WSSim: a Tool for the Measurement of Web Service
Interface Similarity

Okba Tibermacine
Computer Science
Department
University of Biskra, Algeria
o.tibermacine@univ-
biskra.dz

ABSTRACT

Measuring web services similarity is a key solution to bene-
fit from reusing the large number of Web service collections
available on the Internet. This paper presents a practical
approach to measure the similarity of Web services based
on their interfaces. The approach relies on the use of sev-
eral similarity metrics. Both semantic and lexical metrics
are integrated throughout a specific technique for assessing
scores between matched Web services, operations, messages,
parameters identifiers and types. The obtained similarity
scores are good indicators of the substitutability relation
(and thus of the capacity for reuse) between the compared
services. A tool has been developed to implement this ap-
proach. This tool has been experimented on some real world
Web services.

Categories and Subject Descriptors

H.4 [Information Systems Applications]: Web services;
D.2.8 [Web Service Similarity]: Similarity Metrics—
Structural Metrics, Semantic metrics

General Terms

Similarity Measurement

Keywords
Web services, WSDL, Similarity metrics

1. INTRODUCTION: CONTEXT AND MO-
TIVATION

Service-Oriented Architecture (SOA) is an arcitectural
style for designing distributed applications using function-
ality implemented by third-party providers. In an SOA, the
service requester satisfies its specific needs by using services
offered by service providers. One concrete technology used
for implementing SOA is Web Services.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

Chouki Tibermacine
LIRMM, CNRS and
Montpellier Il University,
France
tibermacin@lirmm.fr

Foudil Cherif
Computer Science
Departement
University of Biskra, Algeria
foud.cherif@yahoo.fr

According to the W3C, a Web Service is defined as “a
software system designed to support interoperable machine-
to-machine interaction over a network” [7]. It’s interface is
described as a WSDL (Web service Description Language)
document that contains structured information about the
Web service’s location, its offered operations and the in-
put/output parameters.

A Web Service architecture is composed of three elements:
(1) Service Providers for publishing web services, (2) Service
requesters for querying Web services and (3) a registry for
storing web services descriptions.

Interface descriptions (WSDL documents) enable Web
services to be discovered, used by applications or other Web
services, and composed into new more complex Web ser-
vices. Therefore, the composition is the mechanism of rapid
creation of new Web services by the reuse of existing ones.

Studying the similarity between Web service descriptions
is a key solution for building compositions and healing them
by finding relevant substitutes for the failed web services.
The real motivation of measuring the similarity of such spe-
cific kind of software artifacts emanates from the fact that
recently thousands of Web services are indexed in libraries,
like Service-Finder'. The existence of such large space of
Web services led us to the study of the classification of these
services for facilitating the research and navigation [2, 3].
When dealing with this classification, we have faced the need
for the measurement of operation or message similarity in
Web service interfaces.

Evaluating similarity between Web services for a general
purpose does not provide interesting (workable) results. In
reverse, measuring similarity for substitution is far more ap-
plicable. We can calculate similarity scores based on particu-
lar metrics to define substitutability between two given Web
services. Therefore, we consider in this work “similarity
for substitution”. In this particular case, the relation that
similarity establishes between services is not symmetric. A
given operation opl in a Web service can be similar to an-
other operation op2, which means that: op2 can be substi-
tuted by op1; op2 is however not necessarily similar to opl
in the sense that it cannot necessarily replace it? (it requires
more parameters, for example).

Similarity of both structural (static) and behavioral (dy-
namic) descriptions of Web services has been addressed in
the literature [18] [20] [15] and [27]. In this paper, we fo-

!Service-Finder Website: http://www.service-finder.eu
2we use indifferently “replace” and “substitute” throughout
this paper.

cus on the study of the static descriptions and this is mainly
due to insufficient availability of Web services that are docu-
mented with their behavioral description on the Internet. As
mater of fact, the similarity process is conducted by match-
ing WSDL files.

The paper presents WSSim, our practical approach, and
its tool support, for Web service similarity. This approach
is parameterized (customized) by different kinds of weighted
scores and the use of multiple metrics. These scores are mea-
sured by analyzing WSDL descriptions of Web services in-
terfaces. The similarity measurement process implemented
in WSSim starts by calculating similarity between service
names, operations, input/output messages, parameters, and
at last compares the documentation. It addresses at the
same time the lexical and semantic similarity between identi-
fiers. It makes schema matching through similarity flooding
for comparing message structures and complex XML schema
types. A detailed description of each step is illustrated in
Sections 2 to 6. The tool support is presented in Section 7
along with its experimentation on a set of real-world services
in Section 8. Before concluding this paper and exposing the
future work, Section 9 summarizes the related works.

2. SIMILARITY MEASUREMENT AP-
PROACH

Our approach for measuring similarity between WSDL el-
ements, named Web Service SIMilarity (WSSIM), focuses
on a subset elements of a WSDL document. The consid-
ered elements on which the similarity measurement relies
are presented below:

e Service: a service element consists of a set of nested
operations. It is described by a name and a textual
documentation.

e Operation: an operation element is described by a
name and a textual documentation. It contains input
and output messages.

e Message: a message element is described by a name
and eventually a textual documentation. A set of pa-
rameters are held by each message.

e Parameter: a parameter is described by a name and
eventually a textual description. The parameter could
be of simple or complex type.

