Automatic Translation of Architecture
Constraint Specifications into

Components

Sahar Kallel, Bastien Tramoni, Chouki Tibermacine,
Christophe Dony & Ahmed Hadj Kacem.

LIRMM, CNRS and Montpellier University, France

Chouki Tibermacine - Constraint Translation into Components - Sept, 11th 2015

Outline 1|24

Introduction: Context & Goals

Translation Process
A Two-Step Process
Constraint Refactoring
Generation of CLACS Components

Process Evaluation
Dataset & Metric
Results

Conclusion & Perspectives

Chouki Tibermacine - Constraint Translation into Components - Sept, 11th 2015

Introduction: Context & Goals

Context 2| 24

o Architecture constraints are predicates that formalize design
rules (instantiation of patterns, styles, ...)

e They are used to complement some architecture descriptions
with invariants to enforce design rules (during evolution)

o They are checked by analyzing architecture descriptions

Chouki Tibermacine - Constraint Translation into Components - Sept, 11th 2015

Introduction: Context & Goals

Context -Ctd 3|24
Architecture vs. Functional Constraints:

e Checked by analyzing: static architecture descriptions vs
states of running components

e Used in: Evolution Assistance vs. Design by Contract

e Specified in the context of a: metamodel vs. model

e Examples (in OCL):
e Functional Constraint:

—Employees must have the legal

1
2| context Employee inv:

age to work
self.age >= 16

o Meta-level (~Architecture) Constraint: part of UML spec.

—Only binary

associations

can be aggregations
context Association inv:

self.memberEnd
—>exists (aggregation <> Aggregation :
implies self.memberEnd—>size ()=2

N

:none)

Chouki Tibermacine - Constraint Translation into Components - Sept, 11th 2015

Introduction: Context & Goals

Problem Statement 4| 24

e Many architecture constraints have been formalized for
design, architecture and SOA patterns

These constraints are “gross” unstructured specifications

They do not offer enough reusability and parametrization

They are composed of many independent parts that have
their own semantics, and which can be reused with other
architecture descriptions

In the past, we proposed a component model for the
specification of architecture constraints: CLACS

Chouki Tibermacine - Constraint Translation into Components - Sept, 11th 2015

Introduction: Context & Goals

Problem Statement 4| 24

e Many architecture constraints have been formalized for
design, architecture and SOA patterns

These constraints are “gross” unstructured specifications

They do not offer enough reusability and parametrization

They are composed of many independent parts that have
their own semantics, and which can be reused with other
architecture descriptions

In the past, we proposed a component model for the
specification of architecture constraints: CLACS

There is no automated way to translate all existing architecture
constraints into CLACS

Chouki Tibermacine - Constraint Translation into Components - Sept, 11th 2015

Introduction: Context & Goals

Goals of this Work 5| 24

e General goal: Make existing constraint specifications
reusable, customizable and composable entities by
automatically translating them into components

o In this work:

o We specified, implemented and experimented an automatic
translation process

e This process takes into account a concrete language for
architecture constraint specification: OCL

o It generates CLACS components

Chouki Tibermacine - Constraint Translation into Components - Sept, 11th 2015

Introduction: Context & Goals

Input and Output of the Process

context Component inv

realization. realizingClassifie
Coltlect (o1 Claneitier | . oclaKindO T (Component)
5| and c.oclAsType(Component) . name="esblmpl ')
5| cnstomers Component)
realizingClassifier
I P P oclsKindOf (Component)
and (c.oclAsType (Component) . name="cust 1
or c.oclAsType(Component) . name="cust2
or c.oclAsType(Component) -name="cust3 "))
producers : Set (Component)
self i2ingClassifi
mll\!\nm()i((oul]wm nt)

1
3| self
1

or c.oclAsType(Component) - name

brods)

The bus should have at least ome input port

and one output port
bus ownedPo JZexists (bt p2:Port|

p1 () and p2. required
and

Customers should have output ports only

customers>forAll (¢ Component|
QunedPort > for Al (required notBapty ()
and provided —>isEmpty ())

