
query. The subtype+ query returns the transitive closure of
all subtypes of the class Dialect. Hence, the example query
selects all classes (and their members) that are a subtype
of the class Dialect. In Hibernate these represent all sup-
ported SQL dialects – the shown query actually defines the
ensemble ConcreteDialects.

As already mentioned, the query language is interchange-
able. What is interesting about the use of the source query
language as an ingredient of our approach is that it enables
modeling structural dependencies at a high-level of abstrac-
tion. Furthermore, it supports the definition of ensembles
that cut across the modular structure of the code, e.g., Type-
Factory cuts across the class-based decomposition of code.
This enables feature-based control of structural dependen-
cies.
Vespucci provides an ensemble repository that stores the
definitions of all ensembles. It serves as a project-wide repos-
itory and provides the starting point for modeling an appli-
cation’s intended structural dependencies. Capturing all en-
semble definitions in a single repository serves two purposes.
First, it enables a model of intended structural dependen-
cies to be modularized with the guarantee that all modules
refer to the same extension for a particular ensemble. Sec-

87

ond, it allows modules to pose global constraints quantifying
over all defined ensembles (see the discussion about global
constraints in the following section).

3.2 Modeling Structural Dependencies
Dependency slices are Vespucci’s mechanism to support
the modularized specification of an application’s structural
dependencies. A slice captures one or more specific design
decisions, by expressing one or more constraints over ensem-
ble inter-dependencies, e.g., which ensemble(s) is/are allowed
to use a certain other ensemble.

For illustration, Figure 1 shows an an exemplary slice,
which governs dependencies to source code elements that im-
plement the Hibernate query language, represented by the
HQL ensemble. Specifically, it states that elements pertain-
ing to HQL may be used ONLY by those pertaining to the
SessionManagement ensemble. The cycle attached to the ar-
row pointing to HQL states that globally, i.e., for all ensem-
bles in the ensemble repository, this is the only dependency
on HQL’s elements that is allowed.

Figure 1: Dependency rule for Hibernate Query Language

Figure 2 shows another example slice, which states that
source code elements pertaining to SQLDialects are only al-
lowed to be used by PersistenceManagement’s or Sessions-
Management’s source code elements.

Figure 2: Users of SQL Dialects

There can be an arbitrary number of slices in a model
of structural dependencies; the set of ensembles referred to
in different slices may overlap. Deciding about the num-
ber/kind of slices, in which one may want to break down
the specification of an application’s structural dependencies
is a matter of modeling methodology, as we elaborate on in
section 3.4. Yet, we envision the default strategy to be one
in which each slice is used to express allowed and expected
dependencies from the perspective of a single ensemble; this
strategy was used in the case study and in the examples
shown in the paper. For this purpose, the visual notation
features arrow symbols that are shown next to the ensemble
that is constrained3. For example, by looking at Figure 1
we can reason about all dependencies that are allowed for
HQL and looking at Figure 2 we can reason about all de-
pendencies that are allowed for SQLDialects.

Ensembles that participate in a slice but which have no
arrow symbols next to their box are not constrained. For ex-
ample, both slices refer to SessionManagement, but make no
statement w.r.t. the total of its allowed dependencies. From
these two slices we can see that SessionManagement’s source
code elements are allowed to depend on both SQLDialect’s

3For this paper the visual models were compressed to save
space. Hence the distinction may not be as obvious as it is
when you use the Vespucci tool.

and HQL’s source code elements. However, SessionManage-
ment and PersistenceManagement are not constrained.
Constraint types are classified into two basic categories:
constraints that are defined w.r.t. the allowed and those
w.r.t. the not-allowed dependencies. Constraints on allowed
dependencies are further classified as Outgoing and Incoming
Constraints and Local and Global Constraints. The rationale
for distinguishing between the above types of constraints re-
lates to enabling modular reasoning about individual archi-
tectural concerns. Modular reasoning fosters scalability by
allowing each slice to be understood as a single unit of com-
prehension, and also fosters evolvability as each slice can
be adapted without the need to refer to other slices. We
elaborate on the role that different constraint types play
with these respects in the following section. Here, we ex-
clusively focus on explaining the meaning of these different
constraints.

An incoming constraint restricts the set of source code el-
ements that may use the elements of a particular ensemble
(target ensemble). Incoming constraints are denoted by the
symbol“−>”shown next to the target ensemble (cf. Figure 1,
Figure 2). For example, the constraint in Figure 1 restricts
source code dependencies, of which the target element be-
longs to HQL: the source of the dependency must belong to
SessionManagement; source code dependencies from and to
the source code elements belonging to SessionManagement
are — w.r.t. that slice — unrestricted.

An outgoing constraint restricts the set of source code ele-
ments on which code elements of a specific ensemble (source
ensemble) may depend. Outgoing constraints are visually
denoted by the symbol “>−” shown next to the source ensem-
ble. For example, the slice in Figure 3 features two outgoing

Figure 3: Constraints on the Connection Provider

constraints; from ConnectionProvider to PropertySettings, re-
spectively to UtilitiesAndExceptions. Outgoing constraints
only affect code elements of their source ensemble. Hence,
the slice in Figure 3 governs the dependencies of code el-
ements involved in providing connections (captured by the
ConnectionProvider ensemble). They may only use generic
functionality (captured by the UtilitiesAndExceptions ensem-
ble), or functionality for getting and setting properties (cap-
tured by PropertySettings). The targets of the constraint
(PropertySettings and UtilititiesAndExceptions) can — w.r.t.
the slice in Figure 3 — depend on any other ensemble.

Global constraints quantify over all defined ensembles. Vi-
sually they are denoted by a“◦”attached to a constraint. All
constraints considered in the examples so far were global.
For example, the constraint shown in Figure 1 affects code
elements that belong to any ensemble defined in the repos-
itory of Hibernate, even if not referred to by the slice, e.g.,
ConnectionProvider or PropertySettings in Figure 3. Code el-
ements of the latter ensembles are not allowed to depend on
elements in HQL.