A hierarchy of functions that deals with measuring simi-
larity between pairs of compared WSDL elements is defined
as the core of the implemented approach. Each function re-
turns similarity score that ranges between 0 and 1; 0 means
the elements are totally different, 1 means that they are
totally similar. We assign weights to theses scores. By de-
fault, the value 1 is assigned to all scores. The final score is
calculated depending on these weighted scores. It is possi-
ble to customize the weights with different values based on
the user’s experience. To calculate these scores, the process
of similarity assessment starts by evaluating the following
function:

WsSim (Wsi, Wsa) =

wgn X IdentifierSim (Wsi.Name, Wsz.Name)
+ wso X OpsSim (W s1.0pList, W s2.OpList)

+ wsp X DocSim (W s1.Doc, W sz.Doc)

/ (wsn + wso + wsp) .

where:

e WsSim is the main function which is called for measur-
ing similarity between two web services denoted Wsi
and Ws2. Every service Wsi has a name, an oper-
ation list, and a textual description denoted respec-
tively, Wsi.Name, Wsi.OpList, and Wsi.Doc.

e IdentifierSim measures similarity between identifiers
that label web services, operations, messages or param-
eters names.

e OpsSim measures similarity between two list of opera-
tions that belong to compared web services.

e DocSim evaluates the similarity between two textual
documentations.

e wsn, wso and wgp are respectively the assigned
weights to IdentifierSim, OpsSim and DocSim.

Additionally, these functions depend on other functions,
which are presented bellow, and detailed in the following
sections.

e OpSim measures similarity between a single pair of op-
erations (Section 4).

e MessageSim measures similarity of a single pair of mes-
sages (Section 5). MessageSim is constructed upon the
SfaMessSim and SimpMessageSim functions.

e SfaMessSim evaluates similarity of a single pair of mes-
sage elements using the Similarity Flooding Algorithm
proposed in [16] (Section 5).

e SimpMessageSim measures similarity between names,
documentation and parameters of two compared mes-
sage elements (Section 5).

e ParsSim measures similarity between two sets of pa-
rameters. A set of parameters is the input or the out-
put parameters of a message.

e ParSim is called by ParsSim function. It measures the
similarity between two parameters of a simple type.

e SimTypeSim evaluates similarity between two given
simple types (subsection 5.2).

An illustration of the measurement process is depicted in
Figure 1).

The process starts by executing WsSim function. This
later, as denoted previously, gets the similarity scores be-
tween names, textual documentations of the compared
WSDL files by invoking IdentifierSim and DocSim func-
tions respectively. Additionally, WsSim evaluates the simi-
larity between the services lists of operations by calling the
function OpsSim. Thus, WsSim assigns weights to these scores
and return the final similarity score between two web ser-
vices.

The function OpsSim gets two lists of operations as input.
Each list belong to a web service. It compares every pair
of operations by calling the function OpSim. The similarity
scores of compared pairs are saved in a similarity matrix.
The problem of getting the maximum similarity score from
the matrix is addressed as finding the maximum weighted
assignment in a bipartite graph. This later is implemented

WsSIM Function

W5S.Name

WS.Description

WS.OperationList

IdentifierSim Function |.L

DocSim Function L

OpsSim Function

i

W5.Name

‘WS.Description

OpSim Function

WS.OperationList
HangarianMax
Function

A Operation.Name

Operation.Description e

IdentifiefSim

DocSim Function

il
||

- Operation.Name

o Operation.Description

Input / Output Messages «__|

—i

MessageSim Function

|y Input/Output Messages

B Message.Name

B
sm[essSm function| /

Message.Name

Message.Description -+

simpMessageSim function

Message.Description

Parameters List

%.

Parameter. Name

Farameter Type

DocSim Function

o H
v\

Parameters List

ey

Farameter.Name

Faramater Type

HangarianMax
Function | 14
ParSim Function 1]

Figure 1: Overall Process of Similarity Assessment

by the function HungarianMax (more details are given in Sec-
tion 6) which returns the maximum similarity score between
the two lists of compared operations.

From the other side, the OpSim function uses Identifier-
Sim, DocSim and MessageSim to calculate similarity between
two operations by comparing their names, description, input
and output Messages.

The measurement of similarity between messages is as-
signed to the function MessageSim. This function measures
the similarity using two methods, 1) measuring the similar-
ity using the algorithm proposed in [16], and 2) measuring
the similarity based on message signature comparison. The
first method is implemented by the SfaMessSim function,
and the second one is implemented by the SimpMessageSim
function. The MessageSim function returns the maximum
score of the two results given by SfaMessSim and SimpMes-
sageSim functions.

Based on a graph matching technique, the SfaMessSim
function returns the similarity scores between compared
messages. First, it represents compared messages as graphs.
Then, it applies the Similarity Flooding Algorithm upon the
graphs and returns the resulted score.

The function SimpMessageSim generates similarity score
of two messages by comparing their names and descriptions
using IdentifierSim and DocSim respectively. It also gener-
ates similarity scores of parameters using the ParsSim func-
tion.

Likewise to OpsSim, ParsSim evaluates the similarity be-
tween two lists of parameters. The similarity between each
par is calculated by the function ParSim. The results of all
pairs are represented as a similarity matrix. The Hungar-
ianMax function works on the similarity matrix to return
the maximum similarity score between the two parameters
lists.

3. IDENTIFIER AND DOCUMENTATION
SIMILARITY

Based on some Information Retrieval techniques and dif-
ferent similarity metrics proposed in the literature, we de-
fined IdentifierSim and DocSim functions for measuring
the similarity between Identifiers and textual descriptions
found in WSDL files.

