
LIRMM, CNRS and Montpellier University, France

Chouki Tibermacine - Constraint Translation into Components - Sept, 11th 2015

Automatic Translation of Architecture
Constraint Specifications into

Components

Sahar Kallel, Bastien Tramoni, Chouki Tibermacine,
Christophe Dony & Ahmed Hadj Kacem.

Chouki Tibermacine - Constraint Translation into Components - Sept, 11th 2015

1 | 24Outline

Introduction: Context & Goals

Translation Process
A Two-Step Process
Constraint Refactoring
Generation of CLACS Components

Process Evaluation
Dataset & Metric
Results

Conclusion & Perspectives

Chouki Tibermacine - Constraint Translation into Components - Sept, 11th 2015

Introduction: Context & Goals

2 | 24Context

• Architecture constraints are predicates that formalize design
rules (instantiation of patterns, styles, ...)

• They are used to complement some architecture descriptions
with invariants to enforce design rules (during evolution)

• They are checked by analyzing architecture descriptions

Chouki Tibermacine - Constraint Translation into Components - Sept, 11th 2015

Introduction: Context & Goals

3 | 24Context -Ctd

Architecture vs. Functional Constraints:
• Checked by analyzing: static architecture descriptions vs.

states of running components
• Used in: Evolution Assistance vs. Design by Contract
• Specified in the context of a: metamodel vs. model
• Examples (in OCL):
• Functional Constraint:

1 −−Employees must have the l e g a l age to work
2 context Employee inv : s e l f . age >= 16

• Meta-level (∼Architecture) Constraint: part of UML spec.
1 −−Only binary a s s o c i a t i o n s can be a g g r e g a t i o n s
2 context A s s o c i a t i o n inv : s e l f . memberEnd
3 −>e x i s t s (a g g r e g a t i o n <> Aggregation : : none)
4 implies s e l f . memberEnd−>s i z e () =2

Chouki Tibermacine - Constraint Translation into Components - Sept, 11th 2015

Introduction: Context & Goals

4 | 24Problem Statement

• Many architecture constraints have been formalized for
design, architecture and SOA patterns

• These constraints are “gross” unstructured specifications
• They do not offer enough reusability and parametrization
• They are composed of many independent parts that have

their own semantics, and which can be reused with other
architecture descriptions

• In the past, we proposed a component model for the
specification of architecture constraints: CLACS

There is no automated way to translate all existing architecture
constraints into CLACS

Chouki Tibermacine - Constraint Translation into Components - Sept, 11th 2015

Introduction: Context & Goals

4 | 24Problem Statement

• Many architecture constraints have been formalized for
design, architecture and SOA patterns

• These constraints are “gross” unstructured specifications
• They do not offer enough reusability and parametrization
• They are composed of many independent parts that have

their own semantics, and which can be reused with other
architecture descriptions

• In the past, we proposed a component model for the
specification of architecture constraints: CLACS

There is no automated way to translate all existing architecture
constraints into CLACS

Chouki Tibermacine - Constraint Translation into Components - Sept, 11th 2015

Introduction: Context & Goals

5 | 24Goals of this Work

• General goal: Make existing constraint specifications
reusable, customizable and composable entities by
automatically translating them into components

• In this work:
• We specified, implemented and experimented an automatic

translation process
• This process takes into account a concrete language for

architecture constraint specification: OCL
• It generates CLACS components

Chouki Tibermacine - Constraint Translation into Components - Sept, 11th 2015

Introduction: Context & Goals

6 | 24Input and Output of the Process

Chouki Tibermacine - Constraint Translation into Components - Sept, 11th 2015

Translation Process: A Two-Step Process

7 | 24A Translation Process composed of two
Steps
• Refactoring of Constraints: Decomposing and

transforming “gross” OCL constraints into parameterized
OCL definitions

• Generation of CLACS Components: Grouping and
wrapping OCL definitions in constraint components

- OCL definitions: named and (possibly) parameterized
expressions part of a model/metamodel [used by invariants]
Example:

1 context Component
2 de f : getBusComp (busName : String) : Component
3 =s e l f . r e a l i z a t i o n . r e a l i z i n g C l a s s i f i e r
4 −>s e l e c t (c : C l a s s i f i e r | c . oc l I sKindOf (Component)
5 and c . oclAsType (Component) . name = busName)

Chouki Tibermacine - Constraint Translation into Components - Sept, 11th 2015

Translation Process: Constraint Refactoring

8 | 24Constraint Refactoring

A multi-step micro-process whose input is the constraint’s AST:

• Extraction of declarations
• Decomposition of the constraint
• Redundancy Removal
• Parameterization of definitions
• Recontextualization of definitions

Result:
• A set of basic OCL definitions whose context is the

meta-class Component, ready for the second step
• A set of recontextualized OCL definitions associated to

different meta-classes, usable for invariant specification

Chouki Tibermacine - Constraint Translation into Components - Sept, 11th 2015

Translation Process: Constraint Refactoring

9 | 24Extraction of Declarations

• Let expressions enable to declare variables initialized with
the values of repeated expressions

In this step:
• If let expressions exist, extract them from the constraint
• Declare them as OCL definitions (queries):

1 context Component
2 de f : l etCustomers () : Set (Component)=s e l f . r e a l i z a t i o n
3 . r e a l i z i n g C l a s s i f i e r−>s e l e c t (c : C l a s s i f i e r |
4 c . oc l I sKindOf (Component) and
5 (c . oclAsType (Component) . name=’ cust1 ’ or
6 c . oclAsType (Component) . name = ’ cust2 ’ or . . .))