28| and

29|-—Customers should be connccted ta the bus only
30| customers —>for Al (com: Component |

31| com. port —>farAll (p: Port |p. end->notEmpty ()

32 mplics

33 s01f ownedConnector —>exists (con:Connector
34 bus . ownedPort—>exists (ph: Port

35 con.end. role >includes (ph)) and

36 con.end—>includes (p.end))))

37| and

38| —Producers have input
39| producers >forAll ¢ Component|
10| " c. ownedPort->forAll (provided>notEmpty()
11 and required—>isEmpty ()

12| and

13| —Producers

should ports only

should be connected to the bus only

1) producers—>forall (com: Component |

15| com. port—>forAll (p: Port|p. end=>notEmpty ()

16 aplies

17 =l ownedQonzector->exlats (con: Oonnector
18 us . own

19 con.end. ¢

50 con end—>includes (p.end))))

0)

6| 24

A

oot -
e

et ot |

Chouki Tibermacine - Const

a.

anslation into Components

Sept, 11th 201

Translation Process: A Two-Step Process
A Translation Process composed of two 7| 24
Steps

¢ Refactoring of Constraints: Decomposing and
transforming “gross” OCL constraints into parameterized
OCL definitions
¢ Generation of CLACS Components: Grouping and
wrapping OCL definitions in constraint components
- OCL definitions: mnamed and (possibly) parameterized

expressions part of a model/metamodel [used by invariants]
Example:

1| context Component

2| def: getBusComp (busName: String): Component
3|=self.realization.realizingClassifier
4
5)

—>select (c¢: Classifier | c¢.oclIsKindOf(Component)
and c.oclAsType(Component) .name = busName)

Chouki Tibermacine - Constraint Translation into Components - Sept, 11th 2015

Translation Process: Constraint Refactoring

Constraint Refactoring 8|24
A multi-step micro-process whose input is the constraint’s AST:

e Extraction of declarations

e Decomposition of the constraint

¢ Redundancy Removal

o Parameterization of definitions

e Recontextualization of definitions
Result:

e A set of basic OCL definitions whose context is the
meta-class Component, ready for the second step

o A set of recontextualized OCL definitions associated to
different meta-classes, usable for invariant specification

Chouki Tibermacine - Constraint Translation into Components - Sept, 11th 2015

Translation Process: Constraint Refactoring

Extraction of Declarations 9|24

o Let expressions enable to declare variables initialized with
the values of repeated expressions
In this step:
o If let expressions exist, extract them from the constraint
 Declare them as OCL definitions (queries):

2| def:letCustomers () : Set (Component)=self.realization
3| .realizingClassifier —>select (¢ : Classifier |

4] c.ocllsKindOf (Component) and

5| (c.oclAsType (Component) .name="custl’ or

6| c.oclAsType(Component) .name = ’'cust2’ or ...))

&

1| context Component
3]

o Call these generated OCL definitions in their appropriate
places in the constraint

Chouki Tibermacine - Constraint Translation into Components - Sept, 11th 2015

Translation Process: Constraint Refactoring

Constraint Decomposition 10 | 24

e A recursive process where the constraint is decomposed into
expressions based on logical operators

Stopping condition: size & no logical operators

Declare these pieces as OCL defs returning a boolean value
Refactor the constraint for every generated def

Example:

context Component

def: defl(c:Classifier):Boolean=c.ocllsKindOf(Component)
def: def2(c: Classifier):Boolean=c.oclAsType(Component) .name
= ’esbImpl’

def: letBus ():Component=self.realization.realizingClassifier
—>select (c: Classifier [defl(c) and def2(c))

def: def3(c: Classifier):Boolean=c.ocllsKindOf (Component)
def: defd4(c: Classifier):Boolean=c.oclAsType(Component) .name
= ’custl’

def: letCustomers ():Set(Component)=self.realization .
realizingClassifier —>select (c: Classifier |def3(c) and def4(c))

et
B — OO 00T UL W =

Chouki Tibermacine - Constraint Translation into Components - Sept, 11th 2015

Translation Process: Constraint Refactoring

Redundancy Removal 11|24

o After the decomposition step, we obtain a bag (multiset) of
OCL definitions

* Remove all redundant (syntactically identical) definitions

context Component
def: defl(c:Classifier):Boolean=c.ocllsKindOf(Component)

