
Constraints manuscript No.
(will be inserted by the editor)

Adaptive Constructive Interval Disjunction: Algorithms
and Experiments

Bertrand Neveu · Gilles Trombettoni ·
Ignacio Araya

Received: date / Accepted: date

Abstract An operator called CID and an efficient variant 3BCID were pro-
posed in 2007. For the numerical CSP handled by interval methods, these
operators compute a partial consistency equivalent to Partition-1-AC for the
discrete CSP. In addition to the constraint propagation procedure used to
refute a given subproblem, the main two parameters of CID are the number
of times the main CID procedure is called and the maximum number of sub-
intervals treated by the procedure. The 3BCID operator is state-of-the-art in
numerical CSP, but not in constrained global optimization, for which it is
generally too costly. This paper proposes an adaptive variant of 3BCID called
ACID. The number of variables handled is auto-adapted during the search, the
other parameters are fixed and robust to modifications. On a representative
sample of instances, ACID appears to work efficiently, both with the HC4 con-
straint propagation algorithm and with the state-of-the-art Mohc algorithm.
Experiments also highlight that it is relevant to auto-adapt only a number of
handled variables, instead of a specific set of selected variables. Finally, ACID
appears to be the best interval constraint programming operator for solving
and optimization, and has been therefore added to the default strategies of
the Ibex interval solver.

B. Neveu
Imagine LIGM Université Paris–Est, France
E-mail: Bertrand.Neveu@enpc.fr

G. Trombettoni
LIRMM, University of Montpellier, CNRS, France
E-mail: Gilles.Trombettoni@lirmm.fr

I. Araya
Pontificia Universidad Católica de Valparáıso, Chile
E-mail: rilianx@gmail.com

2 Bertrand Neveu et al.

1 Introduction

Interval-based solvers can solve systems of numerical constraints (i.e., nonlin-
ear equations or inequalities over the reals). Their reliability and increasing
performance make them able to handle domains such as robotics design and
kinematics [16], dynamic systems in robust control or autonomous robot lo-
calization [12], or proofs of conjectures [24].

A filtering/contracting operator for numerical constraint networks (CNs)
called Constructive Interval Disjunction (in short CID) has been proposed
in [23]. CID is based on a shaving/singleton process. The shaving principle
is used to compute the Singleton Arc Consistency (SAC) of the finite domain
CSP [10] and the 3B-consistency of the numerical CSP [14]. It is also at the
core of the SATZ algorithm [20] used to prove the satisfiability of Boolean
formula. Shaving works as follows on discrete constraint networks. A value is
temporarily assigned to a variable (the other values are temporarily discarded)
and a partial consistency is computed on the remaining subproblem. If an in-
consistency is obtained then the value can be safely removed from the domain
of the variable. Otherwise, the value is kept in the domain.

Contrarily to arc consistency, this consistency cannot be achieved in an
incremental way [10]. Indeed, the work of the underlying refutation procedure
on the whole subproblem is the reason why a single value can be removed.
Thus, obtaining the singleton arc consistency of finite-domain CNs requires
an expensive fixed-point algorithm where all the variables must be handled
again every time a single value is removed [10]. The remark still holds for
the improved version SAC-Opt [7]. A similar shaving principle can be followed
on numerical CNs by roughly splitting intervals into sub-intervals/slices, as
we will show in Section 3, giving the algorithm CID and an efficient variant
3BCID [23].

Applied first to continuous constraint satisfaction problems handled by in-
terval methods, 3BCID has been more recently applied to constrained global
optimization problems. This algorithm is state-of-the-art for constraint satis-
faction, but is generally dominated by constraint propagation algorithms like
HC4 for optimization. The main practical contribution of this paper is to show
that an adaptive version of CID becomes efficient for both real-valued satisfac-
tion and optimization problems, while needing no additional parameter value
from the user.

After a recall of the interval methods used for tackling numerical CSP in
Section 2, we describe in Section 3 the algorithms 3B, CID and 3BCID at the
base of the new ACID operator introduced in Section 4. Sections 5, 6, 7 and
8 show experiments highlighting the practical interest of ACID in continuous
constraint solving and constrained global optimization, and justifying the auto-
adaptation policy behind ACID.

Adaptive Constructive Interval Disjunction: Algorithms and Experiments 3

2 Numerical CSP

A numerical constraint network (numerical CN) is defined by a tuple P =
(X, [X], C), where X denotes a n-set of numerical, real-valued variables rang-
ing in a domain [X]. We denote by [xi] = [xi, xi] the interval/domain of
variable xi ∈ X, where xi, xi are floating-point numbers (allowing interval al-
gorithms to be implemented on computers). A solution of P is an n-vector in
[X] satisfying all the constraints in C. The constraints defined are numerical.
They are equations and inequalities using mathematical operators like +, q ,
/, exp, log, sin.

A Cartesian product of intervals like the domain [X] = [x1] × ... × [xn] is
called a (parallel-to-axes) box. w(xi) denotes the width xi − xi of an interval
[xi]. The width of a box is given by the width xm−xm of its largest dimension
xm. The union of several boxes is generally not a box, and a Hull operator has
been defined instead to define the smallest box enclosing all of them.

Numerical CNs can be solved by a Branch & Contract interval strategy:

– Branch: a variable xi is chosen and its interval [xi] is split into two sub-
intervals, thus making the whole process combinatorial.

– Contract: a filtering process allows contracting the intervals (i.e., improv-
ing interval bounds) without loss of solutions.

The process starts with the initial domain [X] and stops when the leaves
(boxes) of the search tree reach a width inferior to a precision given as input.
These leaves yield an approximation of all the solutions of the numerical CN.