Global constraints are hard constraints w.r.t. the addi-
tion of new ensembles into the architecture. Whenever new
ensembles are defined in the ensemble repository, they are
included when checking a global constraint. The purpose
is to provide tight control over the evolution of the archi-

88

tecture. If a new ensemble has dependencies that violate a
global constraint, then architects can asses whether the vi-
olation needs to be removed from the code or, whether the
currently defined architectural rules are too narrow. The es-
sential point is that an architect has assessed the situation
and no uncontrolled erosion of the software’s structure has
occurred.

Local constraints quantify only over ensembles that are
referenced in one particular slice. Visually, they are charac-
terized by the lack of the “◦” symbol. Figure 4 depicts local
constraints on the implementation of Hibernate’s support
for different SQL dialects (e.g., “Oracle SQL”,“DB2 SQL”).
Each dialect is realized by implementing a common inter-
face. Elements of this interface are captured by the Abstract-
Dialect ensemble. Support for specific dialects is captured
by ConcreteDialects. The TypeNameMap ensemble captures
code elements involved in implementing a specialized dic-
tionary for mapping database type names to a common set
of names. The defined constraints specify that only code
pertaining to ConcreteDialects is allowed to depend on code
pertaining to AbstractDialect and code in the latter is only
allowed to depend on TypeNameMap’s code. Furthermore,
neither source code elements of AbstractDialect nor Type-
NameMap are allowed to depend on elements of Concrete-
Dialects due to the incoming constraint between the empty
ensemble and ConcreteDialects. However, the constraints of
the slice in Figure 4 do not restrict in any way code elements
belonging to ensembles that are not referenced by this slice,
e.g., code pertaining to HQL (slice in Figure 1) could use
code pertaining to ConcreteDialects.

Figure 4: Supporting Multiple SQL Dialects

Local constraints provide tight control over the evolution
of source code w.r.t. the scope of the ensembles referenced in
a slice. Their purpose is to capture localized rules that rea-
son only over a part of all the dependencies in the architec-
ture, e.g., as in Figure 4 where only dependencies pertaining
to the implementation of multiple SQL dialects are consid-
ered. The implementation details of involved ensembles can
change (and respectively their extensions), but the changes
are guaranteed to adhere to the specified allowed/expected
dependencies. The rest of the architecture can evolve in-
dependently, i.e., new ensembles and dependencies can be
introduced as long as they do not violate the localized rules.
Different kinds of dependencies can be constrained in-
dividually by annotating constraints. The kinds of depen-
dencies are those that can be found in Java code (e.g., Field
Read Access, Field Write Access, Inherits, Calls, Creates,...;
a complete reference is available online [2]); by default, all
kinds of dependencies are constrained and no further anno-
tation of a constraint is necessary. Dependency kinds are
important when documenting detailed design choices.

For example, Figure 5 restricts only dependencies of the
create kind (i.e., object creations) to the ConcreteConnec-
tionProviders; only the ConnectionProviderFactory is allowed

Figure 5: Restricting connection provider creation to a fac-
tory

to create new connection providers. All other dependen-
cies are allowed for all ensembles, hence clients may use the
created provider, e.g., by calling its methods. The range
of possible applications is broad, e.g., one can also disallow
classes from throwing particular exceptions, while allowing
their methods to catch them.
Nesting of ensembles is also enabled in Vespucci to reflect
part-whole relationships. The information about child/par-
ent relationships between ensembles is stored in the global
repository. For illustration consider that the slice shown
in Figure 4 actually models the internal architecture of Hi-
bernate’s support for SQL dialects. One can express this
relation by making the ensembles referred to in Figure 4
children of the SQLDialects ensemble, as shown in Figure 6.

Figure 6: (Sub-)Ensembles of SQL Dialects

The extension of an ensemble that has inner ensembles
is the union of the extension of its inner ensembles; i.e., an
ensemble with inner ensembles does not define its own query
to match source elements, but instead reuses the queries of
its inner ensembles. Hence, the semantics of nesting is that
constraints defined for parent ensembles implicitly apply to
source code elements of all their children, e.g., constraints
defined for SQLDialects in the slice in Figure 2 apply to all
its children ensembles.

Constraints that cross an ensemble’s border are disabled
in Vespucci for keeping the semantics simple. Due to slices,
this can be done without loss of expressivity. If an architect
needs to define a constraint between two ensembles that do
not have the same ancestor ensemble, it is always possible
to specify the constraint in a new slice that just refers to the
directly relevant ensembles.

With hierarchical modeling, architects can distinguish be-
tween ensembles that are involved in the architectural-level
modeling of dependencies (SQLDialects) and those involved
in modeling decisions at lower design levels (ensembles in
Figure 4). In the following sections, we discuss how the com-
bination of slices and hierarchies facilitates the incremental
refinement of a software’s architecture and is advantageous
in case of software evolution.

3.3 Constraint Enforcement and Tooling
Conceptually, checking the implementation against the

modeled dependencies is done as described next.
First, for each ensemble its extension along with the set

of source code dependencies related to it (those that have the
ensemble as source or target) is calculated; self-dependencies,
i.e., source code dependencies, where the source and target
elements belong to the same ensemble are filtered out. Fur-

89

thermore, dependencies from and to source code elements
that do not belong to any ensemble are ignored.

Second, each slice is checked on its own. To do so, Vespucci
iterates over all ensembles of each slice and checks that none
of the dependencies between respective source code elements
violates a defined constraint. For example, to check the
compliance of an application’s source code with the slice in
Figure 3, Vespucci effectively checks that the target of all
code dependencies, starting at a code element in Connec-
tionProvider, either belongs to PropertySettings or to Utili-
tiesAndExceptions.

The implementation of Vespucci’s dependency checker is
integrated into the Eclipse IDE. Checking is done as part of
the incremental build process and incremental checking ([9])
is efficient enough for (at least) mid-sized projects such as
Hibernate. Likewise the modeling side is incrementalized,
hence, changes to queries are immediately reflected in the
IDE.