3.1 Identifier Similarity

In WSDL similarity context, an identifier is a unique or a
sequence of concatenated words that identifies web service,
operation, message or a parameter. The function Identi-
fierSim deals with the measurement of similarity between
two identifiers. The IdenfitiferSim function measures the
similarity between two identifiers based on the following
tasks:

1. Tokenization: We get after this task two sets of tokens.
Each one corresponds to an identifier. Stop words are
removed from the two sets.

2. Similarity matriz generation: A similarity matrix is
generated based on the similarity of token tuples. Each
cell in the matrix holds a similarity between two com-
pared tokens, where tokens are picked from the two
sets. So a line in the similarity matrix corresponds
to the similarities between a token from the first set
with all tokens in the second set. Structural and se-
mantic metrics are involved in the computation of the
similarity scores stored in matrix cells. The follow-
ing If-Statement describes the mechanism of choosing
appropriate metrics to measure the similarity between
tokens:

if both words are found in WordNet then

// use of semantic metrics
return the average result after using the 4
semantic metrics listed in Table 1
else
// use of lexical metrics
compute lexical (structural) similarity using
all metrics listed in Table 1
return the avarage of the 5 best results
endIf.

An empirical study on metrics selection has been per-
formed, by testing a number of metrics for measur-
ing the similarity between a large set of identifiers ex-
tracted from real web services. The results has been
compared with a human evaluation. Consequently, the
metrics that gave best results has been preferred. Ta-
ble 1 summarizes semantic and structural metrics used
in the function IdentifierSim.

3. Maximum similarity score assessement: The first step
in this task is to select the best similarity scores be-
tween token tuples from the similarity matrix. Each
token appears only once in the selected tuples. Then,
the average of these maximum scores is returned as
the final similarity score between the compared iden-
tifiers. (Selection and computation are explained in
more details in Section 6).

Structure Metrics Semantic Metrics [19]
Stoilos [22] Jiang
ChapmanOrdName [6] Lin

Jaro [11] Pirro Seco

JaroWinkler [26] Resnik

Levenshtein [14]
NeedlemanWunch [17]
QGramsDistance [25]
SmithWatermanGotoh [21]

Table 1: List of similarity metrics

3.2 Documentation Similarity

As a matter of fact, available web services do not con-
tain full description/documentation of all WSDL elements.
Hence, we ignore evaluating similarity between documenta-
tions once they are missed from the WSDL files. Otherwise,
we compare the textual descriptions (documentations) us-
ing LSI [9] and TF/IDF [4] measures which are widely used
in information retrieval. The DocSim function based on these
measures evaluates and returns the similarity between two
compared element documentations.

4. OPERATIONS SIMILARITY

Measuring similarity between two operations is based on
similarities between their names, descriptions and the in-
put/output messages. The OpSim function handles this task
according to the following definition:

OpSim (Op1, Op2) =

won X IdentifierSim (Opi1.Name, Op2.Name)

+ wonm X MessageSim (Opi.InMessage, Opa.InMessage)
+ won X

MessageSim (Op1.OutMessage, Op2.Out M essage)

+ wop x DocSim (Opy.Doc, Opz.Doc)

/ (won + 2 X wonm + wop) -

Personnel (Pno : Integer, Pname : String, Name : String)

ParameterType

@'\lmeter
- Ly
@2

\name_-
L @F——————>(@&3\"2™iry)
7S XMLTYPE \

|

©Message

type| _— |
R \ e/
&— ype narpg;_ P /
name —

&) "2 fiing

XMLIYPE ~

(&
typx /
name JOSB__/

@7 " XMLIYEE

Figure 2: Message representation as oriented la-
beled graph

where:

e Op; and Ops are the compared operations. Every op-
eration Op; has a name, description, input message
and output message denoted respectively Op;.Name,
Op;.Doc, Op;.InMessage and Op;.OutMessage.

e won,wom and wop are weights associated respec-
tively to IdentifierSim, MessageSim and DocSim.

OpSim is also used by OperationsSim where it generates
the score of all operations. This is done by retrieving the
maximum score from the operations similarity matrix. Cells
of the matrix hold the result of OpSim. The maximum score
is computed according to the function presented in Section 6.

S. MESSAGES SIMILARITY

A SOAP message outlines the input or the output of an
operation in a WSDL file. The message is represented in the
WSDL by a name, a short description and a list of parame-
ters. The parameters might be of a simple or a complex type.
To measure the similarity between two SOAP messages, two
different methods are used by the MessageSim function. The
first method is implemented by the function SfaMessSim on
the basis of the similarity flooding algorithm. The second
method is implemented by the function SimpMessageSim on
the basis of signature matching. The function MessageSim
returns the maximum score of the values returned by the
previous functions. The function MessageSim is defined as
follow :

MessageSim =
maz(SfaMessSim (Message1, Messages) ,
SimpMessageSim (Message1, Messagez))

where Message: and Messages are the compared message.

e The function SfaMessSim is an implementation of the
similarity flooding Algorithm, which matches between
labeled oriented graphs and find similar nodes in the
compared graphs. In our context, we transform a mes-
sage signature into a labeled oriented graph (see the
example illustrated in Figure 2). Then, we write down
the initial mapping (similarities) values between nodes.