QU LODN —

def: def3(c: Classifier):Boolean=c.ocllsKindOf (Component)

e Refactor the constraint

Chouki Tibermacine - Constraint Translation into Components - Sept, 11th 2015

Translation Process: Constraint Refactoring

Constraint Parametrization 12 | 24

o Create a parameter in the signature of the definition when
finding a literal value of a given data type
o Types of parameters are obtained from the AST
e Example:

context Component
def: def2(c:Classifer , name:String): Boolean
= c.oclAsType (Component) .name = name

LN —

o Identify similar definitions (by ignoring the signatures), and
remove them (considered as redundant):

1 i context Component i
2‘def: defl7 (c: Classifier , namel:String): Boolean = ‘
3‘ c.oclAsType (Component) .name = namel |
"'1‘def: defl8 (c: Classifier , name2:String): Boolean = |
2‘ c.oclAsType(Component) .name = name?2 ‘
7} def: def4(c:Classifier ,namel:String ,name2:String ,name3: String): }

8| Boolean = defl7(c,namel)and defl8(c,name2) and defl9 (c,name3).

Chouki Tibermacine - Constraint Translation into Components - Sept, 11th 2015

Translation Process: Constraint Refactoring

Constraint Parametrization -Ctd 13| 24

e Optimize parameters:

def:def4 (setofcustomers: OrderedSet (String)) : Boolean—=

instead of:

def:def4 (namel: String ,name2: String ,
name3: String) : Boolean=

N =

e Refactor the definition and the constraint accordingly

Chouki Tibermacine - Constraint Translation into Components - Sept, 11th 2015

Translation Process: Generation of CLACS Components

Component Generation 14 | 24

o A CLACS component is stereotyped query or constraint

o A CLACS component declares ports; each one has an interface
specifying a set of query/checking operation signatures

e The generation of components is also a multi-step
transformation micro-process:

o OCL Definition (Operation) grouping
o Metamodel migration

e CLACS arch. description generation

Chouki Tibermacine - Constraint Translation into Components - Sept, 11th 2015

Translation Process: Generation of CLACS Components

Operation Grouping 15| 24

CLACS query-components embed OCL defs (not boolean)

CLACS constraint-components embed OCL boolean defs

Putting together the OCL definitions that check/query similar
aspects (properties of the same kind of architectural elements)

How similarity between defs is measured?

e Sub-trees of the AST are compared

e They should share a common root and a minimal sub-tree
(obtained in a breadth-first traversal)

e For the remaining part, an edit distance is measured between each
pair of sub-trees (> 6, a threshold)

Chouki Tibermacine - Constraint Translation into Components - Sept, 11th 2015

Translation Process: Generation of CLACS Components
Metamodel Migration 16 | 24

e Transformation of OCL expressions defined on the UML
metamodel into OCL/CLACS constraints

e We specified declarative mappings between UML and CLACS
metamodels

e These mappings are applied automatically by transforming in
the order:

. navigation patterns

2. simple navigations and attribute accesses

3. meta-classes

Chouki Tibermacine - Constraint Translation into Components - Sept, 11th 2015

Translation Process: Generation of CLACS Components

CLACS Arch. Description Generation 17 | 24

CLACS query and constraint component descriptors are
instantiated and connected together

These components embed the refactored architecture constraints

This is defined in a composite constraint component descriptor

This component can then be instantiated and connected to
business components in order to check the initial constraint

Chouki Tibermacine - Constraint Translation into Components - Sept, 11th 2015

Process Evaluation: Dataset & Metric

Used dataset and Metric 18 | 24

e We collected 25 architecture constraints of arch. patterns

o Average times: parsing 96ms, refactor. 5081ms, gener. 846ms

* We chose a well-known (industry-validated) metric to measure
the reusability in the results of the translation process

