
Box-Set Consistency for interval-based constraint
problems

Gilles Chabert, Gilles Trombettoni and Bertrand Neveu
PROJET COPRIN I3S-INRIA-CERTIS

2004 route des Lucioles BP 93
06902 Sophia Antipolis Cedex, FRANCE

� chabert, trombe, neveu � @sophia.inria.fr

ABSTRACT
As opposed to finite domain CSPs, arc consistency cannot be en-
forced, in general, on CSPs over the reals, including very simple
instances. In contrast, a stronger property, the so-called box-set
consistency, that requires a no-split condition in addition to arc con-
sistency, can be obtained on a much larger number of problems.

To obtain this property, we devise a lazy algorithm that com-
bines hull consistency filtering, interval union projection, and in-
telligent domain splitting. It can be applied to any numerical CSP,
and achieves box-set consistency if constraints are redundancy-free
in terms of variables. This holds even if the problem is not interval-
convex. The main contribution of our approach lies in the way we
bypass the non-convexity issue, which so far was a synonym for
either a loss of accuracy or an unbounded growth of label size.

We prove the correctness of our algorithm and through experi-
mental results, we show that, as compared to a strategy based on a
standard bisection, it may lead to gains while never producing an
overhead.

1. INTRODUCTION
Constraint programming (CP) is a complementary approach of

interval-based numerical methods to solve systems of equations
over the reals. Instead of approximating solutions with mathemat-
ical reasoning on the entire system, equations are treated as inde-
pendent compatibility relations (called constraints) between vari-
ables. In this perspective, domains are filtered by removing values
for which a relation cannot be satisfied individually. On the one
hand, these methods make hardly use of semantics, but on the other
hand, they are general-purpose. A mix of CP and interval analysis
has given rise to the best solvers for satisfying or optimizing con-
straint systems.

When the domains of the variables are stable for all the con-
straints, i.e., when all the values can be used to satisfy any con-
straint, we see that we cannot go further with “local” reasoning,
and we talk about arc consistency. A lot of algorithms have been
designed to enforce arc consistency in discrete constraint systems
(where domains have a finite number of values). This key property
in CP can be obtained as well with real variables, but usually a few

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

steps of a specific bisection are required. Thus, we obtain the so-
called box-set consistency, a stronger property which yields a set of
arc consistent boxes (i.e., products of intervals).

In this paper, we show in practice how to enforce box-set consis-
tency for a class of projection-friendly problems. First, we recall
some classical definitions about the CSPs and a precise description
of what the box-set consistency is. Second, we give our algorithm,
detailing the important projection operators. Third, we expound
the theoretical properties of our algorithm, and finally deal with
performances.

2. BACKGROUND

2.1 CSPs over the reals
A numerical constraint satisfaction problem (NCSP) is a 3-

uple (C,V,B). � is a set of constraints �����	�
�������	 (equations or in-
equations) relating a set � of variables � � �����
������� . Each variable is
given an initial interval of real values ������������������� , and the prob-
lem is to find all the � -tuples of values � �!���	�
������� ��" , �$#&%'�(��)*�,+.-/ -0� " , such that constraints are all satisfied when simultaneously
each variable ��# is assigned �$# . 1320�����*45���
�647��� � is the initial
box of the problem. In fact, algorithms and properties introduced
in this paper require a more general representation of domains: a
union of intervals. So hereafter, � � designates a union of intervals,
and 1 the cartesian product of interval unions.

As said above, solving an NCSP with constraint programming
often relies on local filtering techniques, i.e., techniques that only
use properties of the system related to a single constraint. For in-
stance, let �8� " be the equation �:9;2=< . Whatever are the other
constraints, if ���>2@? A.+�BC��+�B�D and �(EF2G? +���H�D , we can safely
reduce � � to ? AJI6��A.+	DLKM? +$��I�D right away. This narrowing opera-
tion is called projection of � over � . Here is a formal definition of
projection, and the related property of arc consistency.