The algorithm works upon the graph and the initial
mapping to compute final scores between graph nodes
based on similarities of their neighborhood. Finally,
the score between the message nodes is returned.

e The SimpMessageSim function is based on signature
matching where the similarity score is computed by
using their names, documentations, and parameters.
SimpMessageSim is defined as follow :

SimpMessageSim (Message1, Messages) = wmn X
IdentifierSim (Messager.Name, Messages.Name)
+wnmp X

ParsSim (Messagei.ParsList, Messages.ParsList)
+ wymp X DocSim (Messagel.Doc, Messagez.Doc)
/ (wunN +2 X wyp + WMD) -

Where:

e Message; and Messages are the compared mes-
sages. Every Message; has a name, a doc-
umentation and a list of parameters denoted
respectively Message;.Name, Message;.Doc and
Message;.ParsList.

e wyn, wymp and warp are weights assigned to different
used functions.

It is important to note that we have to study similarity
between input messages with output messages in order to
detect eventual composition possibilities. So, we are not
limited to measure similarity between input-input messages
or output-output. But we evaluate also input-output mes-
sages and output-input messages.

5.1 Complex-Type Parameter Similarity

The measurement of similarity between complex parame-
ter is a challenging problem. In addition to the use of simi-
larity flooding algorithm, we solve the problem of complex-
types comparison by breaking complex type into a set of
simple parameters (set of sub-elements). The following
steps describe how to measure similarity between complex-
parameters:

1. Transform complex parameters to a set of simple pa-
rameters: In this step, complex parameters are re-
placed by their simple-type parameters (sub-elements),
where the identifiers of the subelements are aggregated
with the identifier of the parent element.

2. Generate the matrix of parameters similarity: ParsSim
takes the output of the last step to generate a similarity
matrix. The cells of the matrix contain scores of each
parameter tuple. These similarity scores are extracted
using ParSim (see section 5.2).

3. Calculate the maximum score from the similarity Ma-
trix (see the algorithm detailed in Section 6).

5.2 Simple-Type Parameter Similarity

Considering similarity between simple types as the aver-
age between their names and type similarities, Name similar-
ity is calculated using identifierSim, while Type similarity
is implemented using the solution proposed in [23] and [20].
Similar types are grouped in five categories. Similarities be-
tween the groups is presented in Table 2.

The function ParSim computes the similarity between two
simple types. It is defined as follows:

parSim (Parametery, Parameters) =
Identifier Sim (Parameteri.Name, Parameters.Name)
+ TypeSim (Parameter,.Type, Parametery.Type)

2).

where:

e parameter; ans parameters are the compared param-
eters. Each parameter Parameter; has a name and
a type denoted respectively Parameter;.Name and
Parameter;. T'ype.

e typeSim evaluates similarity between two simple data
types. It is obvious that the omitted weights in the
function parSim are equal to 1, because we think that
the name of a simple parameter and its type are equal
in importance for similarity scoring computation.

Group simple XSD Data types
Integer Group | Integer, byte, short, long

Real Group real, float, double, decimal
String Group string, normalizedString

Date Group date, dateTime, duration, Time
Boolean Group | Boolean

Table 2: Simple DataType Groups [20]

Integer | Real | String | Date | Boolean
Integer 1.0 0.5 0.3 0.1 0.1
Real 1.0 1.0 0.1 0.0 0.1
String 0.7 0.7 1.0 0.8 0.3
Date 0.1 0.0 0.1 1.0 0.0
Boolean | 0.1 0.0 0.1 0.0 1.0

Table 3: Simple DataType Groups Similarity [20]

6. COMPUTATION OF THE MAXIMAL
SCORE IN A SIMILARITY MATRIX

To calculate the maximum score from a similarity matrix,
we use the HungarianMax function. It basically assumes gen-
erating the best score as finding the maximum weighted as-
signment in a bipartite graph. Matrix cells are considered
the edges of the graph. A match is a subset of edges where
no two edges in the subset share a common vertex. In other
words, it is a set of values in the matrix where no two values
are from the same line or column. The assignment consists
of finding the best match in the graph where each node in
the graph has an incident edge in the match. In the ma-
trix, the best assignment represents the maximum average
of each pair of scores (line-column). Since The hungarian
method [13] solves the assignment problem, It was imple-
mented in HungarianMax to return the similarity score from
a similarity matrix.

7. TOOL SUPPORT

WSSim is also a Java-based tool implementing the ap-
proach presented in the previous sections. WSSim can be

800 Web Service Similarity

Semantic Metrics Web Services Location

it S ek Web Service 1 : |/Users/chouki/WS2/WS2/WS2.10.wsdl = =T
s iats S Web Service 2 : | /Users/chouki/Ws2/Ws2/Ws2.11wsdl —
Lin Metric O —
Resnik Metric O
Structural Metrics
=t WebService 1 : Mathservice WebService 2 ¢ CubeTransformer

Cosine similarity O
Jaccard similarity O
Jaro O

Dice similarity O

Similarity Score =

NeedlemanWunch ()

Names similarity

Operations similarity Documentation similarity

—
e ol o Weight 1 1 Telect OF Formula. Telect & Flow Craph Type
Score 0,15 0,702 |_FORMULA_FFT) |_FG.PRODUCT -
Webservice Weights
Messages List (web servicel) Messages List (web service2)
[Ens (" Addsoapin =] [addRequest B
Service 1 Messages List Service 2 - Messages List B e
Documentation 1 (- [o
AddSoapin = multiplyRequest 2]
Operations | 1
. 3 C)
Parameters are : Parameters are : S mailis score: 0,347
Operations Weights [Parameters List i Parameters List
v @ parameters : Add
Names 1 Lot el
| [l - - float] [y float
Documentation 1 [B : float Node A Node B Similarity Initial Sim NO NI
A x 0,151 0 0,148 0,151
Messages | 1
Messages Weights m
Names | 1

