
Computational Complexity of Multi-way, Data�ow Constraint Problems

Gilles Trombettoni and Bertrand Neveu

Projet Contraintes, CERMICS/INRIA,

2004 route des lucioles, 06902 Sophia-Antipolis Cedex, B.P. 93, France

Gilles.Trombettoni, Bertrand.Neveu@sophia.inria.fr

Abstract

Although it is acknowledged that multi-way

data�ow constraints are useful in interactive

applications, concerns about their tractability

have hindered their acceptance. Certain local

propagation algorithms that solve these con-

straints are polynomial, others (such as Sky-

Blue) are exponential. Every system handles a

speci�c problem and the in�uence of any partic-

ular restriction on the computational complex-

ity is not yet precisely determined. In this pa-

per, we present three theoretical results that al-

low us to classify existing multi-way constraint

problems. Especially, we prove that the prob-

lem handled by SkyBlue is NP-hard.

1 Introduction

Data�ow constraints are rapidly gaining popularity in

interactive applications because they simplify the pro-

gramming task. They are conceptually simple and

easy to understand, and are capable of expressing re-

lationships over multiple data types, including num-

bers, strings, booleans, bitmaps, fonts, and colors

[

Van-

der Zanden, 1996

]

. Data�ow constraint solvers are used

in numerous interactive systems, such as graphical user

interfaces, spreadsheets, graphical layout systems and

animation.

Data�ow constraints are divided into two main cate-

gories. A one way data�ow constraint has one associated

function for recovering its consistency. This function cal-

culates output variables using the current value of input

variables. The spreadsheet model, more formally known

as the dependency graphmodel

[

Hoover, 1987

]

, only takes

into account one-way constraints. This model is widely

used in interactive systems, mainly because the solving

process is based on an e�cient incremental evaluation

phase that topologically sorts the functions to execute.

A multi-way data�ow constraint has several functions

(called methods) that may be used to satisfy it. The

solving process of problems that contain multi-way con-

straints needs an additional planning phase that assigns

a method to each constraint, before the evaluation phase.

Although multi-way constraints are more expressive

than one-way constraints, they are less recognized be-

cause of concerns about their tractability. Every solving

algorithm handles a speci�c problem and the conditions

that allow us to decide whether it is computationally

di�cult are not clear by now.

This paper aims at giving a classi�cation for the com-

putational complexity of the main existing multi-way

constraint problems.

2 Background

A multi-way data�ow constraint system can be denoted

as (V;C;M). V is a set of variables with a current value.

C is a set of data�ow constraints andM is a set of meth-

ods that can satisfy the constraints.

De�nition 1 A multi-way data�ow constraint is

an equation that has one or more methods associated that

may be used to satisfy the equation.

A method consists of zero or more inputs, one or

more outputs, and an arbitrary piece of code that com-

putes the output variables based on the current value of

the input variables

[

Vander Zanden, 1996

]

. A single-

output method determines only one variable.

A (data�ow) constraint system is often represented by

a constraint graph G

c

as shown in Figure 1 (a).

Local propagation is the technique used to solve multi-

way constraint systems, typically when new constraints

are incrementally added. It works in two phases:

� The planning phase directs the edges in G

c

by as-

signing one method to each constraint. The result

of this phase (i.e., the solution of the corresponding

problem) is a valid graph G

m

called method graph

(see Figure 1 (b) and (c)).

De�nition 2 A method graph G

m

is valid if (1)

every constraint has one method associated with it in

G

m

, and (2) G

m

has no variable con�icts, that is,



each variable is the output of, at most, one method

(i.e., has at most one incoming edge).

� When the method graph G

m

contains no directed

cycles, the evaluation phase executes the methods in

some topological order. When a method is executed,

it sets the output variables to values such that the

constraint is satis�ed. When G

m

is cyclic, strongly

connected components are collected and generally

passed to external solvers to be satis�ed as a whole.

Ignoring the operations involved in method execution

and cycle solving, the evaluation problem is in the class

P of polynomial problems. Indeed, topological sort is

O(d� jCj) where d is the maximum number of methods

associated to one constraint. We concern ourselves with

the computational complexity of the problem solved by

the planning phase that will be called constraint plan-

ning problem in the following.