The rationale behind the decision to ignore dependencies
to source code elements that do not belong to any ensem-
ble is that dependencies to an application’s essential libraries
and frameworks are most often not of architectural relevance
and should not clutter the overall specification. Neverthe-
less, it is always possible to create an ensemble that covers
some fragment of a fundamental library to restrict its us-
age. E.g., while it generally does not make sense to restrict
the usage of the JDK, it may still be useful to restrict the
usage of the java.util.logging API, because the project
as a whole uses a different API for logging and it has to be
made sure that no one accidentally uses the default logging
API. One possibility to model such a decision is to create a
global incoming constraint from an empty ensemble to the
ensemble representing the java.util.logging API. How-
ever, Vespucci provides a specialized view that lists source
code elements that do not belong to any ensemble to make it
easily possible to find unintended holes in the specification.

3.4 On Modeling Methodology
Figure 7 schematically shows four principal ways to model

the architecture of a hypothetical system consisting of four
ensembles (boxes labeled 1 to 4) with Vespucci. In (A), all
constraints are modeled in a single model. In (B), the model
makes use of hierarchical structuring – specifically, ensem-
bles 1 and 2 are nested into an ensemble 1&2. In (C), the
model makes use of slicing; specifically, per ensemble one
slice is defined, modeling only decisions related to that en-
semble, but slicing at other granularity levels is conceivable
(see below). In (D), the model makes use of both slices and
hierarchies, which is the expected typical usage of Vespucci.

In general, the structural dependency model of a system
in Vespucci consists of an arbitrary number of slices. It is a
matter of modeling decisions – taken by the architect – in
how many slices she breaks down the overall architectural
specification. As part of this process, a trade-off is to be
made between (i) creating (large(r)) slices that capture sev-
eral architectural rules related to multiple ensembles that
conceptually belong together and (ii) creating one slice per
ensemble that just captures the architectural rules related
to that ensemble. In the former case cohesiveness is fostered
while in the latter case (local) comprehensibility of the ar-
chitecture and evolvability of the specification is fostered.

In the Hibernate case study, as a rule of thumb, each
high-level slice focused on design decisions concerning one

(A) Flat Single Model (B) Hierarchical Model

1 2

3 4

1 2

3 4

1 & 2

(C) Sliced Model (D) Sliced Hierarchical
Model

1 2

4

1 2

4

1 2

4

1 & 2

3 4

1 2

3 4 3 4

1 2

3 4

1 & 2

Figure 7: Alternative Architectural Models of Dependencies

ensemble. For instance, the slices in Figure 1 and Figure 3
focus on specific design decisions related exclusively to al-
lowed incoming dependencies to HQL, respectively allowed
outgoing dependencies of ConnectionProvider. Internal de-
pendencies for ensembles with nested sub-ensembles were in
general related to a small set of ensembles and hence cap-
tured in a single slice, as e.g., in Figure 4, where the internals
of SQLDialects were captured.

The one-slice-per-high-level-ensemble strategy for break-
ing down specifications is just a first approximation. For
reasons of better managing complexity and evolvability as
well as understandability, it may make sense to chose more
fine-grained or coarse-grained strategies. One such strategy
is to split the specification of incoming and outgoing depen-
dencies of an ensemble, if those are too complex or evolve in
different ways. On the other hand, slices of related ensem-
bles may be merged, when their separated specifications are
too simple to justify separate slices or hard to understand
in isolation.

One may criticize that a specification becomes complex
with an increasing number of slices. However, a single spec-
ification that controls the dependencies to the same degree
is no less complex and includes all information that are cap-
tured in the slices. For example, if internal dependencies
are controlled, they need to be specified and maintained in
a single specification as well. The focus here is to make
a case for enabling the architects to break down specifica-
tions of structural dependencies in several modules that are
more manageable w.r.t. scalability and evolvability and can
be reasoned over in isolation. Hence, slices also facilitate
distribution of work, such that large architectures can be
maintained by a team rather than a single architect.

Per ensemble slicing of the dependency model may also
impair understandability of dependencies pertaining to sev-
eral modules. A view of the dependencies for multiple en-
sembles (in contrast to their individual constraints) can be
advantageous for the exploration of the architecture, e.g., if
one wants to follow transitive dependencies such as the path
of communication from ensemble A to B. Note that if such
a path is relevant to the architect, it can also be encoded
as a slice. A second scenario for global comprehension is to

90

find all slices in which an ensemble participates. This can
be supported by a simple analysis over the defined slices.

All the above said, systematically deriving guidelines for
structuring architectural decisions into slices and distribut-
ing the work is a matter of performing comprehensive studies
and is out of the scope of this paper.

3.5 Scalability and Evolvability
Vespucci enables architects to reason about architectural

decisions concerning structural dependencies of a set of en-
sembles in isolation, while treating the rest of the system as
a black-box, and to do so in a top-down manner. This is
due to (1) Vespucci’s support for breaking down the specifi-
cation into slices, (2) mechanisms for expressing structural
rules via a constraint system, (3) a scoping mechanism that
enables to quantify locally or globally over the set of af-
fected ensembles, and (4) Vespucci’s support for enabling
the hierarchical organization of specifications. The latter is
a traditional mechanism to govern complexity [31] and will
for this reason not be further considered in the following
discussion.

Support for modular reasoning.
Slices enable the architect to focus on constraints that

concern individual ensembles or a set of strongly related
ensembles. This makes it possible to isolate a small set of
related architectural decisions from the rest for the purpose
of modularly reasoning about them, while treating the rest
as a black-box.

This fosters scalability by reducing the number of ensem-
bles and constraints that need to be considered at once:
Each slice in Figure 7 (C) contains less ensembles and con-
straints than the model in Figure 7 (A). One may argue that
slicing actually increases the overall number of elements (en-
sembles/constraints) — since some of them are mentioned
in multiple slices. However, as they represent the same ab-
stractions in all slices, the overall number of elements that
need to be understood remains the same as in the model A.