—_ Web Services Operations
Documeniation 1

Messages Parameters SF Messages

Select Operation | Add 2]

Best Matching with - Add score= 0,694

SIMMultiply / Multiply) = 0,702

Names Input Vessage Output Message Documentation
Weight 10 Lo 10
score 0 o o 0

NG Bpedion 12 RE oo
T——
Divide Divide I

WebS 1 : Input Messages List Webs 2 : Input Messages List
‘AddSoapin addRequest

SubtractSoapin dideRequest

MuliplySoapin muliplyRequest

DivideSoapin subtraciRequest

Webs 1: Output Messages List Webs 2 : Output Messages List
‘AddsoapOut addResponse

SubtractsoapOut divideResponse

MuliplySoapOut multipyResponse

DivideSoapOut subtracResponse

Sim (AddSoapOut / CubeSoapOut) = 0
Names Parameters Documentatian
Weight 10 10 10

score o o 0

Figure 3: Screenshot of WsSim

used as a stand-alone application or as an API. When giv-
ing the path of the desired Web services, it starts by parsing
WSDL documents, then calculates similarities and finally it
returns the final score, and other scores between operations,
messages, and their parameters.

7.1 Overview of WSSim Functionalities

A screenshot of the tool is shown in Figure 3. In the left
side, there is the list of metrics used to calculate similarity.
The application of these metrics is left for manual selec-
tion. Weights are customized based on the user experience
(for example, one can put ’0’ for the documentation simi-
larity). There is a manual evaluation of importance of some
functions using weights (for example, similarity between in-
put/output messages of operations is more important than
similarity between names. In another case, one can con-
sider parameter names more important than their types or
vice versa). There are different windows for viewing details
about similarity scores once extracted (see the enlarged fig-
ures).

The similarity for substitution is viewed by WSSim by
giving some suggestions of the operations of other web ser-
vices that best much a given Web service operation. This is
illustrated in the bottom-left corner of the Figure.

7.2 Underlying Technologies
The following APIs has been used to develop this tool:
e SFA API [16]: This API is a Java implementa-
tion of the Similarity Flooding Algorithm (found in:

http://infolab.stanford.edu/~melnik/mm/sfa/). In
our tool, we use the SFA API to compute similarity

between two messages. The RDF model of the two
messages is generated by WSSim before calling the
API.

e WordNet®: Tt is a lexical database for English words.
Words in the database are grouped into sets of syn-
onyms called synsets. WSSim uses WordNet to find
semantic relations between compared words. It is also
implicitly used with the semantic metrics in order to
evaluate the similarity between names.

o SimMetrics®: It is an open source Java library of sim-
ilarity metrics between strings. All metrics in the li-
brary can work on a simple basis taking two strings
and returning a measure from 0.0 to 1.0. The library
is used in WSSim in order to evaluate structural sim-
ilarity between words. The used metrics are listed in
Table 1.

e JDOMP®: Tt is a Java API for processing XML docu-
ments. It is used to parse WSDL files. The parsing
consists of extracting web service elements and repre-
senting them as a basic object model.

e JWS: API libray for semantic similarity measurement
based on WordNet. The library is developed by Pirro
& Seco [19].

3WordNet: http://wordnet.princeton.edu/
10pen source Similarity Measure
http://sourceforge.net/projects/simmetrics
>JDOM: http://www.jdom.org

Library:

Identifier 1 Identifier 2 Similarity by the tool [Manully evaluated Group Services WSSIM Similarity | Manual evaluation
CurrencyExchange MoneyExchange 0.9063004 very High G1 3,4,9,10, 13, 20, 22, 23, 26, 28 1 Very high
getMsgid getMessageldentifier 0.91411704 | very High G2 25,27 . Very high
getPersonldentifier getHumanid 0.8641388 | very High G3 2,18 1 Very high
getWeatherByCityName getWeather 0.8614391 High G4 7,14 0,97 Very high
EEnerstytame EeColegename | sssaa | e = @18, 25, 27) 095085 | Very igh
getWeatherByPlaceName getWeatherByZipCode 0.54157954 Medium 56 {2,181 0,92-0,94 Very high
getFlightBySourceAndDestination | getTravelByCityNames 0.56327814 Medium G7 {3,4,9,10, 13, 20, 22, 23, 26, 28}, {2,18} 06-07 High
getTemprature getWeatherByCityName 0.28714636 Low G8 {2,18}, 15,12 06-0,7 High
getScore getScale 0.32280523 | Low G9 {3,4,9, 10, 13, 20, 22, 23, 26, 28}, 11, 6 0,6 Medium
getWeatherinState convertCurrency 0.23751307 | Very Low G10 978121 - NOT similar

Figure 4: Similarity results between a set of com-
pared identifiers

The tool offers an open-source user-friendly in-
terface and an API. It is designed to be flexi-
ble for both simple users and third-party devel-
opers. WSSim is available on the following link:
http://www.lirmm.fr/~tibermacin/WSSim/downloads/.

8. EXPERIMENTING WSSIM

The tool presented in the previous section has been exper-
imented for an evaluation. Unfortunately, we could not find
the implementations of the similar tools to compare their
results against those generated by our tool. Nevertheless,
we run several functional tests to obtain more consistent re-
sults according to a human evaluation. As a first step, we
ran many tests to definitively fix the set of similarity metrics
used in WSSim (see table 1). The collections of identifiers
used for testing were extracted from real web services.