Planning algorithms can be divided into three main

categories. (1) DeltaBlue

[

Freeman-Benson et al., 1990

]

and SkyBlue

[

Sannella, 1994

]

work by propagating the

con�icts from the perturbations to the leaves of the con-

straint graph. (2) The propagation of the degrees of

freedom scheme (in short PDOF) selects the methods

in the reverse order (i.e., executing �rst the methods

that were chosen last). This algorithm has been used

in SketchPad

[

Sutherland, 1963

]

and QuickPlan

[

Van-

der Zanden, 1996

]

. (3) A third approach is related to

the classical problem of graph matching. It gives the

Maximum-matching algorithm

[

Gangnet and Rosenberg,

1992

]

.

3 Di�erent types of constraint planning

problems

Existing local propagation algorithms solve di�erent

planning problems that imply various tradeo�s between

expressiveness and performance:

� required constraints only, or both required and pref-

erential constraints that are satis�ed if possible

� single-output constraints only, or multi-output ones

� acyclic constraint graphs only, or cycles allowed

� method restriction imposed or relaxed

De�nition 3 The method restriction imposes that

every constraint method of a given problem must use all

of the variables in the constraint either as an input or

an output variable

[

Vander Zanden, 1996

]

.

Moreover, some systems allow directed cycles in the

method graph, whereas others do not, which leads in fact

to two di�erent (and incomparable) problems. Indeed,

a general computational result states that a restriction

(b) (c)(a)

Figure 1: A constraint graph is a bipartite graph whose

nodes are constraints and variables, respectively repre-

sented by rectangles and circles. Each constraint is con-

nected to its variables. This is illustrated in Figure (a).

Figures (b) and (c) show two possible method graphs.

The method selected for each constraint is symbolized

by directed edges from the constraint to the output vari-

ables, and from the input variables to the constraint.

The method graph in (b) contains no directed cycles, as

opposed to the method graph in (c).

imposed on a solution does not necessarily make the cor-

responding problem easier

[

Papadimitriou, 1994

]

.

Table 1 shows the computational complexity of se-

lected existing constraint planning problems.

4 An NP-complete planning problem

with method restriction

Disjunctive constraints do not respect the method re-

striction (e.g., constraint a_b has two methods that out-

put to either variable a or b with no input). However,

these constraints are not usually needed in interactive

systems. Therefore, all of the propagation algorithms

impose the method restriction. The problems handled

by these algorithms are in P , except cp

2

(see Table 1)

which has not been yet analyzed.

The only known NP-completeness results aim at prob-

lems acp

3

and acp

4

[

Maloney, 1991

]

which are not very

interesting in practice because they relax the method

restriction.

The following theorem states an NP-completeness re-

sult about the problem cp

2

for which the method restric-

tion holds and which is handled by SkyBlue.

Theorem 1 Let G be a data�ow constraint system for

which the method restriction holds.

Then proving the existence of a valid method graph

(cyclic or not) corresponding to G is NP-complete.

The proof and the polynomial reduction involved in it

are described in following paragraphs.

4.1 Polynomial reduction

In Section 4.2, we prove that the known NP-complete

problem �Exact Cover by 3-Sets�

[

Papadimitriou, 1994

]



problem method restriction single-output complexity proof algorithms

acp

1

yes yes P

[

Sutherland, 1963

]

PDOF, DeltaBlue

acp

2

yes no P

[

Vander Zanden, 1996

]

QuickPlan

acp

3

no yes NPC

[

Maloney, 1991

]

3 �

acp

4

no no NPC

[

Maloney, 1991

]

1 and 2 �

cp

1

yes yes P [Gangnet&Rosenberg, 1992] Maximum-matching

cp

2

yes no ?? � SkyBlue

cp

3

no yes ?? � �

cp

4

no no ?? � �

Table 1: Computational complexity of constraint planning problems. Cycles in the constraint graph are allowed.