Consider for illustration the slice depicted in Figure 2. It
expresses that only SessionManagement and PersistenceMan-
agement may use SQLDialects with the minimum amount
of explicitly mentioned ensembles and constraints. No rules
governing dependencies between SessionManagement and Per-
sistenceManagement, respectively between those and other
ensembles, are specified. The slice in Figure 2 models ar-
chitectural constraints from the perspective of SQLDialects.
Dependencies between SessionManagement and Persistence-
Management or between those and other ensembles are irrel-
evant from this perspective and are, thus, left unspecified.
Further, we do not explicitly enumerate all ensembles that
are not allowed to depend on SQLDialects.

Vespucci’s constraint system for modeling dependencies
and the way checking for architecture compliance operates
(see previous section) is key to the conciseness of specifica-
tions. Slices are checked in isolation. The constraint system
interprets the lack of a constraint in a slice as “don’t care” in
the sense that the presence or absence of code dependencies
is ignored. E.g., potential dependencies between Session-
Management and PersistenceManagement are ignored when
checking compliance with rules in slice in Figure 2. They
may well be the subject of specification in other slices to be
reasoned on separately.

The role played in this respect by our distinction of incom-

ing and outgoing constraints needs to be highlighted here.
It is the use of the incoming constraints in Figure 2 that
enables us to talk about constraints from the perspective of
SQLDialects – excluding from consideration any further de-
pendencies in which, e.g., SessionManagement may engage.
Incoming/outgoing constraints are“unilateral”– they belong
to one ensemble. Without this distinction, we would be left
with “bilateral” constraints; mentioning one such constraint
that affects SessionManagement would require to mention all
other constraints affecting SessionManagement; hence, mak-
ing it impossible to slice specifications.

The ability to abstract over any dependencies that are not
explicitly constrained comes in also very handy when han-
dling ensembles that are expected to be ubiquitously used,
e.g., Hibernate‘s Utilities ensemble. Such ensembles would
typically contribute a significant amount of complexity to
architectural specifications, if the specification approach re-
quires to explicitly mention allowed dependencies. By using
a constraint system this complexity can be avoided. The
specification would make no mention of dependencies to Util-
ities, in order to leave it unconstrained.

The ability to state a constraint that affects arbitrary
many ensembles without having to enumerate those explic-
itly is due to the ability to make global statements. Ensem-
bles that are not explicitly mentioned in a slice are reasoned
over by global constraints, e.g., the slice shown in Figure 2
implicitly states that all other ensembles mentioned in Fig-
ure 1, 2, 3, and many more, are not allowed to use SQL
Dialects. This specification is much smaller compared to
enumerating this fact for all other ensembles constituting
the rest of Hibernate. The latter would be necessary, if
Vespucci only had allowed and not-allowed constraints and
no distinction between local and global scopes.

Support for evolution.
Due to slicing, architectural models also become easier

to extend. First, slices remain stable in case of extensions
that do not affect their ensembles/constraints. Second, af-
fected slices are easier to identify. Finally, existing global
constraints automatically apply to new ensembles.

Consider for illustration the following scenario that oc-
curred during the evolution of Hibernate from version 1.0 to
version 1.2.3. In this step, a new ensemble — called Meta-
data — to represent Hibernate’s new support for metadata
was introduced. This change was accommodated mostly in-
crementally. First, the specification as a whole was extended
incrementally by introducing a new slice, referring to the en-
sembles that Metadata is allowed to use and be used from.
Second, the set of existing slices that eventually required
revision was restricted to those modeling the dependencies
of ensembles referred to in the new Metadata slice. For ex-
ample, the slice that defined constraints for DataTypes was
refined to enable the usage by Metadata. Slices that mod-
eled unrelated architectural decisions, e.g., those governing
dependencies of ConnectionProvider (cf. Figure 3), did not
require any reviewing. Yet, previously stated global con-
straints carry over to the new ensemble, ensuring e.g., that it
does not unintentionally use SQLDialects (slice in Figure 2);
the usage of non-constrained ensembles, e.g., Utilities, is also
granted automatically.

The way the mapping between ensembles and source code
is modeled has an effect on the stability of the model in face
of evolution of the system. Here we hit a variant of the well-

91

known “fragile pointcut problem”. One way to mitigate this
problem is by using stable abstractions in the source code
in the queries. However, this is not always feasible; in the
case study queries had to be adapted as the system evolved.
Here the tool support provided by Vespucci offered some
help to identify changes in the source code by: a) show-
ing elements that do not belong to an ensemble, b) showing
(sub-)queries with empty results; c) specifying that a list of
ensembles should be non-overlapping (i.e., to prevent acci-
dental matches). Even so we are aware that better source
code query technology and tool support for it is needed; in
this paper, we focus on the modularity mechanisms on top
of the query language.

4. EVALUATION
In this section, we evaluate quantitatively the effective-

ness of Vespucci’s mechanisms to modularize the specifica-
tion of a software’s intended structure. This evaluation is
performed from two complementary perspectives: (a) re-
duction of complexity, which is measured as the number of
ensembles and constraints, and (b) facilitating architecture
maintainability during system evolution. As a basis we use
the re-engineered architecture of Hibernate (c.f. Sec. 2),
which allows us to study an architecture of a size that is
representative for mid- to large-scale projects. We also give
a critical discussion of the broader applicability of our re-
sults and of threats to the validity of our study at the end
of the section.

The goal of our evaluation is to assess the modularization
mechanisms of Vespucci and not the accuracy of architec-
tural violation control. Therefore, even though Vespucci is
targeted at continuous architecture conformance checking,
the identification of violations to the architecture is not the
purpose of our quantitative evaluation. Nevertheless, it is
important to highlight that in terms of enforcing confor-
mance Vespucci is able to control violations in the source
code similar to related approaches [25, 21, 28, 10, 32, 3, 8].

4.1 Scalability
We first analyze the reduction in complexity when rea-

soning about an architecture specification. This analysis
was performed by comparing the architecture of Hibernate
1.0 modeled in the four principal ways schematically de-
picted in Figure 7 and outlined in the previous section. The
model with both slices and hierarchies (Figure 7, D) was
the primary model produced during our study of Hibernate.
The other three models were produced to measure the com-
plexity reduction for the different mechanisms (hierarchies,
slices, combination of both).