Reported results were compared against a human evalua-
tion of similarity of the executed test cases. In Figure 4, an
illustration of the evaluation process is presented.

As an example, WSSim returns 0.833 between the two iden-
tifiers: GetUniversityName and GetCollegeName. Since we
consider a similarity score that ranges between 0.80 and 1
as high, the human evaluation of the test case has confirmed
it.

The second step was to test the tool with a set of real
web service. Obviously that we studied similarities between
services that belong to the same domain of interest. We
ran the experiment with 29 Web services (retrieved from
Seekda search engine®, the selected services offer arithmetic
operations). Similarity measurement results, produced by
WSSim, between these web services are represented in the
matrix depicted in Figure 5. Results have shown that three
web services are not similar to all other web services. The
remaining web services could be grouped based on their sim-
ilarities as presented in Figure 6.

The human evaluation of the test cases has confirmed that:
web services that have a similarity score range between 0.85
and 1 are considered as very highily similar web services.
Differences in parameters names or structures conclude to
diminish the similarity score between compared web ser-
vices. Web services in these groups (Gi, G2, G3, G4, G5
and Gg) are the best substitutes for each other. It is pos-
sible to replace any web service by any other in the same
group. Web services with similarity that ranges from 0.60
to 0.7 are considered as highly similar web services; each

6Seekda Web services
http://webservices.seekda.com

search engine:

Figure 6: Web service groups based on their simi-
larities

web service in these groups (G7, Gs and Gy) can be relevant
substitutes for some operations of another web service in the
same group (not the full web service). It is important to note
that some web services hold operations that do not appear
in the remaining web services. Some web services have com-
plex parameter types and some use only simple parameter
types. In these groups, some adjustments are necessary to
substitute services (casting parameter types, for example).
Enlarging the test cases to include a larger collection of Web
services is considered important to enhance the reliability of
the results returned by WSSim.

9. RELATED WORK

Similarity evaluation between Web services has been ad-
dressed by several works in the literature. Many efforts re-
lied on calculating similarity between Web services inter-
faces. These works focus on operation signature match-
ing [28].

In [10], Dong et al. present a search engine called
“Woogle”. Based on similarity search, Woogle returns simi-
lar Web service for a given query. The search engine com-
bines multiple techniques to evaluate similarity between the
services and theirs operations. These techniques focus on
operation parameters as well as operations and services de-
scription. The authors introduced a clustering algorithm for
grouping description terms in a set of concepts. After that,
similarity between concepts is measured using a simple in-
formation retrieval metric such as TF/IDF.

The solution provided in [10] is limited to evaluating sim-
ilarity using semantic relations between clustered concepts,
while in our case, we enhance the similarity evaluation by
using multiple semantic and lexical metrics. In addition, not
only the service and operation level is addressed, the simi-
larity between messages, parameters identifiers and types is
taken in account.

In [27] and [29], the similarity between Web services is
evaluated using a WordNet-based distance metric. Based on
schema matching, Carman et al. [5] proposed an algorithm
for semantic matching of complex data types.

At the opposite of [27], we implement the similarity eval-
uation between data types (simple or complex) using the
similarity flooding algorithm which we consider as an effi-
cient schema matching technique.

The approach presented in [8] proposes to discover the
most relevant Web service to a given query. The approach
is based on the representation of web service description
and queries within classic space vectors. Then, it matches
between the vectors that represent services and the vector

wsl |ws10 |wsll |ws12 ‘wsla ‘wsm ws15 |wsl6 |wsl7 |wsl8 (ws19 |ws2 |w520 |w521 |w522 ‘w523 |w524 ws25 ‘WSZS ‘wsz? ws28 ‘wss ‘wsd |w55 ws6 |ws7 |ws8 |w55 |
wsl 0,66|0,41| 0,85 | 0,68 | 0,70| 0,69 | 0,25 | 0,43 @%ﬂ 0,67 0,17| 0,68 | 0,66 0,32 | 0,92 | 0,66 | 0,92 | 0,64 0,51 |0,64|0,46| 0,26 | 0,66
ws10 0,38 (0,74 i 0,69|0,73|0,36 | 0,64 |0,70(0,68 0,28 | 0,62 0,62 | 0,87 0,34 | 0,67 | 0,68 0,47
ws1l 0,54 |0,59|0,50| 0,60|0,42| 0,49 | 0,62 | 0,56 | 0,62 |0,59|0,25| 0,59 | 0,59 (0,33 | 0,60 | 0,59 | 0,60 | 0,50 0,34 0,59
wsl12 0,75|0,71|0,59|0,32|0,57|0,87)| 0,71 | 0,87 0,75)| 0,32| 0,75| 0,74| 0,34 | 0,92 | 0,74 0,92 | 0,76 0,41]0,74
ws13 0,69| 0,73 | 0,38 | 0,66 |0,70(0,68 | 0,70 0,28 | 0,62 H 0,62 | 0,87 0,47
wsl4 0,79|0,32|0,53(0,47(0,64 | 0,65|0,61|0,33| 0,61|0,61)|0,25|0,62|0,61| 0,62 | 0,64 | 0,61 0,42] 0,61
ws15 0,20|0,36(0,31(0,61|0,31|0,35|0,27| 0,35| 0,35| 0,28 | 0,29 | 0,35| 0,29 | 0,33 | 0,35 0,27| 0,35
ws16 0,61]0,50| 0,59 | 0,50 |0,63|0,33| 0,63 | 0,63 0,27 | 0,47 | 0,63 | 0,47 | 0,67 | 0,63| 0,63 [0,38| 0,52 | 0,62 0,45| 0,63
ws17 0,34)10,50|0,34|0,55|0,34(0,55|0,54|0,23 | 0,33 | 0,54 | 0,33 | 0,57 | 0,54 | 0,55| 0,21 0,31 | 0,55 0,40| 0,54
ws18 0,67 - 0,70(0,23| 0,70 0,70(0,34 | B,92 | 0,70 | 0,92 | 0,60 | 0,70| 0,70 0,32 | 0,70 (0,56 | 0,26 | 0,70
ws19 0,280,29|0,26| 0,29 | 0,29 0,28|0,29| 0,28 0,21]0,25(0,19(0,24| 0,29
ws2 0,701 0,23 0,70 0,51|0,60|0,51|0,23| 0,70
ws20 0,34 0,34 | 0,67 | 0,68
ws21 023] 024032
ws22 0,34 | 0,67 | 0,68
ws23 0,34 | 0,67 |0,68
ws24 0,30 0,59|0,54 0,58
ws25 0,54 | 0,67 | 0,57 0,62
ws26 0,34 | 0,67 | 0,68
ws27 0,62| 0,62|0,54| 0,67 (0,57|0,25| 0,62
ws28 0,87|0,87(0,40|0,65(0,73 0,87
ws3 H 0,34 | 0,67 | 0,68
wsd 0,34 | 0,67 | 0,68
ws5 0,43(0,37|0,31| 0,44
ws6 0,46 0,29] 0,67
ws7 0,42 0,60
ws8 0,71
ws9