Constraints are required (not preferential). Every problem depends on three characteristics: (1) a problem that only

accepts acyclic method graphs is designed by acp

i

(i 2 f1::4g), whereas a problem that accepts both acyclic and

cyclic solutions is designed by cp

i

; (2) the method restriction; (3) the presence of single-output constraints only. The

complexity of problems cp

2

, cp

3

and cp

4

is not yet known, especially cp

2

which is handled by SkyBlue.

can be reduced to �constraint-planning� (i.e., cp

2

). This

reduction will be called planning reduction.

De�nition 4 (Exact Cover by 3-Sets) Let X be a

�nite set, such that jX j = 3q for some integer q. Let E

be a family of sets that contain 3 elements of X each.

Every element of X belongs to at least one 3-set of E.

1

Does E contain an exact cover for X, that is, a subset

S of E such that every element of X belongs to exactly

one 3-set of S?

(a) (b)

a

b

c

d

e

f

4
1

2

3

a

b

c

d

e

f

4

2

Figure 2: An instance of the �Exact Cover by 3-Sets�

problem. X = fa:::fg. The 3-sets in E = f1:::4g are

represented by hyper-arcs, as shown in (a). The unique

solution S = f2; 4g is shown in (b).

Let G = (X;E) be an instance of �Exact Cover by 3-

Sets�. Let G

0

= (V;C;M) be an instance of �constraint-

planning� obtained by a planning reduction applied to G

as follows:

� Variables in V are divided into two sets VarX and

VarE. Constraints in C are divided into two sets

ConstX and ConstE.

� Each element i of X corresponds to one variable

i-at-most of VarX.

1

This additional hypothesis discards trivial instances

while keeping the problem NP-complete.

� A 3-set p = fa; b; cg in E corresponds to a constraint

set

p

of ConstE connecting six variables. set

p

has

two triple output methods which indicate whether

the 3-set p is either present or absent in the solution.

The present method outputs to the three variables

a-at-most, b-at-most, c-at-most of VarX (It ensures

that no other 3-set will cover the corresponding el-

ements.) The absent method outputs to the three

variables a-p, b-p, and c-p of VarE.

� When element i of X can be covered by n di�er-

ent 3-sets fp

1

:::p

n

g of E, n variables {i-p

1

...i-p

n

} of

VarE are constructed. One constraint i-at-least of

ConstX is also built, that connects these variables.

i-at-least has n single-output methods, one for each

variable in the constraint. The method that out-

puts to variable i-p

k

ensures that element i of X is

covered by (at least) the 3-set p

k

.

Figure 2 shows an instance of �Exact Cover by 3-Sets�

that is reduced to the �constraint-planning� instance of

Figure 3.

The planning reduction is based on the following in-

tuition. One element i of X appears in exactly one 3-set

of solution S. Thus, i appears at most once and at least

once in a 3-set of S. This is translated into the planning

problem as follows:

� (at most once) If the 3-set p belongs to solution S,

then the present method of set

p

is selected in the

corresponding constraint planning problem. Thus,

the variables determined by set

p

ensure that no

other 3-set than set

p

covers them, as this would lead

to variable con�icts.

� (at least once) As said above, a constraint i-at-least

directed onto variable i-p ensures that element i of

X is covered by the 3-set p in the solution. In fact,

no method can be selected for constraint i-at-least

(thus involving no solution) if every connected vari-

able is the output of an absent method.



a−4

f−4

e−4

e−3
d−3

c−3

d−2

c−2

b−2

c−1

b−1

a−1

set 1

set 2

set 3

set 4

d−at−most

c−at−moste−at−most

b−at−mostf−at−most

a−at−most

b−at−least

f−at−least

d−at−least

e−at−least c−at−least

a−at−least

Figure 3: Valid method graph after transforming the

instance of �Exact Cover by 3-Sets� (Figure 2).

4.2 Proof of Theorem 1

First, the planning reduction is O(jX j+jEj). Indeed, one

3-set of E corresponds to one constraint, �ve methods,

nine edges, and three variables in the planning problem.

One element of X corresponds to one constraint and one

variable.

Second, �constraint-planning� is in NP since verifying

that a method graph issued from a planning reduction is

valid is O(jV j+jCj). Indeed, it just has to be veri�ed that

every variable is determined by at most one constraint,

and that every constraint has one method selected for it.

