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Abstract. The multi-way data�ow constraint model allows a user to de-

scribe interactive applications whose consistency is maintained by a local

propagation algorithm. Local propagation applies a sequence of methods

that solve the constraints individually. The local aspect of this solving

process makes this model sensitive to cycles in the constraint graph. We

use a formalism which overcomes this major limitation by allowing the

de�nition of general methods that can solve several constraints simulta-

neously. This paper presents an algorithm called General-PDOF to deal

with these methods which has a polynomial worst case time complexity.

This algorithm therefore has the potential to tackle numerous real-life

applications where cycles make local propagation unfeasible. Especially,

general methods can implement �ruler and compass� rules to solve geo-

metric constraints.

1 Introduction

Data�ow constraints are used in interactive systems, such as graphical user in-

terfaces, graphical layout systems and animation. They simplify the program-

ming task, are conceptually simple and easy to understand. They are capable

of expressing relationships over multiple data types, including numbers, strings,

bitmaps, fonts, and colors [Vander Zanden, 1996].

Local propagation was �rst applied to graphical layout systems [Sutherland, 1963],

[Gosling, 1983] but is not used in this �eld anymore. Indeed, cycles in the con-

straint graph often make local propagation unfeasible for these applications

which involve non-linear equations and dense constraint graphs. Instead, many

researchers in the CAD �eld have designed more powerful algorithms reasoning

at the geometric level, that is, considering relations between geometric objects

(see [Bouma et al., 1995], [Fudos and Ho�mann, 1997], [Dufourd et al., 1998],

[Kramer, 1992], [Hsu and Brüderlin, 1997]). Some of them use a propagation of

degrees of freedom approach which can be viewed as a propagation mechanism

working at the geometric level [Hsu and Brüderlin, 1997], [Kramer, 1992].

The model used in this paper remains at the algebraic level and generalizes

the notion of method speci�c to local propagation: in the standard model, a

method solves one constraint; here, a general method solves a set of constraints.



The paper describes General-PDOF, a simple, complete and polynomial time

algorithm to planify the (general) methods to apply. The contribution of this

generalization is twofold:

� For general-purpose interactive applications, this allows a designer to incre-

mentally de�ne new general methods whose constraints form a cycle when

the current de�nitions led to a failure.

� In the CAD �eld, executing a general method (at the algebraic level) corre-

sponds to applying a �ruler and compass� rule which is traditionnally a basic

operation to solve geometric constraints. Thus, General-PDOF can maintain

a system of geometric constraints while working at the algebraic level with

a simple and general scheme.

2 Background

A multi-way data�ow constraint problem can be denoted by (V;C;M ). V is a set

of variables with a current value each. C is a set of data�ow constraints and M

is a set of methods that can satisfy the constraints.

De�nition 1 A constraint c in C is a relation between a set of variables V

c

in V . It has a predicate <

c

to check whether a valuation of V

c

satis�es it. (i.e.,

<

c

(V

c

) = true; V

c

denotes a tuple of values, one for each variable in V

c

.)

Constraint c has a set M

c

of methods that must be used to satisfy it

1

.

A method satis�es a constraint by calculating values for its output variables

in function of the other variables of the constraint.

De�nition 2 A method m in M

c

is a function that can satisfy a constraint c.

V

c

can be partitioned into two disjoint subsets: the input variables V

in

c;m

and

the non empty subset of output variables V

out

c;m

. (m outputs to the variables

of V

out

c;m

.)

Method m is de�ned by V

out

c;m

= m(V

in

c;m

) such that constraint c is satis�ed.

Method m is executed when m is applied and the variables of V

out

c;m

are bound

with the new values. Method m is free if no variable v in V

out

c;m

is connected to a

constraint in C (except c). Thus, the execution of a free method does not violate

other constraints.

A data�ow constraint system is often represented by a constraint graph G

c

as shown in Figure 1 (a).

De�nition 3 A constraint graph is a bipartite graph where nodes are con-

straints and variables represented by rectangles and circles respectively. Each

constraint is connected to its variables.

1

Hence the name multi-way data�ow constraint.



Local propagation is the technique used to maintain the consistency of multi-

way constraint systems, typically when new constraints are incrementally added.

It works in two phases:

� The planning phase assigns one method to each constraint. The result of this

phase is a valid directed graph G

m

called method graph (see De�nition 4 and

Figure 1).