DEFINITION 2.1 (PROJECTION & ARC CONSISTENCY).
Let N02O�P�Q���&��1O20�(���.4R�
���S4T��� �U" be a NCSP.
Let � be a constraint relating

� < � �������
��<WVW�YXZ� .
The projection of � over <W# applied on 1 is the following set:[Q\E�) �P1 " 2 � � # %J� E�)�]�^ � � %S� E	� �������
��� #8_:� %�� E�) ` �$�a� #cbd� %�� E�)ce ���
�����
���$V�%S��E�f such that � is satisfied with <!�C25�6�������
����<6V:25�$V*�
N is arc consistent iff g>h;���a�7ij%>�k4;� with � related by � ,
���(2 [Q\� �P1 "

hull consistency [1] (or 2B-consistency [2]) is an easy-to-apply
approximation of arc consistency, for which efficient implementa-
tions exist, such as HC4 [3].

The contribution of this paper is to study an algorithm, and we
need to consider various levels of complexity for the problems to
state its correctness.

� NCSPs with primitive constraints only. A primitive con-
straint is a basic binary or ternary relation such as �.2 � � < .
As the projections are mathematically known, they can be
hard coded. The set of primitive constraints is given in Fig-
ure 1 below.

� Simple NCSPs. A constraint � is simple if the syntax of �
does not include multiple occurrences of the same variable.
For instance, �R2=� � � < "a9 is simple but �R2 � 9 � < 9 �
I��L< is not. A simple constraint is a combination of several
primitive constraints. A NCSP is simple if all the constraints
are simple.

� General case. Any constraint that is not simple falls into
the general case. Intuitively, it is a hard problem to infer
projections from the syntax of a constraint when variables
occur more than once.

� � � � �a< "�� � 2 < ��� � � �a<���� "	� �Y2 ��
 <�
9 � � �a<���� "	� �.2Z� � < �� � � �a<���� "	� �Y2 ����<��� � � �a<���� "	� �.2Z�7A < ��� � � �a<���� "�� < 2Z����� � � �a< "�� <�2���� � � � " ��� � � �a< "�� < 2 �����W� � "�� � � �a< "�� <�2��c�&� � " � �! W� � �,< "�� < 2�� / �&� � "

Figure 1: Primitive constraints

Finally, we need to recall a last definition, introduced in [5], to
express a no-disjunction property:

DEFINITION 2.2 (INTERVAL-CONVEXITY). Let � be a con-
straint relating variables � � ����������� V , Let 1 be a box.
� is interval-convex on 1 iff g / % � +$��� "C� [Q\��) �P1 " is a single
interval (e.g., ? AJI6��A.+	D K ? +���I�D is not a single interval) .

2.2 The Box-Set Consistency
In general, obtaining an arc consistent NCSP from an initial box

is not possible with continuous variables. Projections can split do-
mains of variables (see example < 2 � 9 in Section 2), and the
number of splits can grow indefinitely. See the extended version
of this paper [6] for a precise description of this issue. But in con-
trast, it is easy to look for the arc consistent sub-boxes. Let us insist
on the term boxes: a box is a cartesian product of intervals. This
means that all the values inside a box are considered, that is, no gap
is allowed. The difference is illustrated on the following example:

EXAMPLE 2.1.
Let N 2O� � ������� 9 �a�

� ��� � �6� � � �a<��#�6�W�,DaA�$Z� � $?
�
" be a NCSP.

�8��� " +.- � �7A;I ",9 - H �8� 9 " <�2 �
�8� � "] �] 2] �] �8� � " �&% <�A H
Arc consistency is achieved with the following domains :

�(� 2T�(EU2;? BC��+�D�K�? '!��H�D and ��(2 ? A H ��A)'�D�K(? A.+���+�D�K(? '!��H�D . But
�(� 4 �(E 4Q�&(is not a box because domains are not intervals, but
unions of intervals (there are “gaps”). The 2 maximal arc consistent
sub-boxes of N are ? BC��+�D�4.? B!��+	D�4 ? A.+���+	D and ? '!��H�D�4 ? '!��H�D�4 ? 'C�aH�D .
Interval * (2 ? A H ��A)'�D for � is discarded because there do not exist
intervals *	� and *�E such that *	� 4+*	EW4,*�(is arc consistent. Formally:

DEFINITION 2.3 (BOX-SET CONSISTENCY).
Let N02 �P�Q���&��1 " be a NCSP. The box-set consistency of N is the
set

� 1.- � of maximal subboxes of 1 such that �P� ���&��1�- " is an arc
consistent NCSP.