Finally, the two following paragraphs prove the equiv-

alence between (i) a solution S for any instance G of

�Exact Cover by 3-Sets� and (ii) a solution S

0

for the in-

stance G

0

of �constraint-planning� obtained by applying

to G the planning reduction.

(i) ! (ii) Based on S, S

0

is obtained by selecting

present methods for the constraints set

p

in ConstE when

the 3-set p is in S. The absent method is selected for the

3-sets that are not in S. Every constraint i-at-least in

ConstX is directed onto variable i-p of VarE when the

3-set p is in S. Variable i-p is an input of the present

method selected for the constraint set

p

in ConstE. By

construction, every constraint has one method selected

for it.

By hypothesis, every element of X belongs to exactly

one 3-set of S. Since there is no intersection between

any two 3-sets in S, this construction does not generate

con�icts on variables i-at-most of VarX.

Every element i of X is covered by (at least) one 3-

set p of S. By construction, set

p

is activated with the

present method that outputs to i-at-most. By construc-

tion, variable i-p is determined by constraint i-at-least,

thus there is no variable con�ict generated on i-p. The

other variables of constraint i-at-least do not provide con-

�icts because they are linked only to two constraints and

are not determined by i-at-least. Thus, for every element

i of X , no corresponding variable in the constraint plan-

ning problem can cause a variable con�ict.

(ii) ! (i) Based on S

0

, S is built by collecting a 3-

set fa; b; cg when the present method that outputs to

variables a-at-most, b-at-most, and c-at-most is selected.

Since the method graph is valid, the intersection of any

two 3-sets in S is empty.

Let us consider every constraint i-at-least of ConstX

in S

0

. Let i-p be the variable determined by i-at-least.

i-p is necessarily an input variable of constraint set

p

that

determines variable i-at-most, otherwise a variable con-

�ict would occur on i-p. By construction, i necessarily

belongs to a 3-set in S. 2

4.3 Complexity of 2-output constraint

planning problems

a−at−most b−at−most c−at−most a−at−most b−at−most c−at−most

a−p b−p c−pa−p b−p c−p

set p

Figure 4: A 3-output constraint set

p

transformed into

two 2-output constraints. The motifs next to a con-

straint indicate the possible methods.

We know that when �constraint-planning� is restricted

to single-output constraints, the problem complexity

comes down to P (cp

1

). The planning reduction shows

that �constraint-planning� is NP-complete with 3-output

constraints. A natural question is therefore, whether the

2-output constraint restriction would yield a polynomial

problem or not.

Theorem 2 Let G be a data�ow constraint system for

which the method restriction holds. G contains methods

that have at most two outputs.

Then proving the existence of a valid method graph

(cyclic or not) corresponding to G is NP-complete.

Proof. Every 3-output constraint set

p

can easily

be transformed into two 2-output constraints and a



problem method restriction single-output complexity proof algorithms

acp

1

yes yes P

[

Sutherland, 1963

]

PDOF, DeltaBlue

acp

2

yes no P

[

Vander Zanden, 1996

]

QuickPlan

acp

3

no yes NPC

[

Maloney, 1991

]

3 �

acp

4

no no NPC

[

Maloney, 1991

]

1 and 2 �

cp

1

yes yes P

[

Gangnet and Rosenberg, 1992

]

Maximum-matching

cp

2

yes no NPC Theorems 1 and 2 SkyBlue

cp

3

no yes P Theorem 3 and cp

1

Maximum-matching

cp

4

no no NPC cp

2

SkyBlue

Table 2: Computational complexity of constraint planning problems. The contributions of this paper are bold-faced.

�dummy� variable, as shown in Figure 4. The global

behavior remains exactly the same

2

. 2

5 In�uence of the method restriction

on problems with cyclic solutions

The following theorem states that the method restriction

has no in�uence on the computational complexity of the

constraint planning problem when cyclic solutions are

allowed.

Theorem 3 Let C be a class of data�ow constraint sys-

tems and let P

C

be the problem of existence of a valid

method graph (cyclic or not) for any instance in the class

C. Let P

0

C

be the restriction of P

C

to constraint systems

that satisfy the method restriction.