� When the method graph G

m

contains no directed cycles, the evaluation

phase executes the methods in some topological order. Otherwise, strongly

connected components, i.e., cycles, are collected and evaluated by an external

solver.

De�nition 4 Amethod graph is a directed graph where nodes are the methods

selected by the planning phase. There is an arc (m

i

;m

j

) i� at least one output

variable of m

i

is linked to a constraint satis�ed by m

j

.

This de�nition di�ers from the usual one [Sannella, 1994]. It is more gen-

eral [Trombettoni, 1997] and will be useful in the following.

De�nition 5 A method graph G

m

is valid i� (1) every constraint has exactly

one method associated with it in G

m

, and (2) G

m

has no variable con�icts, that

is, each variable is an output variable of, at most, one method.

(b) (c)(a)

C1 C1 C2

C3

V1

V2 V3

V4

V1

V2 V3

V4

C2

C3

m1 m2

m3

m1 m2

m3

Fig. 1. (a) A (cyclic) constraint graph. (b) Methods selected during the planning phase.

A method is represented by an ellipse that encloses both the output variables and the

constraint. (c) Valid acyclic method graph formed by these methods. Method m

3

, also

denoted by m

v4

c3

, is free.

Planning algorithms can be divided into three main categories.

DeltaBlue [Freeman-Benson et al., 1990] and SkyBlue [Sannella, 1994] work

by propagating the con�icts from the perturbations to the leaves of the constraint

graph.

The propagation of degrees of freedom scheme (in short PDOF) selects the

methods in reverse order, i.e., �rst executing the methods that were chosen

last. This algorithm has been used in SketchPad [Sutherland, 1963] and Quick-

Plan [Vander Zanden, 1996].

A third approach is related to the graph problem of bipartite maximum-

matching [Gangnet and Rosenberg, 1992], [Serrano, 1987].



3 De�nition and Use of General Methods

Most of the systems based on local propagation only allow single-output meth-

ods that solve one constraint by changing the value of one of its variables.

For example, the constraint x = y � z has three single-output methods, e.g.,

y  

x

z

. SkyBlue and QuickPlan accept multi-output methods that solve one

constraint (also called multi-output) by changing the value of several variables.

[Trombettoni, 1995] introduces general methods that solve one or more con-

straints by changing the value of one or more output variables. These variables

must be connected to at least one of the constraints.

De�nition 6 A general method m can satisfy a set of constraints C

m

. Let V

m

be the set of variables linked to a constraint in C

m

. V

m

is partitioned into two

disjoint subsets V

out

m

and V

in

m

.

Method m is de�ned by V

out

m

= m(V

in

m

) such that the constraints in C

m

are

satis�ed

2

.

3.1 Example

A

B

C

Dtheta1

theta2

Fig. 2. A mechanism made of three bars AB, BC and CD in 2 D.

The example in Figure 2 is inspired from a linkage described in [Kramer, 1992].

It can be modeled as follows: Points A (x

a

; y

a

) and D (x

d

; y

d

) are �xed in the

plane (gray constraints in Figure 3). Bars only impose distance constraints that

are quadratic equations. The user can drive the mechanism by moving the bar

AB (resp. CD) by an angle �

1

(resp. �

2

).

The corresponding constraint graph is shown in Figure 3 (left), along with

the de�ned methods: Method m

�

1

c1

is a single-output method that can calculate

�

1

when the location of B is known. Method m

xb;yb

c1;c2

is a general method which

gives a new position for the point B. In a sense, this method intersects a line

(constraint c

1

) and a circle centered in A (constraint c

2

) when the location of A

and �

1

are known. Method m

xb;yb

c2;c3

is a general method giving a new position for

the point B which, in a sense, intersects two circles centered in A and C when

these points are known. The other methods are symmetric to those above.

2

The de�nitions of Section 2 remain unchanged or can be trivially extended.
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Fig. 3. Left: constraint graph and de�ned methods of the linkage example. A general

method is depicted by an ellipsoid that includes the set of solved constraints and the

output variables. Right: the sequence of methods to execute when the user changes the

angle �

1

: to recover the consistency of the linkage, point B is moved, next, point C is

moved and �nally the angle �

2

is modi�ed.

In general, the methods may be either de�ned by the user or automatically

de�ned from the corresponding constraints. Single-output methods can gener-

ally be automatically de�ned in graphical applications. This is also the case for

the general methods of the example that are based on distance and angular

constraints.