Scalability with regard to the number of ensembles.
We first compare different mechanisms w.r.t. the number

of ensembles referenced by isolated dependency rules. The
baseline is a single monolithic specification with a total of
79 ensembles, modeled by following Figure 7 (A). The other
three models Figure 7 (B-D) are quantified in the diagrams
in Figure 8. The y-axis of all three diagrams denominates
the number of ensembles referenced per architectural model.

The diagram on the left shows reduction in complexity for
hierarchical structuring only. The model is a single specifica-
tion, but high-level ensembles may be collapsed to reduce the
overall number of ensembles to consider at once. The x-axis

denominates the number of collapsed ensembles ordered by
the number of their sub-ensembles. The values on the y-axis
show how many ensembles are referenced after collapsing an
enclosing ensemble, i.e., the enclosing ensemble is referenced
instead of all its children. The values are accumulated, since
multiple ensembles can be collapsed together. For example,
in a model with the top five most complex high-level ensem-
bles collapsed, the architect has to consider 41 ensembles at
once. When collapsing all ensembles in the hierarchy, we are
left with 22 top level ensembles, hence hierarchical structur-
ing reduces the number of ensembles to approx. 27% of the
total (22 of 79).

The diagram in the middle of Figure 8 shows the number
of ensembles per slice when using only slices (no hierarchies).
The x-axis denominates the modeled slices in the decreasing
complexity order (decreasing number of referenced ensem-
bles). Almost all slices refer to less than 27% of the ensem-
bles (12% on average). The exemption are the three first
slices that capture rules for the following building blocks (of
central importance) (i) persisting classes, (ii) persisting col-
lections, and (iii) the interface to Hibernate’s internal data
types. The combination of both mechanisms (diagram on
the right-hand side of Figure 8), yields a much smaller num-
ber of slices (x-axis), since it focuses on the top-level building
blocks. In addition, the combined approach features slightly
smaller slices; on average each slice references only 9% of the
total number of ensembles.

Scalability with regard to the number of constraints.
In the following, we compare how much each mechanism

reduces the number of constraints used in isolated depen-
dency rules. The comparison is similar to the comparison
regarding the number of ensembles and the numbers are
shown in Figure 9. The x-axis is organized in the same
manner as in Figure 8. The y-axis denominates the num-
ber of constraints that are referenced in each architectural
model.

The y-axis for hierarchical structuring (left-hand side dia-
gram in Figure 9) shows the total number of constraints after
collapsing an enclosing ensemble. The number includes (i)
constraints that are abstracted away, since they are internal
to the enclosing ensemble (cf. Figure 7 B; 1&2) and (ii) con-
straints that are abstracted away, since several constraints
at the low level are subsumed by a single constraint at the
high level (cf. Figure 7 B; 1&2 to 4). Both internal and ex-
ternal constraints contribute approx. half of the reduction in
constraints (external slightly outweighs internal). As in the
evaluation for ensembles, the y-values for the hierarchical
composition (B) are accumulated, since we can use several
hierarchical groupings together. For the architectural mod-
els using slices (C,D) the number of constraints is simply the
number of constraints modeled in one slice.

The baseline (A) consists of 705 constraints in a single
specification. If we consider the hierarchical model and col-
lapse all enclosing ensembles, approx. 2/3 of the constraints
are removed (down to 214, last value in the left-hand side
diagram in Figure 9)). In comparison, slices (diagram in
the middle of Figure 9) show less than 5% of the total
number of constraints and 1,3% on average (9 of 705) per
slice. The combination of slices and hierarchical structur-
ing (right-hand side diagram in Figure 9) features slightly
smaller slices; on average 0.9% (6.5 constraints) of the total
of 705 constraints modeled.

92

0 5 10 15
0

20
40
60

collapsed parent (by #)

#
en

s.
a
ft

er
co

ll
a
p
si

n
g

(B) hierarchy

0 20 40 60
0

20
40
60

slice (by #)

#
en

s.
/
sl

ic
e

(C) slices

0 5 10 15 20
0

20
40
60

slice (by #)

#
en

s.
/
sl

ic
e

(D) hierarchy & slices

Figure 8: Comparison of ensemble reduction w.r.t. hierarchies and architectural slices (Hibernate 1.0)

0 5 10 15
0

200

400

600

collapsed parent (by #)

#
co

n
st

r.
a
ft

er
co

ll
a
p
si

n
g

(B) hierarchy

0 20 40 60
100

101

102

slice (by #)

#
co

n
st

r.
/
sl

ic
e

(C) slices

0 5 10 15 20
100

101

102

slice (by #)

#
co

n
st

r.
/
sl

ic
e

(D) hierarchy & slices

Figure 9: Comparison of constraint reduction w.r.t. hierarchies and architectural slices (Hibernate 1.0)

Scalability with regard to the number of slices.
To control the architecture of Hibernate we have modeled

top-level slices comparable to Figure 7 (D) and slices for
the internal constraints of the 16 ensembles that are further
structured; totaling to 35 slices. Thus, the overall number
of slices is smaller than the overall number of ensembles (79)
and remains manageable. Note that in these models we do
not use the total of the 705 constraints. First, three ensem-
bles at the top level (SessionManagement, PersistenceMan-
agement, and UserAPI) have no slice (and no constraints),
for the reason of being used by and using almost all other
ensembles. This is an inherent problem of the modular-
ization of the software system and should be treated by
refactoring the code base. Second, the modeled top-level
constraints subsume several constraints on the internal en-
sembles. We found the control provided by the top-level
constraints mostly sufficient during the evolution of Hiber-
nate. Hence, we modeled detailed constraints only in few
cases to further our understanding of the dependencies be-
tween selected ensembles.