Several contraction algorithms have been proposed. Let us mention the con-
straint propagation algorithm called HC4 [5,17], an efficient implementation of
2B [14], that can enforce the optimal local consistency (called hull-consistency)
only if strong hypotheses are met (in particular, each variable must occur at
most once in a same constraint). The 2B-Revise procedure works with all the
projection functions of a given constraint. Informally, a projection function iso-
lates a given variable occurrence within the constraint. For instance, consider
the constraint x + y = z.x; x ← z.x− y is a projection function (among oth-
ers) that aims at reducing the domain of variable x. Evaluating the projection
function with interval arithmetics on the domain [x]× [y]× [z] (i.e., replacing
the variable occurrences of the projection function by their domains and using
the interval counterpart of the involved mathematical operators) provides an
interval that is intersected with [x]. Hence a potential domain reduction. A
constraint propagation loop close to that of AC-3 [15] is used to propagate
reductions obtained for a given variable domain to the other constraints in the
system.

3 Shaving algorithms for numerical CSP

Stronger consistencies for numerical CSP have also been proposed.

4 Bertrand Neveu et al.

3B algorithm

3B-consistency [14] is a theoretical consistency similar to SAC for CSP al-
though limited to the bounds of the domains. Consider the 2n subproblems of
the studied numerical CN where each interval [xi] (i ∈ {1..n}) is reduced to
its lower bound xi (resp. upper bound xi). 3B-consistency is enforced iff each
of these 2n subproblems is hull-consistent.

In practice, the 3B(w) algorithm splits the intervals in several sub-intervals,
also called slices, of width w, which gives the accuracy: the 3B(w)-consistency
is enforced iff the slices at the bounds of the handled box cannot be eliminated
by HC4. Let us denote var3B the procedure of the 3B algorithm that shaves
one variable interval [xi] and s3b its parameter, a positive integer specifying a
number of sub-intervals: w = w(xi)/s3b is the width of a sub-interval.

CID

Constructive Interval Disjunction (CID) is a partial consistency stronger than
3B-consistency [23]. CID-consistency is close to Partition-1-AC (P-1-AC) in
finite domain CSP [6]. P-1-AC is strictly stronger than SAC [6].

The main procedure varCID handles a single variable xi. The main pa-
rameters of varCID are xi, a number scid of sub-intervals (accuracy) and a
contraction algorithm ctc like HC4. [xi] is split into scid slices of equal width,
each corresponding subproblem is contracted by the contractor ctc and the
hull of the different contracted subproblems is finally returned, as shown in
Algorithm 1.

Procedure VarCID (xi, scid, (X, C, in-out [X]), ctc)
[X]′ ← empty box
for j ← 1 to scid do

/* The jth sub-box of [X] on xi is handled: */
sliceBox ← SubBox (j, xi, [X])
/* Enforce a partial consistency on the sub-box: */
sliceBox’ ← ctc(X, C, sliceBox)
/* “Union” with previous sub-boxes: */
[X]′ ← Hull([X]′, sliceBox’)

[X]← [X]′

Algorithm 1: The main VarCID procedure of the CID operator shaving a
given variable xi.

Intuitively, CID generalizes 3B because a sub-box that is eliminated by
var3B is also discarded by varCID. In addition, contrary to var3B, varCID
can also contract [X] along several dimensions.

Adaptive Constructive Interval Disjunction: Algorithms and Experiments 5

Note that in the actual implementation the for loop can be interrupted
earlier, when [X]′ becomes equal to the initial box [X] in all the dimensions
except xi.

3BCID

var3BCID is a hybrid and operational variant of varCID.

1. Like var3B, it first tries to eliminate sub-intervals at the bounds of [xi] of
width w = w(xi)/s3b each. We store the left box [Xl] and the right box
[Xr] that are not excluded by the contractor ctc (if any).

2. Second, the remaining box [X]′ is handled by varCID that splits [X]′ into
scid sub-boxes. The sub-boxes are contracted by ctc and hulled, giving
[Xcid].

3. Finally, we return the hull of [Xl], [Xr] and [Xcid].

Figure 1 illustrates the contraction task achieved by the main procedure
of 3B, CID and 3BCID.

Fig. 1 Task of the var3B (left), varCID (center) and var3BCID (right) procedures applied
to the interval [x1], with parameter s3b set to 10 and scid set to 1. The darkened region
corresponds to the solution set of the two constraints. The boxes in dotted lines are returned
by the respective procedures.

var3BCID comes from the wish of managing different widths (accuracies)
for s3b and scid. Indeed, the best choice for s3b generally belongs to {5..20}
while scid should always be set to 1 or 2 (implying a final hull of 3 or 4 sub-
boxes). The reason is that the actual time cost of the shaving part is smaller
than the one of the constructive domain disjunction. Indeed, if no sub-interval
is discarded by var3B, only two calls to ctc are performed, one for each bound
of the handled interval; if varCID is applied, the subcontractor is often called
scid times.

The procedure var3BCID has been deeply studied and experimented in the
past. The number and the order in which calls to var3BCID are achieved is a
harder question studied in this paper.

6 Bertrand Neveu et al.

4 Adaptive CID: learning the number of handled variables

Like for SAC or 3B, a quasi fixed-point in terms of contraction can be reached
by 3BCID (or CID) by calling var3BCID inside two nested loops. An inner loop
calls var3BCID on each variable xi. An outer loop calls the inner loop until no
interval is contracted more than a predefined (width) precision (thus reaching
a quasi-fixed point). Let us call 3BCID-fp (fixed-point) this historical version.

Two reasons led us to radically change this policy. First, as said above,
var3BCID can contract the handled box in several dimensions. One significant
advantage is that the fixed-point in terms of contraction can thus be reached in
a small number of calls to var3BCID. On most of the instances in satisfaction
or optimization, it appears that a quasi fixed-point is reached in less than n
calls. In this case, 3BCID is clearly too expensive. Second, the varCID principle
is close to a branching point in a search tree. The difference is that a hull is
achieved at the end of the sub-box contractions. Therefore an idea is to use a
standard branching heuristic to select the next variable to be “varcided”. We
will write in the remaining part of the paper that a variable is varcided when
the procedure var3BCID is called on that variable to contract the current box.