Figure 5: Similarity results

which represents the query using the Cosine metric. It re-
turns the nearest service to the given query. This work, like
others, is limited to the use of syntactic similarity where it
uses only the Cosine and IF/TDF metrics.

The works presented in [12] and [20] are considerd similar
to our work. The similarity evaluation in [12] is implemented
through combining lexical and structural matching. In [20],
the paper proposes a method of Web service retrieval called
URBE (Uddi Registry By Example). The retrieval is based
on the evaluation of similarity between Web services inter-
faces. The algorithm used in URBE combines the analysis
of Web services structure and the terms used inside it.

In contrast to [12], we added matching types with different
metrics. Differences between [20] and the presented work is
mainly when we deal with data types similarities. [20] ig-
nores the similarity between data types (simple or complex)
which is not the case in this paper. Another difference is
when we use multiple structural and semantic metrics like
Stoilos, QGram-distance in the evaluation of similarity be-
tween identifiers.

Works such as [1], [24] and [15] share the same problem of
analysing Web services interfaces for similarities evaluation.
The main difference relies on the completeness in comparing
all parts in the Web service description files. In our case, all
the possible levels of Web service description (service, oper-
ation, message, parameter, simple and complex data-types,
and documentation) are addressed. In addition, we provide
the possibility to customize the similarity measurement set-
tings to satisfy all possible user’s requirements.

10. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a practical approach for
measuring the similarity between Web services by compar-
ing their interface descriptions (WSDL documents). The
approach is based on the use of a set of existing lexical and

semantic metrics. The measurement process is parametrized
by a collection of weights associated to the different levels
of web service description. The challenge of measuring the
similarity between complex types, which are represented by
XML schema, is handled by using different techniques for
getting the best scores. Obviously, the need for similarity
assessment is generally adapted for composition and substi-
tution; by finding similar services or similar operations, we
can replace failed services/ failed operations by similar ones.
Also, it is possible to compose from several operations, which
have similar input-output messages, an equivalent failed op-
eration (Opfaiteca=Op1+...4+Opy). The prototype tool (WS-
SIM) has been developed to prove the feasibility of the ap-
proach. It has been experimented on a set of real-world Web
services to show its practicability.

We are considering extending the computation of similar-
ity between identifiers by using some "tree tagging” tech-
niques. This helps in better measuring similar composite
identifiers by assigning to each segment of the identifiers its
position in the text — their part of speech (verb, subject,
...). In this way segments that have the same part of speech
are compared together. In addition, we plan to work on the
indexing of available public web services on the internet.
We store thus similarity scores between their operations in
a persistent way in order to simplify the procedure of seek-
ing relevant substitutes for a failed service. Publishing the
tool as a Web service in order to ease its use by third-party
developers is also planned in the future.

11. REFERENCES

[1] I. B. Arpinar, B. Aleman-Meza, R. Zhang, and
A. Maduko. Ontology-driven web services composition
platform. In Proceedings of the IEEE International
Conference on E-Commerce Technology, pages
146-152. IEEE Computer Society, 2004.

2]

[11]

[12]

[13]

[14]

[15]

[16]

7. Azmeh, M. Driss, F. Hamoui, M. Huchard,

N. Moha, and C. Tibermacine. Selection of
composable web services driven by user requirements.
In In proceedings of The 9th IEEE International
Conference on Web Services (ICWS’11), Applications
and Experiences Track, Washington DC, USA, July
2011. IEEE Computer Society.

7. Azmeh, F. Hamoui, M. Huchard, N. Messai,

C. Tibermacine, C. Urtado, and S. Vauttier. Backing
composite web services using formal concept analysis.
In P. Valtchev and R. Jischke, editors, ICFCA,
volume 6628 of Lecture Notes in Computer Science,
pages 26-41. Springer, 2011.