• Call these generated OCL definitions in their appropriate
places in the constraint

Chouki Tibermacine - Constraint Translation into Components - Sept, 11th 2015

Translation Process: Constraint Refactoring

10 | 24Constraint Decomposition

• A recursive process where the constraint is decomposed into
expressions based on logical operators

• Stopping condition: size & no logical operators
• Declare these pieces as OCL defs returning a boolean value
• Refactor the constraint for every generated def
• Example:

1 context Component
2 d e f : d e f 1 (c : C l a s s i f i e r) : Boolean=c . oc l IsKindOf (Component)
3 d e f : d e f 2 (c : C l a s s i f i e r) : Boolean=c . oclAsType (Component) . name
4 = ’ esbImpl ’
5 d e f : l e t B u s () : Component=s e l f . r e a l i z a t i o n . r e a l i z i n g C l a s s i f i e r
6 −>s e l e c t (c : C l a s s i f i e r | d e f 1 (c) and d e f 2 (c))
7 d e f : d e f 3 (c : C l a s s i f i e r) : Boolean=c . oc l IsKindOf (Component)
8 d e f : d e f 4 (c : C l a s s i f i e r) : Boolean=c . oclAsType (Component) . name
9 = ’ c u s t 1 ’ . . .

10 d e f : letCustomers () : Set (Component)=s e l f . r e a l i z a t i o n .
11 r e a l i z i n g C l a s s i f i e r −>s e l e c t (c : C l a s s i f i e r | d e f 3 (c) and d e f 4 (c))
12 . . .

Chouki Tibermacine - Constraint Translation into Components - Sept, 11th 2015

Translation Process: Constraint Refactoring

11 | 24Redundancy Removal

• After the decomposition step, we obtain a bag (multiset) of
OCL definitions

• Remove all redundant (syntactically identical) definitions
1 context Component
2 d e f : d e f 1 (c : C l a s s i f i e r) : Boolean=c . oc l IsKindOf (Component)
3 . . .
4 d e f : d e f 3 (c : C l a s s i f i e r) : Boolean=c . oc l IsKindOf (Component)
5 . . .

• Refactor the constraint

Chouki Tibermacine - Constraint Translation into Components - Sept, 11th 2015

Translation Process: Constraint Refactoring

12 | 24Constraint Parametrization

• Create a parameter in the signature of the definition when
finding a literal value of a given data type
• Types of parameters are obtained from the AST
• Example:

1 context Component
2 d e f : d e f 2 (c : C l a s s i f e r , name : String) : Boolean
3 = c . oclAsType (Component) . name = name

• Identify similar definitions (by ignoring the signatures), and
remove them (considered as redundant):

1 context Component
2 d e f : de f17 (c : C l a s s i f i e r , name1 : String) : Boolean =
3 c . oclAsType (Component) . name = name1
4 d e f : de f18 (c : C l a s s i f i e r , name2 : String) : Boolean =
5 c . oclAsType (Component) . name = name2
6 . . .
7 d e f : d e f 4 (c : C l a s s i f i e r , name1 : String , name2 : String , name3 : String) :
8 Boolean = def17 (c , name1)and def18 (c , name2) and def19 (c , name3) .

Chouki Tibermacine - Constraint Translation into Components - Sept, 11th 2015

Translation Process: Constraint Refactoring

13 | 24Constraint Parametrization -Ctd

• Optimize parameters:

1 de f : de f4 (s e to f cu s tomer s : OrderedSet (String)) : Boolean=
2 . . .

instead of:
1 de f : de f4 (name1 : String , name2 : String ,
2 name3 : String) : Boolean=
3 . . .

• Refactor the definition and the constraint accordingly

Chouki Tibermacine - Constraint Translation into Components - Sept, 11th 2015

Translation Process: Generation of CLACS Components

14 | 24Component Generation

• A CLACS component is stereotyped query or constraint

• A CLACS component declares ports; each one has an interface
specifying a set of query/checking operation signatures

• The generation of components is also a multi-step
transformation micro-process:

• OCL Definition (Operation) grouping

• Metamodel migration

• CLACS arch. description generation

Chouki Tibermacine - Constraint Translation into Components - Sept, 11th 2015

Translation Process: Generation of CLACS Components

15 | 24Operation Grouping

• CLACS query-components embed OCL defs (not boolean)

• CLACS constraint-components embed OCL boolean defs

• Putting together the OCL definitions that check/query similar
aspects (properties of the same kind of architectural elements)

• How similarity between defs is measured?