To sum up, the idea for rendering 3BCID even more efficient in practice
is to replace the two nested loops by a single loop calling numVarCID times
var3BCID and to use an efficient variant of the Smear function branching
heuristic for selecting the variables to be varcided (called SmearSumRel in [22]).
Informally, the Smear function favors variables having a large domain and a
high impact on the constraints – by measuring interval partial derivatives.

A first idea is to fix numVarCID to the number n of variables. We call
3BCID-n this version. This gives good results in satisfaction but is dominated
by pure constraint propagation in optimization. As said above, it is too time
costly when the right numVarCID is smaller than n (which is often the case in
optimization), but can also have a very bad impact on performance if a bigger
effort brought a significantly greater filtering.

The goal of Adaptive CID (ACID) is precisely to compute dynamically dur-
ing search the value of the numVarCID parameter. Several auto-adaptation
policies have been tested and we report three interesting versions. All the
policies measure the decrease in search space size after each call to var3BCID.
They measure a contraction ratio of a box [X]b over another box [X]a as an
average relative gain in all the dimensions:

gainRatio([X]b, [X]a) =
1

n

n∑
i=1

(1− w(xb
i)

w(xa
i)

)

4.1 ACID0: auto-adapting numVarCID during search

The first version ACID0 adapts the number of shaved variables dynamically at
each node of the search tree. First, the variables are sorted by their impact,

Adaptive Constructive Interval Disjunction: Algorithms and Experiments 7

computed by the same formula as the SmearSumRel function (used for branch-
ing). Variables are then varcided until the cumulative contraction ratio during
the last nv calls to var3BCID becomes less than ctratio. This algorithm has
thus 2 parameters nv and ctratio, and it was difficult to tune them. We ex-
perimentally found that ctratio could be fixed to 0.001 and nv should depend
on the number of variables n of the problem. Setting nv to 1 is often a bad
choice, and fixing it with the formula nv = max(3, n

4) experimentally gave
the best results. The experimental results are not bad but this policy prevents
numVarCID from reaching 0, i.e. from calling only constraint propagation. This
is a significant drawback when a simple constraint propagation is the most
efficient approach.

4.2 ACID1: interleaving learning and exploitation phases

A more sophisticated approach avoids this drawback. ACID1 interleaves learn-
ing and exploitation phases for auto-adapting the numVarCID value. Depend-
ing on the node number, the algorithm is in a learning or in an exploitation
phase.

The behavior of ACID1, shown in Algorithm 2, is the following:

– The variables are first sorted according to their impact measurement (using
the SmearSumRel heuristic).

– During a learning phase (during learnLength nodes), we then analyze how
the contraction ratio evolves from a var3BCID call to the next one, and
store the number kvarCID of varcided variables necessary to obtain most
of the possible filtering.
More precisely, 2.numVarCID variables are varcided at each node (with a
minimum value equal to 2, in case numVarCID= 0). In the first learning
phase, we handle n variables.
At the current node, the lastSignificantGain function returns the rank
(kvarCID) of the last varcided variable giving a significant improvement
(drop in domain size). In other words, after the kvarCIDth call to var3BCID,
the gain in current box size from a var3BCID call to the next one (computed
by the gainRatio formula) never exceeds a small given ratio, called ctratio.
This analysis starts from the last varcided variable to ensure we capture the
last drop in domain size. (For the readibility of the pseudo-code, we omit
the parameters of the var3BCID procedure, i.e. s3b, scid, the constraints C
and the contractor ctc.)

– During the exploitation phase following the previous learning phase, the
average of the different kvarCID values (obtained in the nodes of the learn-
ing phase) provides the new value of numVarCID. This value will be used
by 3BCID during the exploitation phase. Compared to the previous value
(previous call to an exploitation phase), note that this new value can at
most double, but can also drastically decrease.

Every cycleLength nodes in the search tree, both phases are called again.

8 Bertrand Neveu et al.

Procedure ACID1 (X, n, in-out [X], in-out call, in-out numVarCID)
learnLength← 50
cycleLength← 1000
ctratio← 0.002
/* Sort the variables according to their impact */
X ← smearSumRelSort (X)
if call% cycleLength ≤ learnLength then

/* Learning phase */
nvarCID ← max(2, 2 .numVarCID)
for i from 1 to nvarCID do

[X]old ← [X]
var3BCID (X[i%n], [X], ...)
ctcGains[i]← gainRatio([X], [X]old)

kvarCID[call] ← lastSignificantGain (ctcGains[], ctratio, nvarCID)
if call% cycleLength = learnLength then

/* End of learning phase */
numVarCID ← average (kvarCID[])

else
/* Exploitation Phase */
if numVarCID > 0 then

for i from 1 to numVarCID do
var3BCID (X[i%n], [X], ...)

call← call + 1

Algorithm 2: Algorithm ACID1

Function lastSignificantGain(ctcGains[], ctratio, nvarCID)
for i from nvarCID downto 1 do

if (ctcGains[i] > ctratio) then
return i

return 0

Numerous variants of this schema were tested. In particular, it is counter-
productive to learn numVarCID only once or, on the contrary, to memorize
the computations from a learning phase to another one.

We fixed experimentally the 3 parameters of the ACID1 procedure learn-
Length, cycleLength and ctratio, respectively to 50, 1000 and 0.002. ACID1

becomes then a parameter free procedure. With these parameter values, the
overhead of the learning phases (where we double the previous numVarCID
value) remains small.