Here is a generic method that computes the box-set consistency
of a problem. It is also the sketch of our algorithm HC4+TAC be-
low, and corresponding lines are given in brackets.

[2] Apply a hull consistency filtering on the system (no split is
done). Meanwhile, detect constraints that are not interval-
convex.

[7-16] Search a gap, by examining constraints suspected to be not
interval-convex, and by applying projections [14].

[18-21] If a projection discloses a gap, call recursively the procedure
for the sub-systems obtained by instantiating the current vari-
able to each sub-interval formed by the gap(s). This phase is
called natural splitting.

We call this generic method Lazy BoxSet. Box-set consis-
tency formalizes the result of Hyvönen’s algorithm [7], and Lazy
BoxSet can be viewed as a lazy version of the latter. In both al-
gorithms, the number of boxes produced is bounded by � � 4/� " � ,
where � is the maximum number of intervals obtained by one pro-
jection, and � is the arity of the variable. See [6] for details.

3. ALGORITHM
Lazy BoxSet is a theoretical method because it is based on a

projection operator, and nothing is said about the way to implement
it. This operator is called at two different steps : during the hull
consistency filtering, and during the gap search.

We are going to present in this section a way to work out this
operator, what de facto will give us a ready-to-use version of a box-
set filtering algorithm. We will say that a projection operator is
exact when it respects the definition 2.1.

3.1 Overview
For performance reasons, we chose HC4 [3] for our implemen-

tation of hull consistency. But the projection operator embedded in
HC4, called HC4Revise, is exact only for primitive constraints.
Despite this restriction, we will see that it is possible to obtain the
box-set consistency of simple NCSPs, providing that projections
for the gap search are exact. That is why we use a different opera-
tor for the gap search, called TAC.

Algorithm 1 HC4+TAC(NCSP �P�Q��� ��1 " , in-out results)

2: HC4(�P� ���&��1 ")

4: if 1 is empty then
return

6: �0-21 �
gap 1 false

8: while (not gap) and (� -�32�4) do
pop � from � -

10: if not (interval-convex(�)) then
�5-�1 Variables(� , �)

12: while (not gap) and (� -63274) do
pop � from �.-

14: 8�1 A TAC(���,� ��1)
if 8�9Z� � then

16: gap 1 true

18: if gap then
for all intervals * in 8 do

20: ���&1 A:* // �(� is the domain of � in 1
HC4+TAC(�P�Q��� ��1 " , results)

22: else
add 1 to results

Hence, we do not use the same operator in both places we have
mentioned (hull consistency filtering and gap search), and this is
why our algorithm is sumed up in the acronym HC4+TAC.

Note that line 15 hides a subtlety: gap may be true either when
8 is a union (as in the original algorithm), or when bounds of
�(� can be narrowed. The latter case arises due to the limitation
of HC4Revise evoked before. We will get back to this issue in
4.2. The rest of this section describes the projection operators,
HC4Revise and TAC. Both originate from [3].

3.2 HC4Revise
First, let us summarize how HC4Revise works through an ex-

ample. See [3] for a complete description.
Let � � � � AF< " 9�2 � be a constraint relating � % ? BC��+�B�D8��< %

? B!��H�D and � % ? � ��+���D . Constraints are represented by their abstract
syntax tree, where each node stands for a sub-expression.

Figure 2(a) depicts the first step of the retro-propagation algo-
rithm, an upward traversal of the tree that computes an evaluation
of every sub-expression in the tree, using interval arithmetics.

^2 z

x y

−

=

[0,10] [0,4]

[−4,10]

[0,100] [9,16]

[9,16]

(a) upward propagation

^2 z

x y

−

=

[0,10]

[−4,10]

[9,16]

[9,16]

[9,16]

[−4,4]

[0,100]

[0,8]

[−4,8] [0,4] [−4,14]

[0,4]

(b) downward propagation

Figure 2: HC4Revise

Figure 2(b) shows the second step, the downward traversal of the
tree that computes the projection over every sub-expression. Actu-
ally, a node is linked to its child nodes by a primitive constraint,
and this step simply consists in applying cascading projections of
primitive constraints.