Remarks

Any numeric method could be used to perform method execution, such as the

Newton-Raphson algorithm, or also continuous CSP solvers, such as Numer-

ica [Hentenryck et al., 1997]. It is important to note that a method execution

must yield only one (partial) solution, while generally having several choices. In

the example, the general methods yield one of the two possible locations for the

corresponding point to move. The code of the method should indicate which one

to choose. For example, method m

xb;yb

c1;c2

�keeps� only the point with a positive y

b

when �

1

is comprised in [0;�]. This refers to the general and crucial problem of

solution predictibility in graphical systems [Kramer, 1992], [Bouma et al., 1995],

[Hsu and Brüderlin, 1997]. When one method execution fails, e.g., in case of null

intersection between two circles, we consider that the whole propagation process

fails.

This problem cannot be modeled with multi-output constraints and shows

that the multi-output formalism is a strict restriction of the general formalism.

See [Trombettoni, 1997] for other examples. To model methodm

xb;yb

c2;c3

as a multi-

output method, we could consider the conjunction of c

2

and c

3

. However, it is

then impossible to model method m

xc;yc

c3;c4

in the same way. Indeed, these two

methods cannot be de�ned together as multi-output methods because they both

solve constraint c

3

, but one solves c

2

while the other solves c

4

. Also, methods

m

xb;yb

c1;c2

and m

�

1

c1

cannot be de�ned together in the multi-output method formal-

ism. If only single-output methods are de�ned in the problem, it can be seen

that there is no acyclic method graph able to solve the problem. This means

that the PDOF algorithm cannot �nd a method graph and fails.



4 The General-PDOF Algorithm

We consider the problem of �nding a valid acyclic method graph for a data�ow

constraint problem with general methods. [Trombettoni, 1997] shows cases where

this problem has no solution, whereas solutions exist when considering, not only

the de�ned methods, but also certain implicit submethods that are deduced auto-

matically from de�ned general methods. If these submethods are not known by

the propagation algorithm, the solution may be missed. Thus, we would like to

design an algorithm that can solve the problem of �nding a valid acyclic method

graph by planning with both de�ned methods and their submethods. It is impor-

tant to note that the user does not really care with submethods which will only

enable our algorithm to be complete.

Intuitively, the notion of a submethod has the following meaning. When a

general method is de�ned, this may imply that other general methods, called

submethods, also exist. A submethod satis�es a subset C

0

of the constraints

of the method and outputs to a subset V

0

of its output variables. The projec-

tion of the result of the method execution on V

0

satis�es the constraints in C

0

.

For example, consider the general method m

xb;yb

c2;c3

of the previous example. This

method induces submethodsm

xb;yb

c2

andm

xb;yb

c3

.m

xb;yb

c2;c3

calculates the intersection

between two circles centered in A and C, and chooses one of the two possible

locations (if any). We can also select this point for method m

xb;yb

c2

which could

theoretically yield any point on the circle centered in A. Figure 6 will show an

example where such submethods are needed to �nd a valid method graph.

Since submethods are not de�ned explicitly and may be numerous, it can-

not be guessed a priori whether a polynomial algorithm can be obtained. This

problem is more general than �nding a valid acyclic method graph to a sys-

tem with multi-output constraints. [Vander Zanden, 1996] shows that PDOF re-

mains polynomial when handling multi-output constraints. [Trombettoni, 1995]

has presented an exponential algorithm to handle general methods. This section

presents the General-PDOF algorithm that solves this problem in polynomial

time.

4.1 Submethods

A general method m, given as input of a problem, may induce a method m

0

that

satis�es a subset of the constraints in m and that is not an input of the problem.

Figure 4 shows an example.

De�nition 7 Let m be a general method that solves the constraints C

m

, with

input variables V

in

m

and output variables V

out

m

.

m

0

, a submethod of method m, is de�ned by m, a subset C

0

m

of C

m

, and a

subset V

out

0

m

of V

out

m

: m

0

is a function from V

in

m

to V

out

0

m

such that m

0

(V

in

m

) =

�

V

out

0

m

(m(V

in

m

)), where � is the projection on V

out

0

m

of the values returned by m.