4.3 ACID2: taking into account the level in the search tree

A criticism against ACID1 is that we average kvarCID values obtained at dif-
ferent levels of the search tree. This drawback is partially corrected by the

Adaptive Constructive Interval Disjunction: Algorithms and Experiments 9

successive learning phases of ACID1, where each learning phase corresponds to
a part of the search tree.

In order to go further in that direction, we designed a refinement of ACID1
for which each learning phase tunes at most 10 different values depending on
the width of the studied box. A value corresponds to one order of magnitude
in the box width. For example, we store a numVarCID value for the boxes
with a width comprised between 1 and 0.1, another one for the boxes with
a width comprised between 0.1 and 0.01, etc. However, this approach, called
ACID2, gave in general results similar to those of ACID1 and appeared to be
less robust. Indeed, only a few nodes sometimes fall at certain width levels,
which renders the statistics not significant.

5 Experiments

All the algorithms were implemented in the C++ interval library Ibex (Interval
Based EXplorer), version 2.0 [8]. All the experiments were run on the same
computer (Intel X86 3GHz). We tested the algorithms on square numerical
CSP and on constrained global optimization. The square numerical CSP con-
sists in finding all the solutions of a square system of n nonlinear equations
with n real-values variables with bounded domains. Global optimization con-
sists in finding the global minimum of a function over n variables subject
to constraints (equations and inequalities), the objective function and/or the
constraints being non-convex.

5.1 Experiments in constraint satisfaction

We selected from the COPRIN benchmark1 all the systems that were solved by
one of the tested algorithms in a time comprised between 2 s and 3,600 s. The
timeout was fixed to 10,000 s. The required precision on the solution is 10−8.
Some of these problems are scalable. In this case, we selected the problem with
the greatest number of variables that was solved by one of the algorithms in
less than one hour.

We compared our ACID method and its variants with the well known filter-
ing techniques: a simple constraint propagation HC4, 3BCID-n (see Section 4)
and 3BCID-fp (fixed-point) in which a new iteration on all the variables is run
when a variable domain width is reduced by more than 1%. At each node of
the search tree, we used the following sequence of contractors : HC4, shaving,
Interval-Newton [11], and X-Newton [3]. shaving denotes a variant of ACID,
3BCID-n, 3BCID-fp or nothing when only HC4 is tested.

For each problem, we used the best bisection heuristics available (among
two variants of the Smear function [22]). The main parameter ctratio of ACID1
and ACID2, measuring a stagnation (the last drop) in the filtering as long vari-
ables are varcided, was empirically fixed to 0.002. The var3BCID parameters

1 www-sop.inria.fr/coprin/logiciels/ALIAS/Benches/benches.html

10 Bertrand Neveu et al.

s3b and scid were fixed to the default settings, respectively 10 and 1, proposed
in [23]. Experiments on the selected instances confirm that these settings are
relevant and robust to variations. In particular, setting s3b to 10 gives results
better than with smaller values (s3b = 5) and with greater values. (For 21 over
the 26 instances, s3b = 20 gives worse results.) As shown in Table 1, ACID1

Table 1 Continuous CSP solving: ACID1 results. For each instance, we present its number
of variables and the results obtained by ACID1: the CPU time, the number of branching nodes
in the search tree, the average number of varcided variables (tuned by ACID1 dynamically).
We also report the best and the worst methods among ACID1, HC4, 3BCID-fp, and 3BCID-n,
the cpu time ratio of ACID1 over the best method and over the worst method.

#var ACID1 ACID1 ACID1 best worst Speedup Speedup

time #nodes #varcids ACID1
best

ACID1
worst

Bellido 9 3.45 518 5 ACID1 HC4 1 0.89
Brown-7 7 396 540,730 4.5 ACID1 HC4 1 0.82
Brent-10 10 17.63 3,104 9 ACID1 HC4 1 0.14
Butcher8a 8 981 204,632 9 3BCID-n HC4 1.03 0.49
Butcher8b 8 388 93,600 10.8 ACID1 HC4 1 0.31
Design 9 29.22 5,330 11 3BCID-n HC4 1.07 0.37
Dietmaier 12 926 82,364 26.3 ACID1 HC4 1 0.19
Directkin 11 32.73 2,322 7 ACID1 3BCID-fp 1 0.84
Disc.integralf2-16 32 592 58464 0.4 HC4 3BCID-fp 1.02 0.52
Eco-12 11 3156 297,116 12 ACID1 HC4 1 0.32
Fredtest 6 25.17 11,480 0.8 HC4 3BCID-fp 1.04 0.91
Fourbar 4 437 183,848 0.1 ACID1 3BCID-n 1 0.85
Geneig 6 178.2 83,958 2.9 HC4 3BCID-fp 1.02 0.82
Hayes 7 3.96 1,532 7.5 3BCID-n HC4 1.14 0.77
I5 10 15.93 3,168 11.5 ACID1 HC4 1 0.13
Katsura-25 26 691 5396 10.4 ACID1 3BCID-fp 1 0.67
Pramanik 3 23.1 23,696 0.2 ACID1 HC4 1 0.69
Reactors-42 42 1,285 23,966 134 3BCID-fp HC4 1.07 0.13
Reactors2-30 30 1,220 38,136 90 3BCID-n HC4 1.14 0.12
Synthesis 33 356 7,256 53.8 3BCID-fp HC4 1.15 0.25
Trigexp2-23 23 2,530 227,136 39.4 3BCID-fp HC4 1.26 0.25
Trigo1-18 18 2,625 37,756 6.1 ACID1 3BCID-fp 1 0.80
Trigo1sp-35 36 2,657 70,524 2.4 ACID1 3BCID-fp 1 0.41
Virasoro 8 1,592 266,394 0.6 3BCID-n 3BCID-fp 1.08 0.28
Yamamura1-16 16 2,008 68,284 0.37 3BCID-n HC4 1.02 0.86
Yamamura1sp-500 501 1,401 146 144 ACID1 HC4 1 0.14

appears to be often the best one, or close to the best one. In only 4 problems
on 26, it was more than 10% slower than the best. The number of varcided
variables was tuned close to 0 in the problems where HC4 was sufficient, and
more than the number of variables in the problems where 3BCID-fp appeared
to be the best method.

