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Abstract

A new combinatorial optimization meta-heuristic, called “Go With
the Winners” (GWW) has been proposed by Dimitriou and Impagliazzo in
1996. GWW manages several configurations at the same time, uses a thresh-
old to eliminate the worst configurations, and includes a randomization
step which allows a uniform distribution of the visited configurations in
every sub-problem.

This paper proposes to replace the randomization step of GWW by a local
search in order to favor better solutions during the search.

An instance of this hybrid algorithm, called GWW-grw, is proposed. A
special attention is paid to make it efficient on realistic problems. We
compare different ways to lower the threshold in an adaptive way. We add
only one parameter for embedding local search in the existing scheme.
We study how, and in which order, to tune the parameters.

An experimental approach has been performed on hard instances, en-
coded as weighted MAX-CSPs, of graph coloring problems (DIMACS
challenge) and frequency assignment problems (celar). The best known
bounds have been found for all the instances.

Keywords: combinatorial optimization, incomplete algorithms, GWW, celar problems,
graph coloring

1 Introduction

Our work is based on the “Go With the Winners” algorithm (GWW) presented in [7]. GWW
explores different configurations of the search space at the same time by managing a pop-
ulation of solutions called particles. At the beginning, particles are randomly distributed
in the search space and a threshold is placed at the cost of the worst particle. The
following phases are iteratively performed until no particle remains under the threshold
(We consider a minimization problem here.):



1. Redistribution: The particles over the threshold are “redistributed” on the others
(hence the name of the algorithm): a redistributed particle is replaced with a
duplicate of another particle randomly chosen under the threshold.

2. Randomization: This phase is performed for every particle and intends to “sep-
arate” particles which are at the same location due to the redistribution phase.
Several randomization phases can be found in the litterature. They are all based
on a random walk of specified length. Every step of the random walk goes from a
configuration to a neighbor while trying to remain under the threshold.

3. The value of the threshold is lowered by 1.

When the problem has good properties (see Section 2), GWW is theoretically able to
find a best solution in polynomial time with a high probability. However, in practice,
first experiments made on celar and graph coloring instances give worse performance
results than a standard Metropolis algorithm [13] (a simulated annealing with a constant
temperature).

In the randomization phase of the GWW algorithm, better configurations are not pre-
ferred and a particle can indifferently go up or down. Thus, the need to make progress
in GWW is due only to the management of the threshold. In this article, we experimentally
show that GWW can be made more efficient when replacing the randomization phase by a
local search. This gives the GWW-LS algorithm which will be described in details further.
The main contributions are the following:

e In previous works, GWW has been applied on theoretical models: on the clique prob-
lem and on the graph bisection problem!. All the corresponding versions of GWW
assumed that the range of possible costs included a small number of integers, so
that the threshold delta was 1 at each iteration. This is not the case for numer-
ous problems such as the weighted MAX-CSP benchmarks presented in this paper.
For example, the celar7 benchmark typically includes configurations whose cost
ranges from 343000 to 2.107. Therefore, this article proposes several ways to lower
the threshold in realistic problems, and perform experiments to compare them each
other.

¢ GWW-LS manages several parameters: the number B of particles, a parameter T" used
to lower the threshold, the length S of the walk, and additional parameters involved
in the selected local search (e.g., the length of a tabu list, or a “temperature”
allowing the search to escape from local minima). We propose an instance of the
GWW-LS scheme, called GWW-grw (GWW with greedy-random walk), which limits the
number of additional parameters to 1. In order to minimize the effort required for
tuning the parameters, experiments show a heuristic policy to tune the parameters
of GWW-grw.

e Experiments are performed on very hard instances of frequency allocation and
graph coloring problems. GWW-grw can find the best (known) bounds for all of
them and comparisons with GWW and Metropolis are given.

1Split a graph into two vertex-induced sub-graphs with the same size such that a minimum number
of edges link nodes from the two sub-graphs.



Section 2 gives a brief history of GWW. Section 3 details the GWW-LS. The GWW-grw
instance of GWW-LS is described in Section 4. Experiments are reported in Section 5.
Section 5.2 presents several ways to manage the threshold in realistic problems. Sec-
tion 5.3 gives a first heuristic policy to tune the four parameters of GWW-grw in practice.
Sections 5.4 and 5.5 show the performance of GWW-grw and report comparisons with GWW
and Metropolis.