The submethod m

0

is correct, i.e., m

0

is a method, if calling m

0

yields values

for V

out

0

m

that satisfy the constraints in C

0

m

.
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m

Fig. 4. (1) A general method m that solves constraints c

1

and c

2

and outputs to

variables a, b and c. (2) Correct submethod of m. (3) Incorrect submethod of m.

Indeed, m changes the value of variable a to satisfy c

1

. Thus, there is no guarantee

that, for every possible input values for d and e, the projection of the computation of

m, only on variable b, satis�es c

1

.

This example highlights su�cient syntactical conditions for which a method

is correct:

Proposition 1 Let m be a general method that solves the constraints C

m

and

outputs to variables V

m

. Let m

0

be a submethod of m that handles constraints

C

0

m

� C

m

and outputs to variables V

0

m

� V

m

.

Submethod m

0

is correct if no constraint in C

0

m

is linked to an output variable

of V

m

which is not in V

0

m

.

A correct submethod m

0

means that there exists at least one procedure to

perform it, that is, the one given by the de�ned method m. For instance, the

submethod m

xb;yb

c2

previously mentionned in the example can use the result of

m

xb;yb

c2;c3

(intersecting the two circles centered in A and C), even if c

2

does not

constrain A. However, using method m is not necessary and another procedure

can be generated from scratch for m

0

according to the constraints implied. For

instance, another procedure can be used for m

xb;yb

c2

that chooses an arbitrary

point on the circle centered in A or that chooses on this circle the closest point

from the old position of B.

4.2 Presentation of the Algorithm

Algorithm 1 describes General-PDOF. Its completeness is not trivial and the

proof can be found in Section 6. Section 4.3 shows examples. Let us �rst recall

the classical PDOF algorithm.

The key idea behind PDOF is to focus on how to terminate the propagation

process, instead of propagating the initial perturbations. It is performed by iter-

atively selecting a free method, that will be executed after those not yet selected

in the remaining constraint graph, and removing its constraints and output vari-

ables from the current constraint graph. The process ends when the constraint

graph does not contain anymore constraints, and the (directed) method graph

formed by the selected methods, i.e., MG, is valid and acyclic.

Except that our algorithm can take into account general methods, it is very

close to the classical PDOF scheme: only the Connect procedure has been added.

In the classical PDOF algorithm, the set of de�ned methods that can currently

be selected, including the free ones, evolves as follows when a method is selected



algorithm General-PDOF (G: a constraint graph): a valid method graph

let free be the set of free methods in G

let MG be an empty acyclic method graph

while G contains a constraint do

if free = ; then

exit and return ; /* no solution */

else

� choose a method m from free and remove it from this set

� add m to MG (along with the corresponding arcs)

� remove from G the constraints and the output variables of m

� Connect (G, m)

� add to free the free methods of G that previously output to an input

variable of m

end

end

return MG

end.

procedure Connect (G, m)

let C

m

be the set of constraints solved by m

let V

m

be the set of output variables of m

for every general method m

i

that satis�es a constraint in G connected to an

input variable of m do

m

0

i

 SubMethod (m

i

, C

m

, V

m

)

if m

0

i

6= m

i

and m

0

i

has non empty sets of constraints and output variables

then

M

i

 Generate-connected-methods (m

0

i

)

remove m

i

and add the setM

i

of connectedmethods to the set of meth-

ods (see De�nition 8)

end

end

end.

Algorithm 1: The General-PDOF algorithm.

and its constraint c is removed: the set of methods that satisfy c is not available

anymore and the remaining set is unchanged. We also �nd these two basic cases in

General-PDOF, but an additional non trivial case may occur. When a method

(general or not) is selected and its constraints C

m

and output variables V

m

are removed, certain general methods may be neither rejected, nor kept in the

current set: those that have a part of their constraints and output variables

removed. Lemma 2 will show that their submethods are still correct: SubMethod

(m

i

, C

m

, V

m

), called by the Connect procedure, adds a new (sub)method m

0

i

to the whole set by removing from m

i

the constraints in C

m

and the output

variables in V

m

. Moreover, if m

0

i

is not connected, it is split into the set of its

connected subparts by the function Generate-connected-methods. Note that since

method connectivity is maintained during the planning phase, this requires that

de�ned methods are initially connected.



De�nition 8 Let m be a general method that solves constraints C

m

and that

outputs to variables V

m

. Let g

m

be the bipartite graph that represents the depen-

dencies between V

m

and C

m

in m.