In the left part of Table 2, we summarize the results obtained by the three
variants of ACID and their competitors. It appears that only ACID1 could solve
the 26 problems in 1 hour, while HC4 could solve only 21 problems in 10,000s.
The gains in cpu time obtained by ACID1 w.r.t. competitors are sometimes
significant (see the line max gain), while its losses remain weak. ACID0 with its

Adaptive Constructive Interval Disjunction: Algorithms and Experiments 11

Table 2 Numerical CSP: Solving time gain ratios. We report the number of problems
solved before 3,600 s and before 10,000 s, and different statistics on the CPU time gain ratio
of ACID1 over each competitor Ci (one per column): the average, maximum, minimum and
standard deviation values of this ratio acid1 time

Ci time

ACID1 HC4 3BCID-fp 3BCID-n ACID0 ACID2 ACID1 3BCID-fp 3BCID-n

¬ XN ¬ XN ¬ XN

#solved< 3,600 26 20 23 24 25 24 20 16 20

#solved<10,000 26 21 26 26 26 26 22 21 22

Average gain 1 0.7 0.83 0.92 0.96 0.91 1 0.78 1.02

Maximum gain 1 0.13 0.26 0.58 0.45 0.48 1 0.18 0.38

Maximum loss 1 1.04 1.26 1.14 1.23 1.05 1 2.00 1.78

Stand. dev. gain 0 0.32 0.23 0.15 0.15 0.19 0 0.34 0.28

Total time 23,594 >72,192 37,494 27,996 26,380 30,428 29,075 50,181 31,273

Total gain 1 <0.33 0.63 0.84 0.89 0.78 1 0.58 0.93

two parameters was more difficult to tune, and it was not interesting to run
the more complex algorithm ACID2. ACID1 obtains better gains w.r.t 3BCID-n
in total time than on average because the best gains were obtained on difficult
instances with more variables. In the right part of the table, we report the
solving time ratios obtained when X-Newton is removed (¬ XN) from the
contractor sequence (4 problems could not be solved in 10,000s). The only
ACID variant studied was ACID1. ACID1 and 3BCID-n obtain globally similar
results, better than 3BCID-fp, but with a greater dispersion (i.e., standard
deviation) than with X-Newton since the shaving takes a more important part
in the contraction.

5.2 Experiments in constrained global optimization

We selected in the series 1 of the Coconut constrained global optimization
benchmark2 all the 40 instances that ACID or a competitor could solve in
a CPU time comprised between 2 s and 3,600 s. The time out was fixed to
3,600s. We used the IbexOpt strategy of Ibex that performs a Best First
Branch & Bound. The experimental protocol is the same as the numerical CSP
experimental protocol, except that we do not use Interval-Newton that is
only implemented for square systems.

For each instance, we use the best bisection heuristics (the same for all
methods) among largestFirst, roundRobin and variants of the Smear func-
tion. The precision required on the objective is 10−8. Each equation is relaxed
by two inequalities with a precision 10−8.

Table 3 reports the same columns as Table 1, plus a column indicating the
number of constraints in the instance. For the constraint programming part
of IbexOpt, HC4 is state of the art and 3BCID is rarely needed in optimization.
Therefore, we report in the penultimate column a comparison between ACID1