Finally, we notice that HC4Revise has reduced the domain of
� from ? B!��+�B�D to ? BC����D .

Except with primitive constraints, HC4Revise does not com-
pute an exact projection, as defined in Section 2, but a conservative
approximation. Indeed, when a disjunction (i.e., a union of inter-
vals) occurs during the second step, the hull is computed so that
inconsistent values are introduced in place of gaps. In our exam-
ple, the exact projection of ? � ��+���D over the node labeled with “–” is� ? A H ��A)'�D8��? 'C� H�D � , and only the hull ? A H �,H�D is kept.

Note that before handling a constraint � , HC4Revise sets the
interval-convexity boolean of � to true. If a disjunction appears
somewhere in the tree, this boolean is set to false.

3.3 TAC
The algorithm TAC (Tree Arc Consistency) computes an ex-

act 1 projection with simple NCSPs. It is the union-variant of
HC4Revise. The exactly same backward propagation idea is used,

1This term is employed regardless of the rounding due to the ma-
chine representation of reals (not considered here).

except that interval unions are stored in place of intervals. This
variant has already been evoked in [3].

We preclude from our discussion the particular case of trigono-
metric functions with an infinite number of acceptable periods, such
as � / �&�,+ ��� " with B %F��� . We will see later a way to tackle such
constraints.
TAC is exactly HC4Revise except that unions of intervals are

authorized. In our example, the node labeled with “-” is assigned a
union of intervals :

� ? A H ��A)'�DP��? '!� H�D � . Projecting this union over �
leads to a union for � , as shown in Figure 3. Note that a gap cannot
appear with primitive constraints in the left column of Figure 1
(functions are monotonous), as opposed to the constraints in the
right column. Note also that, except with �2� , only the downward
propagation requires union labeling.

^2 z

x y

−

=

[0,10] [0,4]

[−4,10]

[9,16]

[9,16]

[9,16][0,100]

[−4,−3] [3, 4]

[−4,1] [3,8]

[0,1] [3,8] [0,4]

[−4,14]

Figure 3: Downward step of TAC

By limiting the scope of propagation to a single constraint, an
infinite loop as described in [6] cannot occur. Indeed, a necessary
condition for such a loop is the presence of cycles in the constraint
network. Even more, the label size (i.e., the number of intervals
used to represent domains) is bounded, this bound being inherent
to the problem and easily computable (see [7]).

Remark: We also use TAC in presence of multiple variable oc-
currences in a same constraint. Each occurrence is treated as a
different and independent variable. Of course, exactness of the out-
put is no more guaranteed. In Section 4, we explain what we can
expect from TAC in this case.

3.4 Dealing with infinity of disjunctions
In this case, we need to introduce a bound for the label size, say

MAX. If at some point the label size of a projection result exceeds
MAX, we simply merge some of the intervals. The projection is not
exact any longer, but as long as two intervals are isolated, the other
ones can be merged and their split is just postponed. If the system
has a finite number of solutions, the process will end. This imple-
mentation trick prevents the solver from failing in case of overflow.
In all our benchmarks, we never observed an overflow with a bound
set to 10.

4. THEORETICAL PROPERTIES
In this section, we clarify the properties of our algorithm because

projections are not exact in all the situations. We start from primi-
tive constraints, go on with simple NCSPs and finally deal with the
general case.

PROPOSITION 4.1. Let N be a NCSP.
If constraints in N are all primitive, then HC4+TAC enforces the
box-set consistency of N .

PROOF. It is shown in [6] that Lazy BoxSet solves the box-
set consistency of a NCSP. Then, since both TAC and HC4Revise

compute an exact projection of a primitive constraint, the box-set
consistency is ensured by HC4+TAC.

4.1 Simple NCSPs
The previous result can be extended to systems with arbitrary

complex expressions, assuming that variables appear at most once
inside a same constraint.

PROPOSITION 4.2. Let N be a simple NCSP.
HC4+TAC enforces the box-set consistency of N .