Summary.
In this study the hierarchical structuring included 22 en-

sembles and 215 constraints (both approx. 1/3 of the total).
Slices are much smaller; we have to collapse the first seven
enclosing ensembles of the hierarchy to reduce the number of
ensembles to 35, the number referenced in the most complex
slice (persisting classes). Collapsing all ensembles still refer-
ences 5 times more constraints than the number referenced
in the slice for persisting classes. Hence, the modeling ap-
proach based on slices scales much better by reducing each
slice to 9.5 ensembles and 9 constraints on average. The
combination of both mechanisms produces the best results
by reducing each slice to 7.1 ensembles and 6.5 constraints
on average, which means that a typical slice in the Hiber-
nate model had about 7 ensembles and 6 to 7 constraints.
Thus especially the number of constraints that need to be
reasoned over at once remains manageable and includes on
average only 3% of the constraints of the model using hier-

archical structuring, with a maximum of 16 constraints, or
7% of the constraints in the single hierarchical model.

4.2 Evolvability
To evaluate the effectiveness of Vespucci in supporting ar-

chitecture evolution we have compared a single model with
hierarchies (Figure 7 B) to slices with hierarchies (Figure 7
D). The results are summarized in Table 2. The first three
Columns show the analyzed version, its release year, and the
number of LoC as an estimate for the size. Columns four
and five characterize the architecture evolution in terms of
ensembles and their queries. Overall, the number of ensem-
bles has doubled. Column six shows the total number of
slices in each version. We followed the methodology of one
slice per ensemble – hence, the number of slices roughly fol-
lows the number of ensembles, with the exception of those
ensembles that were not constrained (c.f. Sec. 4.1). Column
seven shows that on average 33% of all slices (1/3 of the
architecture specification) remained stable w.r.t. the previ-
ous version. The least stable revisions were the first and
the last one. In the first revision, Hibernate was close to
its inception phase, hence requiring more adaptations to its
features. The last revision was the most extensive in terms
of the timespan covered. The last three columns compare
the complexity involved in performing the required updates
of the architecture specifications. Columns eight and nine
show the average, resp. maximal number of ensembles per
slice, whose dependencies were updated, in the approach us-
ing slicing. The last column shows how many dependencies
were updated in the single hierarchical model. On average
only 4% to 6% of the number of dependencies updated in the
single model were reviewed per slice (the maximum ranging
between 7% and 15%). This reduction in complexity of the
updates per slice is comparable with the reduction of the
number of constraints between (B) and (D) in Figure 9.

The numbers indicate that the maintenance of individual
slices is much easier than the evolution of the single archi-
tecture model and confirm what is qualitatively discussed in
the previous section.

93

Table 2: Analysis of the Evolution of Hibernate’s Architecture

Vers. Release
Year

LoC # Ens.
(Top-Level)

Add./Rem.
Ensembles

Slices
(Top-Level)

Stable
Slices

Dependencies reviewed with
Slices (Avg.) Slices (Max.) Single Model

1.0 2002 14703 22 n/a 19 n/a n/a n/a n/a
1.2.3 2003 27020 26 +5 / -1 23 4 (21%) 2.4 6 61
2.0 2003 22876 28 +5 / -3 25 12 (52%) 1.9 6 40
2.1.6 2004 44404 30 +2 / -0 27 9 (36%) 2.6 6 38
3.0 2005 79248 36 +9 / -3 33 8 (30%) 4.5 8 118
3.6.6 2011 106133 39 +3 / -0 36 9 (27%) 5.0 11 87

4.3 Threats to Validity
We identify two threats to the construct validity of our

study. First, the reverse engineering of Hibernate’s archi-
tecture was primarily performed by this paper’s authors,
i.e., not by the original Hibernate developers. Hence, the re-
sulting architecture design may not accurately reflect Hiber-
nate’s real/intended architecture, which may lead to incon-
sistencies in the results. To mitigate this threat, the archi-
tectural model was created by three people — one student,
one PhD candidate and one post-doctoral researcher — that
together have many years of experience on object-relational
mapping frameworks. Further, we extensively studied the
available documentation to make sure that the model is true
to Hibernate’s architecture. Yet, it is likely that a differ-
ent group would reverse engineer a different architectural
model. But, it is unlikely that the architecture would be
such different that our evaluation would become invalid. A
second threat to construct validity is that other architects
may modularize the architecture specification differently, re-
sulting in a different number and scope of slices. However,
the approach that we followed — roughly creating one slice
per top-level ensemble — has proven to be useful and can
at least be considered as one reasonable approach.

Threats to conclusion validity in our study could be re-
lated to the number of ensembles and architectural con-
straints involved in our analysis. We tried to mitigate this
threat by considering an architectural model of a significant
complexity. Our analysis concerned an architectural model
that involved 79 ensembles, more than 700 architectural con-
straints and 35 architectural slices for Hibernate 1.0.

The main issue that threatens the external validity of our
study is that it involved a single software system. To mit-
igate this threat we have used a well-known medium-size
framework, which has been designed by taking into consid-
eration guidelines and good practices. These characteristics
allow us to analyze the benefits of Vespucci when modeling
architecture designs of well-modularized software systems.
In addition, we have discussed the properties of Hibernate’s
architecture that influence the results and compared them
to other studies. However, we are aware that more studies
involving other systems should be performed in the future.
All our findings should be further tested in repetitions or
more controlled replications of our study.

5. RELATED WORK
Closely related to Vespucci are approaches that support

checking the conformance between code and architectural
constraints on static dependencies [25, 21, 28, 10, 32, 3, 8].
The key difference is that none of the above approaches (nor

other related work) offers the ability to modularize the archi-
tecture description into arbitrary many slices. They rather
require a self-contained monolithic specification of the archi-
tecture, which does not support the kind of black-box rea-
soning enabled by slices (cf. Sec. 3.5). In the following, we
discuss the above approaches separately; a summary of their
support for the features elaborated in Sec. 3 is presented in
Table 3.