2 www.mat.univie.ac.at/~neum/glopt/coconut/Benchmark/Benchmark.html

www.mat.univie.ac.at/~neum/glopt/coconut/Benchmark/Benchmark.html

12 Bertrand Neveu et al.

Table 3 Optimization problems: ACID1 results

#var #ctr ACID1 ACID1 ACID1 best worst Speedup Speedup Speedup

time #nodes #varcids ACID1
best

ACID1
HC4

ACID1
worst

Ex2 1 7 20 10 8.75 465 3 HC4 3BCID-fp 1.03 1.03 0.7
Ex2 1 8 24 10 6.18 200 0 HC4 3BCID-fp 1.06 1.06 0.91
Ex2 1 9 10 1 10.09 1,922 0.75 HC4 3BCID-fp 1.04 1.04 0.9
Ex5 4 4 27 19 915 23,213 0.8 ACID1 3BCID-n 1 0.96 0.91
Ex6 1 1 8 6 60.85 13,071 8.9 HC4 3BCID-fp 1.21 1.21 0.73
Ex6 1 3 12 9 297 29,154 11.7 HC4 3BCID-fp 1.19 1.19 0.63
Ex6 1 4 6 4 1.99 505 6 ACID1 3BCID-fp 1 0.97 0.8
Ex6 2 6 3 1 106.8 46,687 0 HC4 3BCID-fp 1.02 1.02 0.74
Ex6 2 8 3 1 48.21 21,793 0.1 HC4 3BCID-fp 1.01 1.01 0.72
Ex6 2 9 4 2 51.92 19,517 0.1 HC4 3BCID-fp 1.02 1.02 0.72
Ex6 2 10 6 3 2248 569,816 0 ACID1 3BCID-fp 1 0.99 0.64
Ex6 2 11 3 1 29.32 13,853 0.3 HC4 3BCID-fp 1.05 1.05 0.73
Ex6 2 12 4 2 21.57 7,855 0.1 HC4 3BCID-fp 1.02 1.02 0.8
Ex7 2 3 8 6 19.41 4,596 4.4 3BCID-n HC4 1.07 0.17 0.17
Ex7 2 4 8 4 36.79 5,606 4.2 3BCID-fp HC4 1.04 0.66 0.66
Ex7 2 8 8 4 37.98 6,792 4.1 3BCID-n HC4 1.09 0.71 0.71
Ex7 2 9 10 7 78.02 14,280 9.3 3BCID-n HC4 1.07 0.48 0.48
Ex7 3 4 12 17 2.95 366 3 3BCID-n 3BCID-fp 1.23 0.99 0.89
Ex7 3 5 13 15 4.59 894 6 3BCID-n HC4 1.05 0.38 0.38
Ex8 4 4 17 12 1738 46,082 0.9 ACID1 3BCID-fp 1 0.99 0.87
Ex8 4 5 15 11 772 25,454 4.8 HC4 3BCID-fp 1.03 1.03 0.75
Ex8 5 1 6 5 9.67 2,138 2.75 ACID1 3BCID-fp 1 0.84 0.82
Ex8 5 2 6 4 32.46 5,693 0.8 ACID1 3BCID-fp 1 0.9 0.87
Ex8 5 6 6 4 32.38 10,790 1.8 HC4 3BCID-fp 1.02 1.02 0.76
Ex14 1 7 10 17 665 95,891 3.3 3BCID-n HC4 1.03 0.61 0.61
Ex14 2 3 6 9 2.01 360 2 HC4 3BCID-fp 1.17 1.17 0.69
Ex14 2 7 6 9 49.88 5,527 0 HC4 3BCID-n 1.47 1.47 0.48
alkyl 14 7 3.95 714 4 HC4 3BCID-fp 1.2 1.2 0.91
bearing 13 12 11.58 1,098 13 3BCID-n HC4 1.01 0.53 0.53
hhfair 28 25 26.59 3,151 10 3BCID-n HC4 1.12 0.58 0.58
himmel16 18 21 188 21,227 15.5 3BCID-n 3BCID-fp 1.1 0.94 0.88
house 8 8 62.8 27,195 3.25 HC4 3BCID-fp 1.09 1.09 0.79
hydro 30 24 609 32,933 0 ACID1 3BCID-fp 1 0.88 0.78
immun 21 7 4.17 1,317 2.5 ACID1 3BCID-fp 1 0.55 0.28
launch 38 28 107 2,516 21 ACID1 3BCID-n 1 0.79 0.43
linear 24 20 751 27,665 0.25 ACID1 3BCID-n 1 0.98 0.65
meanvar 7 2 2.43 370 2 HC4 3BCID-fp 1.04 1.04 0.84
process 10 7 2.61 611 8 HC4 3BCID-fp 1.08 1.08 0.77
ramsey 31 22 164.1 4,658 4.3 ACID1 3BCID-fp 1 0.85 0.68
srcpm 38 27 160 6,908 0.5 ACID1 3BCID-fp 1 0.62 0.33

and HC4. The number of varcided variables was indeed tuned by ACID1 to a
value comprised between 0 and the number of variables. Again, we can see
that ACID1 is robust and is the best, or at most 10% worse than the best,
for 34 among 40 instances. Table 4 shows that we obtained an average gain
of 10% over HC4. It is significant because the CP contraction is only a part
of the IbexOpt algorithm [22] (linear relaxation and the search of feasible
points are other important parts, not studied in this paper and set to their

Adaptive Constructive Interval Disjunction: Algorithms and Experiments 13

default algorithms in IbexOpt). ACID0 shaves a minimum of 3 variables, which
is often too much. ACID2 obtains results slightly worse than ACID1, rendering
this refinement not promising in practice.

Table 4 Optimization problems: gain ratio in solving time: time ACID1/time xxx

ACID1 HC4 3BCID-fp 3BCID-n ACID0 ACID2

#solved instances 40 40 40 40 40 40

Average gain 1 0.9 0.77 0.88 0.91 0.97

Maximum gain 1 0.17 0.28 0.35 0.62 0.28

Maximum loss 1 1.47 1.04 1.23 1.18 1.19

Stand. dev. gain 0 0.25 0.16 0.18 0.12 0.14

Total time 9,380 10,289 12,950 11,884 11,201 9,646

Total gain 1 0.91 0.72 0.79 0.84 0.97

6 Experiments with Ibex 2.1

We have extended our sample of instances in constrained global optimization
to the series 2 of the Coconut benchmark. Among the 266 instances belonging
to the series 1 (studied in the previous section) and the 727 instances of the
series 2, we first discarded the unconstrained ones and the linear ones. We also
discarded too difficult instances (having more than 50 variables or reaching a
timeout of one hour – about 20 instances for the series 1 and 30 instances for
series 2). Finally, we discarded the 70 “easy” instances from the series 1 (less
than 0.5 second for all the competitors) and easy instances from the series 2
(having less than 6 variables or solved in less than 0.5 second). Overall, are
remaining 43 instances in the series 1 and 32 instances in the series 2.

The sample was proceeded with the latest version of Ibex (2.1). This version
is endowed with the same implementation of ACID1, but offers several other
features. Let us mention an improvement of the polyhedral convex relaxation
component. Instead of relaxing each inequality constraint with only a specific
convex interval Taylor expanded at a vertex/corner of the box [3], as done in
Ibex 2.0, a constraint is also relaxed using affine arithmetic that recursively
applies on every operator in the expression [19,18]. Both relaxed polyhedral
forms are introduced in the same polytope. As a result, the part of the pure
constraint programming in the total strategy is even lowered, although about
the same gain of the strategy using ACID1(HC4) is observed w.r.t. that using
only HC4 (see Section 6.1). Another significant feature is the state-of-the-art
Mohc constraint propagation algorithm [1,9] that was developed in Ibex 1 but
not yet reimplemented in Ibex 2.0.

14 Bertrand Neveu et al.

6.1 Performance on series 1 and 2 of the Coconut benchmark

Table 5 shows the results obtained by the IbexOpt strategy 2.1 using ACID1(HC4)
(instead of HC4) on the new sample of 75 hard instances.