The proof is not as straightforward as for the proposition 4.1
because HC4Revise does not always compute exact projections
(see 4.1.3), and consequently hull consistency is not guaranteed
by HC4 anymore. But fortunately, the situations where HC4 fails
to achieve hull consistency are intermediate steps of the general
algorithm, so that this limitation does not prevent HC4+TAC from
giving the box-set consistency.

First, we are going to show that in this case TAC still computes
exact projections.

4.1.1 Exactness of TAC
Let � be an arbitrary constraint. We call decomposition of � the

sub-system of primitive constraints equivalent to � .

EXAMPLE 4.1 (DECOMPOSITION). � � � � A < "a9 2�� is equiv-
alent to a sub-system � of 3 primitive constraints relating 5 vari-
ables (� � <��#�C���Y���):

� � � �7A;< " 9 2������@��� "
	
 � � � � � � <:��� "� � ��Y������I "� ������ � " (1)

PROPOSITION 4.3. Let � be a simple constraint.
TAC computes exact projections of � .

PROOF. Let � be the decomposition of � .

1- The constraint network of � is a tree (the same as the syntax
tree of �).

2- Each time a union is computed for a node in TAC, there is an
equivalent projection in � over the implicit variable (like �
and � in example 4.1) representing this node. Initial domains
of implicit variables are DaA�$Z� � $? .

3- The projection of a constraint in � over a given variable is
exact (proposition 4.1), i.e., every value in the resulting do-
main of this variable has a support in the domains of the other
variables. Such projection is equivalent to a step of directed
arc consistency in finite domain [8].

4- Faltings showed in [9] that a two-step directed arc consis-
tency filtering applied on a tree-structured graph leads to an
arc consistent labeling. Each step of TAC is equivalent to a
step of directed arc consistency, from the leaves of the tree
(the variables of �) up to the root and in the other way around.

5- arc consistency of a tree-structured graph is equivalent to
global consistency [10]. So TAC gives the global consis-
tency of � . In other words, every value in the domain of a
variable in � belongs to a solution of � , i.e., satisfies the con-
straint � , since � and � are semantically equivalent. There-
fore, global consistency of � is equivalent to arc consistency
of � . This justifies the name (Tree Arc-Consistency) of this
method. Hence, this two-step process computes exact pro-
jections over all the involved variables.

4.1.2 Proof of proposition 4.2
Consider the leaves in the search tree of HC4+TAC.
Leaves are arc consistent: If no disjunction occurs during a call

to HC4Revise, no intermediate hull is computed and HC4Revise
behaves rigorously like TAC. Assume a disjunction occurs during
a call to HC4Revise. The constraint is marked as “not interval-
convex”, and it will be projected by TAC. But TAC cannot perform
any reduction with this constraint, since we are dealing with a leaf
(any reduction entails a subsequent call to HC4+TAC). Therefore,
any call to HC4Revise is necessarily equivalent to a projection
by TAC. Since we have proven in 4.1.1 that TAC is exact, once the
fixpoint is reached, arc consistency is achieved.

Leaves are maximal: Let 1 be the initial box. Let 1 - be the
box obtained by HC4+TAC just before the first natural split, and
1 � ,..., 1J� the child boxes obtained just after. It is clear that the
box-set consistency of 1 is also the box-set consistency of 1�- . We
need to prove that the box-set consistency of 1�- is the union of the
box-set consistencies of 1 � ,..., 1J� . Assume that it is not. We can
find a box � in the box-set consistency of a child box, for instance
1 � , that is not maximal. Therefore � can be enlarged, i.e., an “ad-
herent” value can be added in the domain of a variable (a value
stuck to �). As 1 - and 1 � differ only in the domain of the split
variable (say �), by a simple reasoning on propagation, the added
value requires an extra value in the domain of � . But ��� cannot
be enlarged, because an adherent value of � � would be inside the
gap, and necessarily inconsistent. Hence, by a straightforward in-
duction, the box-set consistency of the initial box is the union of
the box-set consistencies of the leaves. We have seen that leaves
are arc consistent, so they are maximal.