Reflexion Models (RM) [25] pioneered the idea of encod-
ing the architecture via a declarative mapping to the source
code. RM is an analytical approach that uses the modeled
system architecture to generate deviations between source
code and planned architecture, which is reviewed by the ar-
chitect. The RM approach is not a constraint system, but
rather requires the specification of the complete set of valid
dependencies. Omission of dependencies is interpreted as
“no dependency is allowed”. Other approaches extend RM
by (i) incorporating hierarchical organization [21], (ii) visual
integration into the Eclipse IDE [20] and (iii) extending the
process to continuously enforce compliance of structural de-
pendencies between a planned architecture and the source
code [27].

Sangal et al. [28] discuss the scalability issue of archi-
tecture descriptions and propose a hierarchical visualization
method called design structure matrices(DSMs), which orig-
inates from the analysis of manufacturing processes. The key
advantage is the notation (matrices) that facilitates identi-
fication of architectural layers via a predominance of depen-
dencies in the lower triangular half of the matrix. DSM
features a very verbose constraint system. For example, ex-
emptions on lower level ensembles are encoded by the order
in which rules are declared, e.g., by first allowing Persistence-
Management to use SQLDialects and then disallowing the use
of ConcreteDialects. While effective, this approach requires
a carefully crafted sequences of constraints.

In previous work [10] we proposed an approach to con-
tinuous structural dependency checking; integrated into an
incremental build process. As in Vespucci, we referred to
conceptual building blocks as ensembles. However, the spec-
ification of architectural constraints has been completely re-
vised for Vespucci. Previously we have defined LogEn; a
first order logic DSL, that integrated query language and
constraint specification. However, the meaning of a viola-
tion, i.e., a constraint, is defined by the end-user, which
is complex in first order logic. Hence, we provided a vi-
sual notation (VisEn), which is less complex, but focuses on
documenting the architecture and hence is not a constraint
system, but requires explicit modeling of all dependencies.
The focus of this work was on the efficient incrementalization

94

Table 3: Comparison with the State of the Art

Reflexion Mod-
els (RM) [25]

Hierarchical
RM [21]

DSM [28] LogEn/VisEn
[10]

DCL [32] Vespucci

Architectural slices - - - - - X
Constraint system1 - - + +++/-2 ++ +++
Hierarchies - X X X - X
Dependency Kinds - - - - X X
1 - (non existent) to +++ (very expressive)
2 LogEn is very expressive; VisEn does not offer a constraint system

of the checking process, hence slicing architecture specifica-
tions into manageable modular units was not supported.

Terra et al. [32] propose a dependency constraint language
(DCL) that facilitates constructive checking of constraints
on dependencies; discrimination of dependencies by kind is
also supported. DCL offers a textual DSL for specifying con-
straints. DCL’s constraint system is closest to Vespucci’s,
and can express the not-allowed, expected and incoming
constraints. Yet, it lacks outgoing constraints and a scop-
ing mechanism such as global/local constraints, which goes
hand in hand with the lack of support for slicing specifica-
tions into modular units. The language supports no inherent
hierarchical structure in the architecture.

A number of commercial tools have been documented (c.f.
[8]) for checking dependency among modules and classes us-
ing implementation artefacts, e.g., Hello2Morrow Sotograph
[1] . However, the scope of these tools is limited; they are
only able to expose violations of “certain” architectural con-
straints such as inter-module communication rules in a lay-
ered architecture. That is, they do not provide means for
expressing system constraints.

In [3] the authors propose a technique for documenting a
system’s architecture in source code (based on annotations)
and checking conformance of code with the intended archi-
tecture. The representation of the actual architecture in the
source code is hierarchical, however, they do not support
slicing of specifications in modular units and the modular
architectural reasoning related to it.

Languages specialized on software constraints like SCL
[17], LePUS3 [14], Intensional Views [23], PDL [24] and
Semmle .QL [7] can be used to check detailed design rules
e.g., related to design patterns [12]. However, they are not
expressive enough for formulating architectural constraints
in a way that allows to abstract over irrelevant constraints,
when reasoning about a part of the architecture in isolation.

In [30] authors introduce a technique to identify modules
in a program called concept analysis. A concept refers to
a set of objects that deal with the same information. The
authors observed that, in certain cases, there is an overlap
among concept partitions. The notion of slice in Vespucci
could be considered as conceptually close to the notion of
concept overlapping since Vespucci supports the grouping of
ensembles that are ruled by the same design decisions. Other
than that slices and concepts are different in the way they are
defined and used. Concepts emerge while slices are explicitly
modeled. Moreover, use case slices [18] are also related to
our notion of slices, but focus on the modularization of the
scattered and tangled implementation of use cases.

In [13] the authors discuss foundations and tool support

for software architecture evolution by means of evolution
styles. Basically, an evolution style is a common pattern how
software architectures evolve. This case study complements
our work by helping to identify evolution styles w.r.t. a soft-
ware’s structural architecture. The evolvability of a software
that is developed in a commercial context is also discussed
by Breivold et al. [6]. They propose a model that — based
on a software’s architecture — evaluates the evolvability of
the software. Based on our experience, the model also ap-
plies to open-source software, such as Hibernate. Aoyama
[4] presents several metrics to analyze software architecture
evolution. He made the general observation that discontinu-
ous evolution emerges between certain periods of successive
continuous evolution. Our case-study confirms this obser-
vation. We observed that some parts of Hibernate evolved
continuously, while in other parts the evolution was disrup-
tive. Using our modular architecture conformance checking
approach architects can focus on continuous and disruptive
slices individually.

6. SUMMARY AND FUTURE WORK
In this paper, we proposed and evaluated Vespucci, an ap-

proach to modular architectural modeling and conformance
checking. The key distinguishing feature of Vespucci is that
it enables to break down specification and checking into an
arbitrary number of models, called architectural slices, each
focussing on rules that govern the structural dependencies
of subsets of architectural building blocks, while treating the
rest of the architecture as a black box. Vespucci features an
expressive constraint system to express architectural rules
and also supports hierarchical structuring of architectural
building blocks.