2 From GWW to GWW-LS

Before presenting the GWW algorithm, we define a search graph as an abstraction of a
combinatorial optimization problem. The nodes of a search graph are the different con-
figurations (i.e., potential solutions) and edges link two configurations which are “neigh-
bors”, i.e., for which a small change allows to pass from a configuration to the other. We
assume that the value, or cost, of every node is an integer. The goal of combinatorial
optimization is to find a node of minimum cost.

The “Go with the winners” algorithm has been first introduced in [1]. This algorithm
has been designed to find a deep leaf in a tree. At the beginning, several particles are
placed at the root of the tree. In the randomization phase, every particle is moved to
a child node which is chosen randomly. In the redistribution phase, the particles which
have reached a leaf are redistributed: they are replaced with a duplicate of another non
leaf particle randomly chosen. The process stops when all the particles are placed at a
leaf. The authors have determined the number of particles which is necessary to find a
deepest node with a high probability depending on a measure of the tree imbalance.

The GWW algorithm discussed in this paper and informally presented in the intro-
duction, is presented in [7]. It is a modification of the first version so that it can be
used directly for combinatorial optimization. The tree of the first version occurs in any
optimization problem when managing a threshold. Indeed, the search graph can be hi-
erarchically divided into several sub-graphs according to their costs. More precisely, a
node of the tree is made of a search sub-graph whose vertices have a cost at or under a
threshold. The top of this tree contains the whole search graph (when the threshold is
the highest). Lowering the threshold divides a search graph into several (disconnected)
connected components which form a hierarchy between a tree node and its sons. The
fact that two regions become disconnected when the threshold decreases means that no
random walk (staying at or under the threshold) can move a particle from a region to
the other.

Dimitriou and Impagliazzo relate in [8] the performance of GWW to combinatorial
properties of the problem. Especially, they prove that two sufficient conditions make a
problem solvable in polynomial time with a high probability:

e The number of children of a tree node must be polynomially bounded. This means
that decreasing the threshold (by 1) does not make appear an exponential number
of disconnected regions. This guarantees convergence in polynomial time if every
disconnected region has a particle.

e Local expansion holds, that is, every search sub-graph has a “sufficient” number
of neighbors. Thus, a sufficiently long random walk in a given region ensures a
uniform distribution of the particles which are inside and does not restrict the
particles into a small portion of the region. The random redistribution and the



randomization phase ensure that every connected component receives a number of
particles proportional to its size.

The first condition highlights the importance of the number B of particles. The
second one is related to the length S of a random walk.
Different randomization phases for GWW are described in the litterature?:

e In [7], a random walk of length 1 is performed at each step: for every particle with
cost ¢, all the neighbors are visited and one is chosen among those having a cost
1 —1 (or ¢ + 1 in a maximization problem).

e In [8], a random walk of length S is proposed. This walk alternates nodes of cost 4
and cost ¢ — 1.

e [3] and [6] present a simplified version where the random walk of lenght S has no
other restriction than remaining at or under the threshold. That is, a neighbor is
accepted if its cost is strictly less than ¢ — 1.

This article introduces the GWW-LS algorithm for which the randomization phase of
GWW is replaced by a local search where every step of the walk remains at or under the
threshold. The difference between the two approaches is that a local search tends to make
progress whereas a random walk does not. This tends to faster bring down the population,
but violates the uniform distribution of particles in a connected region (distribution on
which the local expansion property is built). However, the good experimental results
which are obtained using GWW-LS make us believe that other sufficient conditions for the
convergence in polynomial time with a high probability exist. A possible hypothesis is
discussed in the conclusion.

3 Description of GWW-LS

GWW-LS is very close to the existing GWW algorithm. However, GWW-LS differs from GWW in
two points:

o The descent of the threshold is adaptive.
Section 5.2 discusses and compares several ways to implement the Lower function
used to lower the threshold. Unfortunately, this realistic management implies the
addition of a new parameter T to the GWW-LS scheme.

o The walk is not random.
The two for loops of Algorithm 1 describe a walk: every particle makes a walk of
length S. As already mentioned, a walk of length S is not specific to GWW-LS and
is also used in previous versions of GWW (see [3, 6]). However, the major difference
lies in the step function.