The method m is connected if g

m

is connected, i.e., there exists a path

between any two nodes in g

m

.

4.3 Examples

The reader can easily check that General-PDOF can build the method graph

of the example in Section 3.1: method m

�

2

c5

is �rst selected, which frees method

m

xc;yc

c3;c4

. The selection of that method frees methodm

xb;yb

c1;c2

. Selectingm

xb;yb

c1;c2

�nally

frees the input method modifying �

1

which is selected at the end.

The example in Figure 5 illustrates the subtleties of the Connect procedure

and their importance in guaranteeing completeness.

m

m’’ m’

Fig. 5. Role of the Connect procedure. At �rst, the only free method is the single-

output method at the top of the �gure. When it is selected and removed from the

graph, the general method m is replaced by its two connected submethods m

0

and m

00

.

The free method m

0

is then selected and removed. This frees the single-output method

at the bottom of the �gure which is selected next. Finally, the method m

00

is selected.

If m had not been split into m

0

and m

00

, no solution would have been found. Indeed,

the "conjunction" of m

0

and m

00

would not have been free (because of m

00

).

Figure 6 details a geometric example solvable by General-PDOF which high-

lights the importance of taking into account submethods.

The submethod m

xb;yb

c1

is executed �rst by placing B in the location calcu-

lated by m

xb;yb

c1;c2

. This corresponds to one of the two possible locations coming

from the intersection between the two circles centered in the new position of A

and the old position of C. Using this old position for C, it will be given B a

new position close to the old one, in case of a small move of A. Then C will be

moved by executing the method m

xc;yc

c2;c3

, using the new positions of B and D.

5 Time Complexity

The worst-case time complexity of General-PDOF is O(n�dc�dv�r�(g�dc+

g

2

)). n is the number of constraints, r is the maximum number of methods per
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XdXc
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Fig. 6. Another linkage example where the user freely moves A and D simultaneously.

All general methods are de�ned which compute one point given the location of two

adjacent ones (intersection of two circles). The methods selected by General-PDOF

are shown on the constraint graph. In particular, no solution could be found if the

submethod m

xb;yb

c1

of m

xb;yb

c1;c2

was not taken into account.

constraint, dc and dv are the maximumdegrees of respectively a constraint and a

variable in the constraint graph, and g is the maximumnumber of constraints and

output variables involved in a general method. This complexity is a polynomial

function of the input parameters: dv � n; g � n; dc � jV j; r � jM j.

Details: At each step of General-PDOF, at least one constraint is removed,

so that the maximum number of calls to the while loop is n. The other factors

correspond to the calls at each iteration, i.e., within the while loop. The com-

plexity of an iteration is dominated by the two last items (see Algorithm 1). In

both cases, dc�dv� r methods are visited, that is, all of the methods satisfying

a constraint at distance 2 of the removed constraints in the bipartite constraint

graph

3

. The Connect procedure is O(g � dc) because a method m

0

i

can be split

in at most g connected methods. Checking that a visited method is newly free

is O(g

2

). These two results are obtained by managing marks for the constraints

and output variables of the visited method.

The same analysis gives a more precise time complexity for PDOF which is

O(n� dv � dc

2

) and O(n � dv � dc

2

� r) for multi-output constraints.

Note that this polynomial complexity only concerns the planning phase. The

execution phase complexity cannot be evaluated without considering speci�c

types of constraints.

5.1 Discussion

PDOF is O(n) when dc and dv are considered constant, which is the case for the

sparse constraint graphs encountered in real user interfaces [Sannella, 1994].

PDOF applied to multi-outputmethods is O(n) when r is also considered con-

stant. The number r of multi-output methods per constraint could theoretically

be very large, but it is a small constant for user interfaces [Sannella et al., 1993].

3

The data structures follow the existing implementations where entities are imple-

mented as records [Vander Zanden, 1996], [Sannella, 1994].



Also, [Vander Zanden, 1996] shows that PDOF is linear in the number of con-

straints using benchmarks and existing user interfaces.

General-PDOF is also O(n) when dc, dv, g and r are considered constant.

Considering r constant follows the same argument as for multi-output con-

straints. In CAD applications, the number of ruler and compass rules per con-

straint should be small. The factor g could theoretically be equal to n, but

methods that solve the entire problem should not be de�ned.