4.1.3 Remark: The difficulty with HC4
HC4Revise does not always compute an exact projection, be-

cause of intermediate approximations while projecting over im-
plicit variables. The consequence is that HC4 does not enforce the
hull consistency of the system anymore, but only the hull consis-
tency of the decomposition of the system [3].

EXAMPLE 4.2. Let N be the following CSP:
���(2 ? BC��+�D , ��E.2 ? A.+$�	+	D
� �'4 < ",9 23+

Let N - be the decomposition of N , i.e. :
� � 2 ? BC��+�D , � E 2 ? A.+$�	+	D , ���R2JDaA�$Z� � $0?
�'4 < 2��� 9 23+

N is not hull consistent because the bound B for � has no support
in < , and it is easy to check that HC4 cannot reduce this bound.
Indeed, the projection over � (the subexpression � 4'<) results in
the interval ? A.+$��+�D that includes the bad support � 2 B for �T2
B . On the other hand, hull consistency of N - is achieved with an
extension of 1 , i.e., a box 1�-�2'1M4J� -� . This extension is ? B!��+	D�4
? A.+$��+�D�4Y? A.+$��+	D .

So we could have expected HC4+TAC to enforce the box-set con-
sistency of the decomposition of a problem. This cannot be true
because arc consistency of a system is a weaker property than arc
consistency of its decomposition.

EXAMPLE 4.3. Let N be the following CSP:
���(2 ? BC��H�D , ��E.2 ? BC��H�D
� �7AR< " 9 2ZH

Let N0- be the decomposition of N , i.e. :
� � 2 ? BC��H�D , � E 2 ? BC��H�D , ���R2JDSA $Z� � $0?
�7AR< 2���Q9*2ZH

N is arc consistent. But arc consistency of N - cannot be achieved
with an extension of 1 , i.e., with � � 2 ? BC��H�D and � E 2 ? BC�,H�D .
Indeed, the box-set consistency of N0- includes two arc consistent
boxes :

� ? B!��I�D 40? I!�aH�D 40? AJI!��AJI�D and ? I6��H�D 40? B!��I�D 4 ? I!��I�D � .
This is not a big surprise since, by decomposing a system, it be-
comes possible to split the domains of the implicit variables (�)
and therefore, to obtain smaller boxes.

This hybrid situation can be summarized with this pseudo-formula:
(1) hull consistency 2 � hull consistency of the decomposition
(2) arc consistency ��2 arc consistency of the decomposition

See [11] for (1). The flip in the implications means a priori that
a box returned by HC4+TAC has not been filtered enough to be
hull consistent (regarding N), and not been split enough to be arc
consistent (regarding N0-). However, we have seen how to fix the
problem with a weaker split condition (line 15 of HC4+TAC).

4.2 General Case
To describe the property of HC4+TAC in this case, follows the

definition of another kind of transformation called renaming [11],
where each occurrence of the same variable is substituted by a new
variable 2.

EXAMPLE 4.4 (RENAMING).

� � � �7A;< " 9 AR� 2 B ���G��� "
� � � A < ",9 A �.2 B
�.2Z� (2)

� and � in ��� " are the aliases of � in � .

Note that renaming produces an intermediate system between the
original one and the decomposition, in terms of size.

PROPOSITION 4.4. Let N be a NCSP. Let N5- be the renaming
of N
HC4+TAC applied on N enforces the box-set consistency of N - .

Thus, the box-set consistency cannot be enforced by HC4+TAC
in the general case.

PROOF. With multiple occurrences of variables, HC4+TAC be-
haves as if it was applied on the renaming of the system. For in-
stance, the first operation made by HC4Revise and TAC with a
constraint is to assign to the aliases of a same variable � the do-
main of � . So, if aliases of � are noted ���������
����� � , the first step of
these operators is equivalent to a projection of the non-root con-
straints ��# 20� over the aliases ��# in the renaming. One precaution
however with multiple occurrences : we must push back the current
constraint in the propagation queue after a call to HC4Revise.

So, HC4+TAC provides the same result as if it was applied on the
renaming of the problem, which is a simple NCSP. But we know
that HC4+TAC applied on a simple problem enforces box-set con-
sistency (proposition 4.2), so HC4+TAC enforces the box-set con-
sistency of the renaming.