Then P

C

and P

0

C

are polynomially (actually LOG-

space) equivalent.

The proof is based on the method transformation.

De�nition 5 Let G

1

= (V

1

; C

1

;M

1

) be a constraint sys-

tem. Based on G

1

, the method transformation provides

a constraint system G

2

= (V

2

; C

2

;M

2

) such that: (1)

V

1

= V

2

, (2) C

1

= C

2

, (3) methods in M

1

for which the

method restriction holds, occur unchanged in M

2

, and

(4) every method m

1

in M

1

for which the method re-

striction does not hold is replaced by a method m

2

in M

2

for which the method restriction holds: m

2

has the same

output variables as m

1

and has all of the other variables

of the associated constraint as input.

Note that this trivial transformation is LOG-space.

Thus, Theorem 3 can be applied to problems that are in

P or are NP-complete.

Proof of Theorem 3. First, P

0

C

can be reduced to

P

C

since P

0

C

is a restriction of P

C

. Second, P

C

can be

reduced to P

0

C

thanks to the method transformation that

reduces a constraint system G

1

into a constraint system

G

2

for which the method restriction holds. We prove

the equivalence between (i) a solution of G

1

and (ii) a

solution of G

2

.

2

Figure 3 illustrates that every variable is determined by

a constraint. Thus, no solution can be found for 2-output

constraint problems when the two 2-output constraints are

selected in opposite directions.

(ii) ! (i) A valid method graph of G

2

can be trans-

formed into a valid method graph of G

1

since G

1

is the

same as G

2

without certain edges. This does not induce

variable con�icts.

(i) ! (ii) A valid method graph of G

1

can be trans-

formed into a valid method graph of G

2

since every edge

added by the method transformation connects a con-

straint and one of its input variable. This does not gen-

erate variable con�icts. 2

Note that if directed cycles are not allowed in the so-

lution, the last implication is false because adding an

input edge could introduce a directed cycle.

6 Synthesis

These three theorems allow us to deduce the three miss-

ing computational complexity results, as shown in Ta-

ble 2. Since cp

2

(which is NP-complete) is a restriction

of cp

4

, and cp

4

is in NP, cp

4

is also NP-complete

3

. The-

orem 3 proves that cp

1

and cp

3

have the same computa-

tional complexity.

Since the table is now complete, we can highlight in-

teresting points about the constraint planning problems

handled by existing algorithms.

SkyBlue Problem cp

2

assumes that the constraints

must be required, whereas SkyBlue

[

Sannella, 1994

]

can

handle one type of preferential constraints. Therefore,

the SkyBlue problem is NP-hard. The NP-completeness

result given by Theorem 1 makes the exponential worst

case time complexity of SkyBlue less surprising. How-

ever,

[

Sannella, 1994

]

has proven that SkyBlue could

reach this worst case complexity even on problems acp

2

and cp

1

that are in P .

QuickPlan QuickPlan

[

Vander Zanden, 1996

]

cannot

be extended without making the corresponding problem

NP-complete. Indeed, the gap between acp

2

(in P ) and

acp

4

(NP-complete) is due to the method restriction, as

described in

[

Vander Zanden, 1996

]

. Moreover, the gap

between acp

2

(in P ) and cp

2

(NP-complete) is due also

to cyclic solutions being accepted or not.

3

Theorem 3 applied to cp

2

and cp

4

also proves this result.



The companion paper

[

Trombettoni and Neveu, 1997

]

proves that there exist instances of �constraint-planning�

issued from the planning reduction which only have

cyclic solutions (otherwise P would be equal to NP).

Maximum-matching The Maximum-matching prob-

lem is in P

[

Gangnet and Rosenberg, 1992

]

. Since the

gap between cp

1

and cp

2

lies in the single-output con-

straint restriction, Maximum-matching cannot be ex-

tended to multi-output constraints.

Note that Maximum-matching can also solve problem

cp

3

. Indeed, Theorem 3 can easily be extended to the

problem of �nding a solution, thanks to a reverse trans-

formation. So one needs to (1) transform an instance

of cp

3

into one of cp

1

with the method transformation,

(2) call Maximum-matching on the cp

1

instance and (3)

retrieve the solution (if any) with the reverse method

transformation.