In GWW, this function returns a neighbor of the p particle configuration. More precisely,
all® the neighbors are visited in a random order until one is selected which is under or
at the threshold. If all the attempts fail, the current configuration is returned, that is,

2In the initial version [1], a particle is simply moved to a child.
3or a bounded number of



the particle does not move at this step. In GWW-LS, the function step aims at making
progress while escaping from local minima.

algorithm GWW-LS (B: number of particules; S: walk length, T: threshold parameter; W P:
walk parameters): configuration
Generate B random configurations and place every particle on one configuration
Store the particles in an array Particles
threshold <« oo
Loop
threshold < Lower(threshold, 7', Particles)
if Best(Particles) > threshold then return (Best-found) /* the best configu-
ration found during search */
Redistribute(Particles) /* Move every particle having a cost more than threshold
to the configuration of an alive particle randomly chosen */
for every particle p in Particles do
for ¢ from 1 to S do
neighbor < step(p, WP)
Move(p,neighbor) /* A move of p to a new configuration */

end.
end

end.
end.

Algorithm 1: The GWW-LS algorithm
4 From GWW-LS to GWW-grw

We need to design at least one algorithm deduced from the GWW-LS and show its efficiency
in practice. We tried several standard classical local search algorithms to improve GWW.
We obtained good results with a Metropolis algorithm (accepting surely a neighbor with
the same or a better cost, and accepting a worse neighbor with a probability depending
on a given “temperature”). However, an important work has led to simplify it in two ways:
minimizing the number of parameters, and finding how to tune them more quickly, while
increasing efficiency.

The classical GWW manages two parameters: the number B of particles and the length
S of the random walk. In practice, a third parameter 7" needs to be added allowing the
threshold to not decrease too smoothly. Our new algorithm GWW-grw (GWW with greedy-
random walk) adds only one parameter N. This unique parameter is used by a particle
to progress downto the best solutions while being able to escape from local minima. The
parameter N is the maximum number of neighbors which are visited by a particle during
the step function, that is, when a particle moves from a configuration to another. Based
on a current configuration z, the computation of the new configuration returned by the
step function of GWW-grw is performed as follows:

1. one neighbor 2’ among the N ones has a cost better or equal than the
cost of z = Return 2’

2. no neighbor among the N ones has a cost better or equal than the cost
of z and one neighbor 2" among the N ones is at or under the threshold
= Return z”




3. the N visited neighbors are above the threshold = Returncz

The first case radically differs from the standard GWW. It reproduces the behavior
of the hill-climbing and GSAT [19] algorithms: a neighbor is accepted only when its
cost is better or equal than the current one. The last two cases indicate how to select
a configuration when no visited neighbor has been accepted. They follow the random
selection used by most of the algorithms based on a threshold, e.g., GWW, the threshold
accepting and the o-algorithm discussed in Section 6. In particular, the second case allows
particles to exit local minima. Some particles may go up very high during the search,
but too bad configurations are discarded by the threshold.

Thus, parameter N avoids visiting all the neighbors and yields a trade-off between
making progress and exiting local minima. To sum up, GWW-grw manages the following
parameters:

e A number B of particles used to explore the search space in parallel: particles
should be uniformly distributed within the connected components appearing in the
search graph when the threshold is lowered.

e A length S of the walks used to separate the particles after grouping, and to allow
particles to progress downto the best solutions.

e A parameter T used to manage the threshold in real problems (see Section 5.2).

¢ An additional parameter N which has a crucial role. First, this is necessary to limit
the number of visited neighbors in problems for which it is very big and discards
an exhaustive search. Second, N must be sufficiently large to allow particles to go
down onto better solutions (in a greedy way). Third, N must be sufficiently small
to allow the particles to exit local minima in a random way.

Complexity of GWW-grw

The worst-case complexity of GWW-LS or GWW-grw remains the same as the one of GWW,
that is, 0(B x S x N x nT'), where nT is the number of times the threshold is lowered,
B is the number of particles and S is the walk length.

5 Experiments

This section shows experimental results. We select a way to manage the threshold. We
give guidelines to tune the four parameters in practice. Finally, GWW-grw is compared
with existing algorithms: the standard GWW and Metropolis.

5.1 Benchmarks, encoding, implementation

We have performed experiments on difficult instances issued from two categories of prob-
lems and all encoded as weighted MAX-CSPs problems: graph coloring instances pro-
posed in the DIMACS challenge ten years ago [17], and frequency assignment problems?.

4Thanks to the “Centre d’électronique de I’Armement”.