5. PRACTICAL TIME COMPLEXITY
In practice, box-set consistency can be used to find solutions of

a NCSP. Instead of collecting the resulting boxes (see line 23 in
HC4+TAC), we use them in a depth-first process as new choice
points. In this way, the advantage of box-set consistency is twofold:
First, the property itself may be exploited, and this approach is still

2It seems that no dedicated terms exist in literature to distinguish
renaming from decomposition. Depending on the paper, decompo-
sition may either refer to the first or the latter.

under research. Second, as natural splitting is driven by the seman-
tics of the problem, it is sharper and often more efficient than other
bisection heuristics (e.g., round-robin or largest-domain first).

On 20 problems found in [12] and ALIAS solver homepage3 ,
We have compared HC4 and bisection, with HC4+TAC and bisec-
tion. In 15 of them, computation times are equivalent; in 3 others
HC4+TAC provides a gain up to 10%. A 20% gain was obtained on
the Broyden banded function problem [12], and on the Sierpinski’s
distance equations problem [13], which include both 30 nonlinear
equations. This ratio is maintained even by introducing higher or-
der consistencies [14] in the solving process.

6. CONCLUSION
We have shown in practice how to enforce box-set consistency

(hence arc consistency) in a lazy way, without spoiling the perfor-
mances. The keystone of this implementation is an operator that
manages gaps, and the number of calls to this costly operator is
minimized by using a standard hull consistency algorithm as a pre-
filtering process.

The main contribution was to establish precisely the properties of
the algorithm. We have proven that box-set consistency is obtained
with simple NCSPs, and a relaxation in the general case.

Our future works include the possible integration of box-set con-
sistency within existing methods, especially from interval analysis.
Indeed, we suspect some techniques to converge faster with arc
consistent boxes.

7. REFERENCES
[1] Benhamou, F., McAllester, D., Van Hentenryck, P.: Clp(intervals)

revisited. In: International Symposium on Logic programming, MIT
Press (1994) 124–138

[2] Lhomme, O.: Contribution à la résolution de contraintes sur les réels
par propagation d’intervalles. Phd thesis, University of Nice-Sophia
Antipolis (1994)

[3] Benhamou, F., Goualard, F., Granvilliers, L., Puget, J.F.: Revising
hull and box consistency. In: International Conference on Logic
Programming. (1999) 230–244

[4] Benhamou, F., Older, W.: Applying interval arithmetic to real,
integer and boolean constraints. Journal of Logic Programming 32
(1997) 1–24

[5] Chabert, G., Trombettoni, G., Neveu, B.: New light on arc
consistency over continous domains. Research report, Institut
National de Recherche en Informatique et en Automatique (2004)

[6] Hyvönen, E.: Constraint reasoning based on interval
arithmetic—The tolerance propagation approach. Artificial
Intelligence 58 (1992) 71–112

[7] Dechter, R., Pearl, J.: Network-based heuristics for constraint
satisfaction problems. Artificial Intelligence 34 (1987) 1–38

[8] Faltings, B.: Arc-consistency for continuous variables. Artificial
Intelligence 65 (1994)

[9] Freuder, E.: A sufficient condition for backtrack-free search. Journal
of the ACM 29 (1982) 24–32

[10] Delobel, F., Collavizza, H., Rueher, M.: Comparing partial
consistencies. In: Reliable Computing. Kluwer (1999) 213–228

[11] Moré, J., Garbow, B., Hillstrom, K.: Testing unconstrained
optimization software. ACM Trans. Math. Softw. 7 (1981) 17–41

[12] Jermann, C., Trombettoni, G., Neveu, B.: Inter-block backtracking:
Exploiting the structure in continuous csps. In: 2nd International
Workshop on Global Constrained Optimization and Constraint
Satisfaction (Cocos’03). (2003)

[13] Lhomme, O.: Consistency techniques for numeric csps. In: Proc. of
the 13th IJCAI. (1993) 232–238

3
http://www-sop.inria.fr/coprin/logiciels/ALIAS/Benches