• Sub-trees of the AST are compared
• They should share a common root and a minimal sub-tree

(obtained in a breadth-first traversal)
• For the remaining part, an edit distance is measured between each

pair of sub-trees (> θ, a threshold)

Chouki Tibermacine - Constraint Translation into Components - Sept, 11th 2015

Translation Process: Generation of CLACS Components

16 | 24Metamodel Migration

• Transformation of OCL expressions defined on the UML
metamodel into OCL/CLACS constraints

• We specified declarative mappings between UML and CLACS
metamodels

• These mappings are applied automatically by transforming in
the order:

1. navigation patterns

2. simple navigations and attribute accesses

3. meta-classes

Chouki Tibermacine - Constraint Translation into Components - Sept, 11th 2015

Translation Process: Generation of CLACS Components

17 | 24CLACS Arch. Description Generation

• CLACS query and constraint component descriptors are
instantiated and connected together

• These components embed the refactored architecture constraints

• This is defined in a composite constraint component descriptor

• This component can then be instantiated and connected to
business components in order to check the initial constraint

Chouki Tibermacine - Constraint Translation into Components - Sept, 11th 2015

Process Evaluation: Dataset & Metric

18 | 24Used dataset and Metric

• We collected 25 architecture constraints of arch. patterns

• Average times: parsing 96ms, refactor. 5081ms, gener. 846ms
• We chose a well-known (industry-validated) metric to measure

the reusability in the results of the translation process

C =

(
b +

(∑ E
n

)
− 1
)

R + 1 (1)

• C : cost of software development –specification of a constraint-component

• E : the cost of developing a reusable element –a constraint-component

• n: the number of uses of this reusable element

• b: cost of integrating the reused elements into the new artifact –integration
of constraint-components in a composite

• R: the proportion of reused elements

Chouki Tibermacine - Constraint Translation into Components - Sept, 11th 2015

Process Evaluation: Results

19 | 24Results

• R represents the proportion of a constraint’s structure which is
reused from other constraints

• R values are in the range 20-100 %

• 13 (/25) constraints have 100 % of their internal structure
reused elsewhere

Chouki Tibermacine - Constraint Translation into Components - Sept, 11th 2015

Process Evaluation: Results

20 | 24Results -Ctd

• n: number of times a constraint-component is reused in the
whole set of constraints

• 6 constraint-components have a structure reused more than 50
times

• The constraint-component no 8 is reused 55 times

Chouki Tibermacine - Constraint Translation into Components - Sept, 11th 2015

Process Evaluation: Results

21 | 24Results -Ctd

• Constants from the literature: b = 0.15 and E = 1.2

• C is in the range of 0.18 to 0.89

• All of the constraint-components have a cost less than 1:
effective reuse in the translation results

Chouki Tibermacine - Constraint Translation into Components - Sept, 11th 2015

Process Evaluation: Results

22 | 24Complementary Evaluation

• For now, we have evaluated the “quality” of the process output

• Evaluation of the translation process: “Does it produce the
same/better output than a manual design with CLACS?”

• We selected 7 constraints (AST sizes: ∼500 to 2500 tokens)

• Compare the translation results with CLACS descriptions
manually specified by another person (two years ago)

• Average Precision = 0.84

• The lowest precision is due to the fact that the decomposition
produced a lot of small “re-useless” constraint-components

• Recall: not pertinent to measure (no false negatives)

Chouki Tibermacine - Constraint Translation into Components - Sept, 11th 2015

Conclusion & Perspectives

23 | 24Conclusion

• Architecture constraints are a means to enforce architecture
styles, patterns or general design rules

• Catalogs of these architecture constraints have been designed

• In these catalogs, constraints are “gross” specifications, which
are subject to reuse, customization and composition

• We have proposed a process for translating them automatically
into components

• This enables to improve reusability of this kind of architecture
“documentation” without having to manually redefine it

Chouki Tibermacine - Constraint Translation into Components - Sept, 11th 2015

Conclusion & Perspectives

24 | 24Perspectives

• Make the generated CLACS components checkable:

• in the implementation stage on component-based programs

• and at runtime on reifications of architecture descriptions

by translating them into Compo, our component-based
reflective programming language

Thanks for your attention

Chouki Tibermacine - Constraint Translation into Components - Sept, 11th 2015

Conclusion & Perspectives

24 | 24Perspectives

• Make the generated CLACS components checkable:

• in the implementation stage on component-based programs

• and at runtime on reifications of architecture descriptions

by translating them into Compo, our component-based
reflective programming language

Thanks for your attention

	Introduction: Context & Goals
	Translation Process
	A Two-Step Process
	Constraint Refactoring
	Generation of CLACS Components

	Process Evaluation
	Dataset & Metric
	Results

	Conclusion & Perspectives