E
C=|(b —)] —-1)R+1 1
(- (Z n)) - 1)
e C: cost of software development —specification of a constraint-component

e E: the cost of developing a reusable element —a constraint-component

® n: the number of uses of this reusable element

® b: cost of integrating the reused elements into the new artifact —integration
of constraint-components in a composite

® R: the proportion of reused elements

Chouki Tibermacine - Constraint Translation into Components - Sept, 11th 2015

Process Evaluation: Results

Results 19 | 24

¢ R represents the proportion of a constraint’s structure which is
reused from other constraints

00 I I I I

PL P2 73 P PS PG P7 PB P9 PLD PLL P12 PL3 PLE PIS PIG PL7 PI8 PIS P20 F2L P22 P23 P24 F25

* R values are in the range 20-100 %

e 13 (/25) constraints have 100 % of their internal structure
reused elsewhere

Chouki Tibermacine - Constraint Translation into Components - Sept, 11th 2015

Process Evaluation: Results

Results -Ctd 20 | 24

e n: number of times a constraint-component is reused in the
whole set of constraints

PL 72 73 P4 PS PG P7 PR P9 PIO L1 PL2 PL3 PLE PIS PIG PIT P18 PO P20 P2L P22 P23 P24 P25

¢ 6 constraint-components have a structure reused more than 50
times

e The constraint-component no 8 is reused 55 times

houki Tibermacine - Constraint Translation into Components - Sept, 11th 2015

Process Evaluation: Results

Results -Ctd 21|24

e Constants from the literature: b = 0.15 and E = 1.2

8
07 1
05
0s
04
0
02
PL P2 73 Pe PS PG PT PR P9 PI0 PIL P12 P13 PLE PIS PIS PI7 PIB P19 P20 P21 P22 P23 P24 P25

e Cis in the range of 0.18 to 0.89

o All of the constraint-components have a cost less than 1:
effective reuse in the translation results

Chouki Tibermacine - Constraint Translation into Components - Sept, 11th 2015

Process Evaluation: Results

Complementary Evaluation 22|24

e For now, we have evaluated the “quality” of the process output

o Evaluation of the translation process: “Does it produce the
same/better output than a manual design with CLACS?”

» We selected 7 constraints (AST sizes: ~500 to 2500 tokens)

e Compare the translation results with CLACS descriptions
manually specified by another person (two years ago)

e Average Precision = 0.84

e The lowest precision is due to the fact that the decomposition
produced a lot of small “re-useless” constraint-components

¢ Recall: not pertinent to measure (no false negatives)

Chouki Tibermacine - Constraint Translation into Components - Sept, 11th 2015

Conclusion & Perspectives

Conclusion 23|24

o Architecture constraints are a means to enforce architecture
styles, patterns or general design rules

o Catalogs of these architecture constraints have been designed

e In these catalogs, constraints are “gross” specifications, which
are subject to reuse, customization and composition

e We have proposed a process for translating them automatically
into components

e This enables to improve reusability of this kind of architecture
“documentation” without having to manually redefine it

Chouki Tibermacine - Constraint Translation into Components - Sept, 11th 2015

Conclusion & Perspectives

Perspectives 24 | 24

e Make the generated CLACS components checkable:

¢ in the implementation stage on component-based programs

e and at runtime on reifications of architecture descriptions

by translating them into Compo, our component-based
reflective programming language

Chouki Tibermacine - Constraint Translation into Components - Sept, 11th 2015

Conclusion & Perspectives

Perspectives 24 | 24

e Make the generated CLACS components checkable:

¢ in the implementation stage on component-based programs

e and at runtime on reifications of architecture descriptions

by translating them into Compo, our component-based
reflective programming language

Thanks for your attention

Chouki Tibermacine - Constraint Translation into Components - Sept, 11th 2015

	Introduction: Context & Goals
	Translation Process
	A Two-Step Process
	Constraint Refactoring
	Generation of CLACS Components

	Process Evaluation
	Dataset & Metric
	Results

	Conclusion & Perspectives