7 Complexity of problems with acyclic

constraint graphs

We know that an acyclic constraint graph cannot yield

a method graph with directed cycles. The restriction of

the two problems acp

i

and cp

i

(i 2 f1::4g) to acyclic

constraints graphs is then a unique problem p

0

i

.

Problems p

0

1

and p

0

2

are in P because they are restric-

tions of acp

1

and acp

2

. In the same way, p

0

3

is in P

since it is a restriction of cp

3

. p

0

2

and p

0

4

can be seen as

problems where cyclic solutions are allowed (in fact, all

solutions are acyclic and one does not need to disallow

cyclic solutions). They satisfy the conditions of Theo-

rem 3 so that p

0

4

is in P . We can then conclude that all

of the restrictions to acyclic constraint graphs are in P .

8 Conclusion

We have proven new computational complexity theo-

rems. First, the constraint planning problem handled

by SkyBlue is NP-hard. We do not know yet whether it

is in NP, when handling constraint hierarchies that are a

widely used type of preferential constraints. Second, the

computational complexity is insensitive to the method

restriction when cyclic solutions are allowed. Based on

the theoretical results presented in this paper, the follow-

ing simple rule gives su�cient conditions to determine if

a given constraint planning problem is in P .

if the constraint graph contains no cycle then

the problem is in P

else if an acyclic solution is expected then

the problem is in P if the method restriction is imposed

else

the problem is in P if it only contains single-output

constraints

This rule highlights the importance of the �cyclic/-

acyclic solution� condition. When directed cycles are

not allowed in the solution, the gap between problems

in P and NP-complete problems comes from the method

restriction, and not from the single-output constraint re-

striction. The problem complexity has exactly the op-

posite behavior when cyclic solutions are allowed. Fi-

nally, the companion paper shows that the polynomial

complexity of problem acp

1

, acp

2

, cp

1

, or cp

3

is not lost

when handling constraint hierarchies.

We believe that these results will help designers to con-

ceive multi-way constraint systems that provide a good

balance between expressiveness and performance.

Acknowledgements

Special thanks to N. Chleq and T. Schiex whose com-

ments were very helpful. Also thanks to C. Bliek, C.

Lottaz, N. Prcovic, and R. Stalker.

References

[

Freeman-Benson et al., 1990

]

Bjorn Freeman-Benson,

John Maloney, and Alan Borning. An incremen-

tal constraint solver. Communications of the ACM,

33(1):54�63, January 1990.

[

Gangnet and Rosenberg, 1992

]

Michel Gangnet and

Burton Rosenberg. Constraint programming and

graph algorithms. In 2

nd

International Symposium on

Arti�cial Intelligence and Mathematics, January 1992.

[

Hoover, 1987

]

Roger Hoover. Incremental Graph Eval-

uation. PhD thesis, Cornell University, Ithaca, 1987.

[

Maloney, 1991

]

John Maloney. Using Constraints for

User Interface Construction. PhD thesis, Department

of Computer Science and Engineering, University of

Washington, Seattle, 1991. Published as Technical

Report 91-08-12.

[

Papadimitriou, 1994

]

Christos H. Papadimitriou. Com-

putational Complexity. Addison-Wesley, 1994.

[

Sannella, 1994

]

Michael Sannella. Constraint Satisfac-

tion and Debugging for Interactive User Interfaces.

PhD thesis, Department of Computer Science and En-

gineering, University of Washington, Seattle, 1994.

[

Sutherland, 1963

]

Ivan Sutherland. Sketchpad: A Man-

Machine Graphical Communication System. PhD the-

sis, Department of Electrical Engineering, MIT, 1963.

[

Trombettoni and Neveu, 1997

]

Gilles Trombettoni and

Bertrand Neveu. Computational complexity of multi-

way, data�ow constraint problems. Technical Report

97�86, CERMICS, January 1997.

[

Vander Zanden, 1996

]

Bradley Vander Zanden. An in-

cremental algorithm for satisfying hierarchies of multi-

way, data�ow constraints. ACM Transactions on Pro-

gramming Languages and Systems, 18(1):30�72, Jan-

uary 1996.