To conclude this discussion, General-PDOF is polynomial. We believe that,

in practice, it is linear and very close to the classical PDOF scheme.

6 Completeness

The following completeness property validates General-PDOF.

Proposition 2 Let P = (V;C;M ) be a data�ow constraint problem that con-

tains general methods.

If there exist valid acyclic method graphs that correspond to P (that may

contain submethods of methods in M), then General-PDOF can �nd one of them.

The proof uses the following two lemmaswhich are proven in [Trombettoni, 1997].

Lemma 1 Let P be a data�ow constraint problem that contains general methods

and let m be one of the methods of P .

If m is connected then m has no submethod that is both correct and free.

Lemma 2 Let us consider any step of General-PDOF applied to a given prob-

lem. Let m

1

be a free method that solves the constraints C

1

and outputs to the

variables V

1

. Let m

2

be another method of the problem.

After having removed m

1

, the submethod m

0

2

= SubMethod (m

2

, C

1

, V

1

) is

correct.

Proof of Proposition 2 (sketch). The completeness proof of General-PDOF

is based on: (1) a con�uence property coming from PDOF that remains valid

for General-PDOF, and (2) the fact that all of the existing free methods are

available at each step of the algorithm.

A con�uence property of PDOF states that, considering two free methods

m

1

and m

2

at a given step, removing a free method m

1

does not prevent the

further selection of m

2

. This property remains true for General-PDOF. Indeed,

Lemma 2 applied to m

2

proves that m

0

2

is correct, and a submethod of a free

method is also free. Thus, when method m

1

is selected and removed, m

2

(more

precisely m

0

2

) remains available for a further selection.

The two lemmas are necessary to prove that all of the existing free methods

are available at each step of the algorithm. Lemma 1 shows that General-PDOF

does not need to consider the submethods of the current connected methods

because they cannot be selected. This justi�es the connectivity condition main-

tained during the process. Lemma 2 shows that the submethod m

0

i

, calculated

by the procedure Connect of General-PDOF, is correct. This explains why the

algorithm adds all of the connected submethods deduced from m

0

i

since these

are all correct and may be free.2



7 Qualitative comparison with Maximum-matching

In the data�ow constraint �eld, the maximum-matching algorithm (MM) can

be used as follows [Gangnet and Rosenberg, 1992]. The planning phase applies

MM on the constraint graph. Each pair (c; v) in the matching corresponds to the

selection of the single-output method m

v

c

. A method graph is thus obtained. The

evaluation phase collects the strongly connected components, topologically sorts

the condensed graph and solves each component in this order: the corresponding

method is executed or an external solver is called when a component is made of

several methods (a cycle).

MM is close to General-PDOF in that a strongly connected component may

correspond to a general method. We highlight here several di�erences.

7.1 Advantages of MM

First, MM does not require to de�ne general methods, but only single-output

methods, which is simpler.

Second, MM �nds the same decomposition as General-PDOF when tackling

a �structurally well-constrained� problem of equations

4

, i.e., for which there

exists a perfect matching. Indeed, [König, 1916] has shown that, in this case, the

decomposition in strongly connected components is unique. One can check this

on the example presented in Section 3.1.

Third, MM always terminates giving a method graph, whereas General-

PDOF may fail if there is no acyclic method graph with the de�ned methods.

Indeed, General-PDOF can use only the de�ned methods and their submethods.

7.2 Advantages of General-PDOF

First, when the problem is under-constrained, such as in most of graphical ap-

plications, the result of König does not hold anymore, so that MM may generate

(strongly connected) components of arbitrary �semantics� and size. Indeed, MM

may generate larger components than General-PDOF would do. In particular,

MM may create a cyclic method graph which needs to be evaluated by an exter-

nal solver even though an acyclic method graph exists which would lead to a less

time-consuming solution. Moreover, the components created by MM may not

correspond to a �real� general method.

For instance, suppose that an additional degree of freedom is allowed in the

problem described in Section 3.1: point A can now �roll� horizontally, i.e., x

a

is free. In this case, after having changed �

1

, MM may create the component

which corresponds to the general method m

xa;xb

c1;c2

. However, this method has

no sense geometrically and corresponds to a contradictory system of equations.

General-PDOF cannot make this bad choice if m

xa;xb

c1;c2

is not de�ned.