Table 5 Results on the series 1 and 2 of Coconut. Gains and losses are expressed as ratios
ACID1 time/HC4 time and ACID1 #nodes/HC4 #nodes

ACID1 HC4 Remark

#solved instances 75 75

Average time gain 1 0.95

Average node gain 1 0.81

Maximum time gain 1 0.15 obtained on ex 7 2 3

Maximum time loss 1 1.31 obtained on ex 6 1 1

Total time gain 1 0.91

Total node gain 1 0.59

Although the version 2.1 of the optimization strategy takes more time
on polyhedral relaxation, the gains of ACID1 w.r.t. HC4 remain similar. The
average gain is an average of the gains in time or number of nodes obtained
on each instance while the total gain is a ratio between the two total times
spent for the whole benchmark.

The gain in number of nodes is very important in global optimization
where the Branch and Bound process performs a best first search and thus
may require an exponential memory.

6.2 Results obtained with Mohc

The main parameter of ACID1 is of course the constraint propagation algorithm
used to refute or filter a given sub-box. HC4 is a constraint propagation algo-
rithm often used in continuous constraint programming solvers [13] and even
in global optimizers mainly based on mathematical programming algorithms
like Baron [21]. However, other constraint propagation algorithms have been
designed, like Box [25,5] and Mohc [1,9] (MOnotonic Hull Consistency). Mohc
is an efficient constraint propagation algorithm exploiting the monotonicity of
functions. Roughly, for a given constraint, the Mohc-Revise procedure brings
an optimal reduction of the domain when all the corresponding functions are
monotonic w.r.t. every involved variable. The contraction is also interesting as
soon as one variable becomes monotonic. Note that monotonicity of functions
increases with the decrease in domain size and thus more likely occurs lower
in the search tree.

We have compared the performances obtained with ACID1(Mohc) and Mohc.
It appears that the gain brought by ACID1 w.r.t. Mohc is about as interesting
as w.r.t. HC4: 0.86 in total time and 0.79 in total number of nodes.

Adaptive Constructive Interval Disjunction: Algorithms and Experiments 15

These results make ACID1(Mohc) a good candidate to belong to the default
optimization strategy available in Ibex.

7 Justification of the parameters of ACID

This section gives a brief justification of important choices made in the im-
plementation of ACID1: some alternative measures of the domain size used to
capture the last drop in filtering as long as variables are varcided, and the
way of aggregating in numVarCID the different numbers kVarCID of varcided
variables at the different nodes of the learning phase.

Capturing the last drop in filtering

Determining the last drop in filtering requires one to measure the difference
between two successive domain sizes as long as variables are varcided. Sec-
tion 4 describes this contraction measure as an average of the size gains in
all dimensions, i.e. a type of normalized perimeter ratio. However, two other
ratios can be used instead:

– a ratio of box volumes (the volume being defined as the multiplication of
the different interval sizes), as tested on discrete CSP [4],

– a ratio of the maximum interval sizes of the compared boxes.

Experimental results performed on our sample of 75 instances in global
optimization showed no significant difference between the different policies.3

Of course, the best value chosen for ctratio (the value of the drop) de-
pends on the size measure. The best value of ctratio was set to 0.002 in ACID1,
while it is 1% for the volume criterion and 5% for the maximum dimension
size criterion.

Aggregation of the learned numVarCID value with percentile?

As proposed in [4], we tried to aggregate with a percentile p%, and not a
mean value, the different numbers kVarCID of varcided variables computed at
the different nodes of the learning phase. Therefore the aggregated rank r is
chosen such that p% of the different ranks are less than r.

Again, our experiments with percentiles equal to 40%, 50% (i.e., median),
60%, 70% show no difference with a simple averaged value.

3 Differences of less than 2% between the three strategies have been measured, which is
not representative.

16 Bertrand Neveu et al.

8 Learning a set of variables to varcid?

In this section, we study an important question. The auto-adaptive policy of
ACID1 mainly adapts a number (numVarCID) of variables varcided at each
search node. However, the specific set of variables that is varcided is given by
a heuristic, namely the smearSumRel branching heuristic. So it is important
to know whether a better heuristic could identify a better set of variables to
varcid. Two experiments lead to a surprising conclusion.

Success-based impact heuristic

We have designed a new heuristic learning the (CID) impact of each variable.
The impact of a variable xi is computed by the (relative) number of times
in which the shaving of xi reaches a significant gain in contraction (see the
function lastSignificantGain called in Algorithm 2).

The success-based impact (sImpacti) of a variable xi is updated after every
call to var3BCID(xi): The formula below is a weighted mean value depending
on the previous mean value and on the current “success” (1 if a significant
contraction gain is obtained, 0 otherwise).

sImpacti = (1− w) ∗ sImpacti + w ∗ success

with w = 0.02 = (1/learnLength).
The initial value of the sImpacti’s is set to 1.0.
Although this simple type of learning process gave good results on an

adaptive version of Mohc [2], it led here to performance results similar to that
of the SmearSumRel heuristic.

We then tried more exhaustively the standard branching heuristics for
ordering the variables varcided by ACID1: the different smear-based variants,
largest domain, round-robin. This shows a slight advantage of SmearSumRel
over its competitors (except compared to round-robin). This slight advantage
led us to an informative and last experiment.

Random heuristic

A random heuristic used to order the variables varcided by ACID1 gave results
very similar to SmearSumRel. Its average gain w.r.t. SmearSumRel in number
of nodes is 0.99 while the average time gain is 0.95. The advantage in CPU
time could be explained by the relative expensive cost of SmearSumRel that
must compute a Jacobian matrix.