To evaluate our approach, we conducted an extensive study
of the Hibernate framework, which we used as a founda-
tion for a qualitative evaluation, highlighting the impact
of Vespucci’s mechanisms on managing architectural scal-
ability and evolvability. We also quantified the degree to
which Vespucci can (a) reduce the number of ensembles and
constraints that need to be considered at once, and (b) fa-
cilitates architecture maintainability during system evolu-
tion. For this purpose, we played back the evolution of Hi-
bernate’s structure. The results confirm that Vespucci’s is
indeed effective in managing complexity and evolution of
large-scale architecture specifications. However, given that
we have only done one extensive case study so far, we need
to carry out further case studies before final conclusions on
the scalability of the approach can be made.

In future work, we will explore how IDE support can help
to “virtually merge” slices into a virtual global architectural

95

model and to automatically create “on-demand” slices to
help architects to plan a software’s evolution. Obviously,
further empirical studies are needed to better understand
the benefits and limitations of Vespucci. New studies need
to be designed to asses the impact of the approach on archi-
tect’s productivity and on software quality. In this respect
it would be interesting to study the effect of modularization
w.r.t. enlarged control, i.e., the modularization allows to effi-
ciently maintain an architecture containing more ensembles,
which provides tighter control over the source code.

7. REFERENCES
[1] Hello2Morrow Sotograph.

http://www.hello2morrow.com/products/sotograph
(accessed Oct. 2012).

[2] Vespucci.
http://www.opal-project.de/vespucci project.

[3] M. Abi-Antoun and J. Aldrich. Static extraction and
conformance analysis of hierarchical runtime
architectural structure using annotations. OOPSLA,
2009.

[4] M. Aoyama. Metrics and analysis of software
architecture evolution with discontinuity. IWPSE,
2002.

[5] C. Bauer and G. King. Hibernate in Action. Manning
Publications Co., 2004.

[6] H. Breivold, I. Crnkovic, and P. Eriksson. Analyzing
software evolvability. COMPSAC, 2008.

[7] O. de Moor, D. Sereni, M. Verbaere, E. Hajiyev,
P. Avgustinov, T. Ekman, N. Ongkingco, and
J. Tibble. .QL: Object-Oriented Queries Made Easy.
In Generative and Transformational Techniques in
Software Engineering II. Springer-Verlag, 2008.

[8] L. de Silva and D. Balasubramaniam. Controlling
software architecture erosion: A survey. Journal of
Systems and Software, 85(1), 2012.

[9] M. Eichberg, M. Kahl, D. Saha, M. Mezini, and
K. Ostermann. Automatic incrementalization of
prolog based static analyses. PADL. 2007.

[10] M. Eichberg, S. Kloppenburg, K. Klose, and
M. Mezini. Defining and continuous checking of
structural program dependencies. ICSE, 2008.

[11] S. G. Eick, T. L. Graves, A. F. Karr, J. S. Marron,
and A. Mockus. Does code decay? assessing the
evidence from change management data. IEEE Trans.
Softw. Eng., 27(1), 2001.

[12] E. Gamma, R. Helm, R. E. Johnson, and J. Vlissides.
Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1995.

[13] D. Garlan, J. Barnes, B. Schmerl, and O. Celiku.
Evolution styles: Foundations and tool support for
software architecture evolution. WICSA/ECSA, 2009.

[14] E. Gasparis, J. Nicholson, and A. H. Eden. Lepus3:
An object-oriented design description language.
Diagrams, 2008.

[15] M. W. Godfrey and E. H. S. Lee. Secrets from the
monster: Extracting mozilla’s software architecture.
COSET, 2000.

[16] S. Herold. Checking architectural compliance in
component-based systems. SAC, 2010.

[17] D. Hou and H. J. Hoover. Using scl to specify and

check design intent in source code. IEEE Trans. Softw.
Eng., 32(6), 2006.

[18] I. Jacobson and P.-W. Ng. Aspect-Oriented Software
Development with Use Cases. Addison-Wesley, 2004.

[19] J. Knodel, D. Muthig, U. Haury, and G. Meier.
Architecture compliance checking - experiences from
successful technology transfer to industry. CSMR,
2008.

[20] J. Knodel, D. Muthig, M. Naab, and M. Lindvall.
Static evaluation of software architectures. CSMR,
2006.

[21] R. Koschke and D. Simon. Hierarchical reflexion
models. WCRE, 2003.

[22] A. MacCormack, J. Rusnak, and C. Y. Baldwin.
Exploring the structure of complex software designs:
An empirical study of open source and proprietary
code. Manage. Sci., 52, 2006.

[23] K. Mens, A. Kellens, F. Pluquet, and R. Wuyts.
Co-evolving code and design with intensional views.
Comput. Lang. Syst. Struct., 32(2-3), 2006.

[24] C. Morgan, K. De Volder, and E. Wohlstadter. A
static aspect language for checking design rules.
AOSD, 2007.

[25] G. C. Murphy, D. Notkin, and K. Sullivan. Software
reflexion models: bridging the gap between source and
high-level models. SIGSOFT Softw. Eng. Notes, 20,
1995.

[26] D. E. Perry and A. L. Wolf. Foundations for the study
of software architecture. SIGSOFT Softw. Eng. Notes,
17(4), Oct. 1992.

[27] J. Rosik, A. Le Gear, J. Buckley, and M. Ali Babar.
An industrial case study of architecture conformance.
ESEM, 2008.

[28] N. Sangal, E. Jordan, V. Sinha, and D. Jackson. Using
dependency models to manage complex software
architecture. OOPSLA, 2005.

[29] M. Shaw and D. Garlan. Software Architecture:
Perspectives on an Emerging Discipline. Prentice Hall,
Upper Saddle River, NJ, USA, 1996.

[30] M. Siff and T. Reps. Identifying modules via concept
analysis. 25(6):749–768, 1999.

[31] H. A. Simon. The architecture of complexity. In
Proceedings of the APS, 1962.

[32] R. Terra and M. T. Valente. A dependency constraint
language to manage object-oriented software
architectures. Softw.: Practice and Experience, 39(12),
2009.

[33] S. Wong, Y. Cai, M. Kim, and M. Dalton. Detecting
software modularity violations. ICSE, 2011.

96