Second, and even if the problem is well-constrained, MM builds only compo-

nents which contain as many constraints as variables since there exists a perfect

4

except if non-square general methods are de�ned (see below).



matching of the corresponding subgraph. Thus, MM is not able to planify non-

square components

5

, such as the ones solving inequalities or method m

xb;yb

c1

of

the example in Figure 6.

Finally, a component built arbitrarily by MM may yield a solution which is

not intuitive for the user, whereas the de�nition of a general method handled

by General-PDOF should precise which solution to choose, according to the

semantics of the corresponding ruler and compass rule for example.

7.3 Taking the Best of the Two Algorithms

The confrontation between these two algorithms is not necessary in fact because

MM and PDOF can easily be brought together. This can be done as follows:

1. Apply MM on the constraint graph. Let A be the set of arcs in the matching.

2. Apply PDOF on the constraint graph. Two cases may occur at each step:

(a) There exists a free method m

v

c

: m

v

c

is selected by PDOF and c and v are

removed from the graph. Arcs sharing v or c are removed from A.

(b) There exists no free method (PDOF is blocked):

i. Topologically sort the (condensed) directed graph corresponding to

A. One obtains a DAG D of components.

ii. Choose a leaf of D as next free method to select with PDOF.

Thus, this MM-PDOF algorithm can �nd an acyclic method graph with

de�ned methods if possible (because of PDOF) but never fails and builds new

components when no free method is available (because of MM).

The correctness of this algorithm is trivial to check.

We believe that MM-PDOF can be extended to a MM-GPDOF algorithm

which makes collaborate MM and General-PDOF. MM-GPDOF will be de-

scribed in a future work.

8 Conclusion

This paper has described a new local propagation algorithm, called General-

PDOF, that can take into account methods solving several constraints simulta-

neously. This formalism especially allows a system to solve geometric constraints

at the algebraic level while keeping a bridge between the two levels.

General-PDOF is simple, complete and has a polynomial time complexity.

From a theoretical point of view, it shows that the constraint planning problem

with general methods is in P when acyclic solutions are sought. There is no com-

putational jump from simpler problems (with only single-output or multi-output

constraints [Trombettoni and Neveu, 1997]). In practice, this complexity should

be linear in the number of constraints for user interfaces or CAD applications

and General-PDOF should be almost as e�cient as PDOF.

5

These components generally correspond to general methods which choose a solution

among an in�nite set...



The algorithm given in [Trombettoni, 1995] solves the same problem. How-

ever, it is complicated and has an exponential time complexity. The comparison

between the two algorithms suggests that the propagation of con�icts scheme is

not suitable to handle general methods [Trombettoni, 1997].

9 Future Works

Many systems based on local propagation, such as DeltaBlue, SkyBlue and

QuickPlan, allow the user to de�ne both required constraints that must be satis-

�ed and preferential constraints that are satis�ed if possible [Borning et al., 1992].

QuickPlan, based on PDOF, removes preferential constraints with a low pri-

ority until an acyclic solution is obtained. However, this technique may fail

when cycles only contain required constraints. General-PDOF could easily re-

place the PDOF procedure of QuickPlan in order to take into account both

general methods and constraint hierarchies [Borning et al., 1992]. A brief anal-

ysis shows that the locally-graph-better criterion still holds for this hybrid algo-

rithm [Trombettoni, 1997].

We intend to design a MM-GPDOF algorithm which will allow a simple and

pertinent collaboration between maximum-matching and General-PDOF: MM-

GPDOF would planify de�ned (general) methods if possible and would build

non-de�ned general methods (corresponding to strongly connected components)

only when necessary.

The main contribution of this paper is �theoretical�, formally describing a

new general-purpose local propagation algorithm and its properties. The po-

tential of General-PDOF to maintain systems of geometric constraints must be

validated. We intend to develop a prototype suitable for such applications and

especially compare it to the propagation of (geometric) degrees of freedom ap-

proach [Hsu and Brüderlin, 1997], [Kramer, 1992]. It will be desirable to allow

this tool to automatically de�ne the set of ruler and compass general methods

based on the given geometric constraint graph.

In this paper, local propagation has been presented as a technique for in-

crementally maintaining a set of constraints. However, it could also be used to

decompose a set of numeric constraints before satisfaction. [Bliek et al., 1998]

presents a distance problem made of tetrahedra and additional bars. In that ex-

ample, General-PDOF could be used to �nd the decomposition in small blocks.
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