A conclusion suggested by these two experiments is that the number of
variables varcided accounts more than the specific set of variables handled. A
reason could be related to the fact that the variables are in a sense interchange-
able. The removal of a sub-interval of [xi] during a shaving of [xi] (leading to
an empty domain in [xj]) could also be caused by the varCID operation on
[xj]. This could explain that [xi] or [xj] could be varcided indifferently.

Adaptive Constructive Interval Disjunction: Algorithms and Experiments 17

9 Conclusion

We have presented in this paper an adaptive version of the 3BCID contraction
operator used by interval methods and close to partition-1-AC for the finite
domain CSP. The best variant of this Adaptive CID operator (ACID1 in the
paper) interleaves learning phases and exploitation phases to auto-adapt the
number of variables handled. All the parameters used for the adaptation are
fixed and robust to modifications.

Overall, ACID1 adds no parameter to the solving or optimization strategies.
It offers the best results on average and is the best or close to the best on every
tested instance, even in presence of the best Ibex devices (Interval-Newton,
X-Newton). Therefore ACID1 has been added to the Ibex default solving and
optimization strategies.

Acknowledgements

Ignacio Araya is supported by the Fondecyt Project 11121366.

References

1. Araya, I., Trombettoni, G., Neveu, B.: Exploiting Monotonicity in Interval Constraint
Propagation. In: Proc. AAAI, pp. 9–14 (2010)

2. Araya, I., Trombettoni, G., Neveu, B.: Making Adaptive an Interval Constraint Prop-
agation Algorithm Exploiting Monotonicity. In: Proc. CP, Constraint Programming,
LNCS 6308, pp. 61–68. Springer (2010)

3. Araya, I., Trombettoni, G., Neveu, B.: A Contractor Based on Convex Interval Taylor.
In: CPAIOR 2012, no. 7298 in LNCS, pp. 1–16 (2012)

4. Balafrej, A., Bessiere, C., Bouyakhf, E., Trombettoni, G.: Adaptive Singleton-based
Consistencies. In: AAAI, pp. 2601–2607. AAAI Press (2014)

5. Benhamou, F., Goualard, F., Granvilliers, L., Puget, J.F.: Revising Hull and Box Con-
sistency. In: Proc. ICLP, pp. 230–244 (1999)

6. Bennaceur, H., Affane, M.S.: Partition-k-AC: An Efficient Filtering Technique Combin-
ing Domain Partition and Arc Consistency. In: Proc. CP, pp. 560–564 (2001)

7. Bessiere, C., Debruyne, R.: Optimal and Suboptimal Singleton Arc Consistency Algo-
rithms. In: Proc. IJCAI, pp. 54–59 (2005)

8. Chabert, G., Jaulin, L.: Contractor Programming. Artificial Intelligence 173, 1079–1100
(2009)

9. Chabert, G., Jaulin, L.: Hull Consistency Under Monotonicity. In: Proc. CP, LNCS
5732, pp. 188–195 (2009)

10. Debruyne, R., Bessiere, C.: Some Practicable Filtering Techniques for the Constraint
Satisfaction Problem. In: Proc. IJCAI, pp. 412–417 (1997)

11. Hansen, E.: Global Optimization using Interval Analysis. Marcel Dekker inc. (1992)
12. Kieffer, M., Jaulin, L., Walter, E., Meizel, D.: Robust Autonomous Robot Localization

Using Interval Analysis. Reliable Computing 3(6), 337–361 (2000)
13. Lebbah, Y., Michel, C., Rueher, M., Daney, D., Merlet, J.: Efficient and safe global

constraints for handling numerical constraint systems. SIAM Journal on Numerical
Analysis 42(5), 2076–2097 (2005)

14. Lhomme, O.: Consistency Techniques for Numeric CSPs. In: IJCAI, pp. 232–238 (1993)
15. Mackworth, A.: Consistency in Networks of Relations. Artificial Intelligence 8, 99–118

(1977)
16. Merlet, J.P.: Interval Analysis and Robotics. In: Symp. of Robotics Research (2007)

18 Bertrand Neveu et al.

17. Messine, F.: Méthodes d’optimisation globale basées sur l’analyse d’intervalle pour la
résolution des problèmes avec contraintes. Ph.D. thesis, LIMA-IRIT-ENSEEIHT-INPT,
Toulouse (1997)

18. Messine, F.: Extensions of Affine Arithmetic: Application to Global Optimization. Jour-
nal of Universal Computer Science 8(11), 992–1015 (2002)

19. Messine, F., Laganouelle, J.L.: Enclosure Methods for Multivariate Differentiable Func-
tions and Application to Global Optimization. Journal of Universal Computer Science
4(6), 589–603 (1998)

20. Min Li, C., Anbulagan: Heuristics Based on Unit Propagation for Satisfiability Prob-
lems. In: Proc. IJCAI, pp. 366–371 (1997)

21. Tawarmalani, M., Sahinidis, N.V.: A Polyhedral Branch-and-Cut Approach to Global
Optimization. Mathematical Programming 103(2), 225–249 (2005)

22. Trombettoni, G., Araya, I., Neveu, B., Chabert, G.: Inner Regions and Interval Lin-
earizations for Global Optimization. In: AAAI, pp. 99–104 (2011)

23. Trombettoni, G., Chabert, G.: Constructive Interval Disjunction. In: Proc. CP, LNCS
4741, pp. 635–650 (2007)

24. Tucker, W.: A Rigorous ODE Solver and Smale’s 14th Problem. Found. Comput. Math.
2, 53–117 (2002)

25. Van Hentenryck, P., Michel, L., Deville, Y.: Numerica : A Modeling Language for Global
Optimization. MIT Press (1997)

	Introduction
	Numerical CSP
	Shaving algorithms for numerical CSP
	Adaptive CID: learning the number of handled variables
	Experiments
	Experiments with Ibex 2.1
	Justification of the parameters of ACID
	Learning a set of variables to varcid?
	Conclusion