R. A. Baeza-Yates and B. Ribeiro-Neto. Modern
Information Retrieval. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1999.

M. Carman, L. Serafini, and P. Traverso. Web service
composition as planning. In In ICAPS 2008 Workshop
on Planning for Web Services, 2003.

S. Chapman, B. Norton, and F. Ciravegna. Armadillo:
Integrating knowledge for the semantic web. In
Proceedings of the Dagstuhl Seminar in Machine
Learning for the Semantic Web, February 2005.

R. Chinnici, J.-J. Moreau, A. Ryman, and

S. Weerawarana. Web services description language
(wsdl) version 2.0 part 1: Core language. World Wide
Web Consortium, Recommendation
REC-wsdl20-20070626, June 2007.

M. Crasso, A. Zunino, and M. Campo. Query by
example for web services. In Proceedings of the 2008
ACM symposium on Applied computing, SAC ’08,
pages 2376-2380, New York, NY, USA, 2008. ACM.
S. Deerwester, S. T. Dumais, G. W. Furnas, T. K.
Landauer, and R. Harshman. Indexing by latent
semantic analysis. journal of the american society for
information scinece, 41(6):391-407, 1990.

X. Dong, A. Halevy, J. Madhavan, E. Nemes, and

J. Zhang. Similarity search for web services. In
Proceedings of the Thirtieth international conference
on Very large data bases - Volume 30, VLDB 04,
pages 372-383. VLDB Endowment, 2004.

M. A. Jaro. Probabilistic linkage of large public health
data file. In Statistics in Medicine, volume 14, pages
491-498, 1995.

N. Kokash. A comparison of web service interface
similarity measures. In Proceeding of the 2006
conference on STAIRS 2006: Proceedings of the Third
Starting Al Researchers’ Symposium, pages 220-231,
Amsterdam, The Netherlands, The Netherlands, 2006.
1OS Press.

H. W. Kuhn. The hungarian method for the
assignment problem. Naval Research Logistics
Quarterly, 2:83-97, 1955.

V. Levenshtein. Binary Codes Capable of Correcting
Deletions, Insertions and Reversals. Soviet Physics
Doklady, 10:707, 1966.

B. Medjahed and A. Bouguettaya. A multilevel
composability model for semantic web services. I[IEEE
Trans. on Knowl. and Data Eng., 17:954-968, July
2005.

S. Melnik, H. Garcia-Molina, and E. Rahm. Similarity
flooding: A versatile graph matching algorithm and its

(17]

(18]

(19]

20]

(21]

(22]

23]

24]

25]

[26]

27]

(28]

29]

application to schema matching. In Proceedings of the
18th International Conference on Data Engineering,
ICDE ’02, pages 117—, Washington, DC, USA, 2002.
IEEE Computer Society.

S. Needleman and C. Wunsch. A general method
applicable to the search for similarities in the amino
acid sequence of two proteins. Journal of Molecular
Biology, 48(3):443-453, Mar. 1970.

H. R. M. Nezhad, G. Y. Xu, and B. Benatallah.
Protocol-aware matching of web service interfaces for
adapter development. In WWW 2010 - 19th
International World Wide Web Conference, pages
731-740, 2010.

G. Pirré. A semantic similarity metric combining
features and intrinsic information content. Data
Knowl. Eng., 68:1289-1308, November 2009.

P. Plebani and B. Pernici. Urbe: Web service retrieval
based on similarity evaluation. IEEE Trans. on
Knowl. and Data Eng., 21:1629-1642, November 2009.
T. F. Smith and M. S. Waterman. Identification of
common molecular subsequences. In Journal of
Molecular Biology, volume 147(1), pages 195-197,
1981.

G. Stoilos, G. Stamou, and S. Kollias. A string metric
for ontology alignment. In Y. Gil, E. Motta, V. R.
Benjamins, and M. A. Musen, editors, Proceedings of
the 4rd International Semantic Web Conference
(ISWC), pages 624—637, Berlin, Heidelberg, November
2005. Springer.

E. Stroulia and Y. Wang. Y.: Structural and semantic
matching for assessing web-service similarity.
International Journal of Cooperative Information
Systems, 14:407—437, 2005.

T. Syeda-Mahmood, G. Shah, R. Akkiraju, A.-A.
Ivan, and R. Goodwin. Searching service repositories
by combining semantic and ontological matching. In
Proceedings of the IEEE International Conference on
Web Services, ICWS ’05, pages 13—20, Washington,
DC, USA, 2005. IEEE Computer Society.

E. Ukkonen. Approximate string-matching with
g-grams and maximal matches. In Theoretical
Computer Science, volume 92, pages 191-211, 1992.
W. E. Winkler. String comparator metrics and
enhanced decision rules in the fellegi-sunter model of
record linkage. In Proceedings of the Section on Survey
Research, pages 354-359, 1990.

J. Wu and Z. Wu. Similarity-based web service
matchmaking. In Proceedings of the 2005 IEEE
International Conference on Services Computing -
Volume 01, pages 287-294, Washington, DC, USA,
2005. IEEE Computer Society.

A. M. Zaremski and J. M. Wing. Signature matching:
a tool for using software libraries. ACM Trans. Softw.
Eng. Methodol., 4:146-170, April 1995.

7. Zhuang, P. J. Mitra, and A. Jaiswal. Corpus based
web service matchmaking. In the 20th National
Conference on Artificial Intelligence 2005, AAAI
2005, July 9th — 13th, Pennsylvania, USA., 2005.