Graph coloring instances

We have selected three difficult graph coloring instances from the two most difficult cat-
egories in the catalogue: the 1e450_15c with 450 nodes and 16680 edges, the 1e450_25c¢
with 450 nodes and 17425 edges, and the more dense £1at300_28 instance with 300
vertices and 21695 edges. In all instances, a best solution is hidden with respectively,
15, 25 and 28 colors. In this paper, graph coloring instances are encoded as MAX-CSP
instances: variables are the vertices in the graph to be colored; the number d of colors
with which the graph must be colored yields domains ranging from 1 to d; vertices linked
by an edge must be colored with different colors: the corresponding variables must take
different values. Coloring a graph in d colors amounts in minimizing the number of
violated constraints and finding a solution with cost 0.

Celar frequency assignment instances

We have also selected the three most difficult instances of the frequency assignment
problems: the celar6, the celar7 and the celar8 problems. These instances are realistic
since they have all been built from different sub-parts of a real problem. The celar6 has
200 variables and 1322 constraints; the celar7 has 400 variables and 2865 constraints;
the celar8 has 916 variables and 5744 constraints.

The variables are the frequencies to be assigned a value which belong to a predefined
set of allowed frequencies (domain size about 40). The constraints are of the form |z; —
x;| = 6 or |x; — x;] > 6 (to avoid interferences). Our encoding is standard and creates
only the even variables in the CSP along with only the inequalities®.

The objective function to be minimized is a weighted sum of violated constraints.
The constraints belong to four categories with different costs of violation:

e Constraints of celar8 have a weight 1, 2, 3 or 4.
e Constraints of celar6 have a weight 1, 10, 100 or 1000.

e Constraints of celar7 have a weight 1, 100, 10000 or 10°.

Neighborhood

The usual definition of neighborhood used for CSPs is chosen here: a new configuration
2’ is a neighbor of the current configuration z if both have the same values, except for
one variable which takes different values in both configurations. Moreover, following
Minton’s heuristic [16], the current value of that variable participates to a conflict in the
configuration z, that is, it violates at least one constraint.

Implementation

All the algorithms have been developed in a same software [18]. Our platform is imple-
mented in C++ and all the tests have been performed on a PentiumIIT 935 Mhz with a
Linux operating system. All the algorithms belong to a hierarchy of classes which aims
at sharing code, so that fair comparisons can be made between them.

5A bijection exists between odd and even variables. A simple propagation of the equalities allows us
to deduce the values of the odd variables.



5.2 Threshold management

Our first experiments showed that lowering the threshold by a cost 1 at each iteration
was irrelevant on celar problems for which the cost range is very large. Even on graph
coloring whose objective function is more “flat”, we obtained even better results by paying
attention to the threshold management. Several possible threshold managements have
then been designed. They differ from each other in the delta (in terms of cost) to be
subtracted to the current threshold at every iteration:

1. Aptingd = 1 + threshold X Tyiind

2. As_piing = 1+ dist(B) + threshold X Ts_ping

Agdaptive = 1 +dist(d) (= 1+ dist(B) + 100%(cost(B) — cost()))
Apest = 1+ dist(B) + Thesi(cost(B) — cost(1))

A

Ayser = 1+ dist(B) + (threshold — user bound) X Tyser

Toiinds Ts_viinds Toests Tuser OF ¢ is the parameter to be ruled to make the threshold
more or less smooth. The first four parameters are ratios; dist() is the distance (i.e., cost
difference) between the threshold and the ** best particle; thus, B is the worst (highest)
particle and dist(s) is the distance (cost difference) between the threshold and particle
B. cost(j) is the cost of the j* best particle.

The first delta tested was Aping. The other deltas are adaptive and take into account
the way the particles go down. They question two characteristics of Apiing: Apring may
be too small at the beginning and too large at the end. Indeed:

o At the first threshold modifications, the particles go down a lot since moving to
better configurations is very easy and even the worst particle may be very far under
the threshold.

The dist(B) component of the four last deltas is mainly usefull in this case.

o At the end, when the threshold approaches the best solution, the delta remains
large if the best solution cost is even greater than 0 (this is the case for the celar
problems).

user_bound is a second parameter necessary for tuning Ayser. It corresponds to a
lower bound specified by the user depending on the problem (e.g., 3389 for celar6
since this bound has been proven by complete techniques). Ay, is tested to check
the interest of having a smooth threshold at the end.

The conclusions of the tests reported below are clear. First, it is generally interesting
to force the threshold to be under the worst particle. The second conclusion contradicts
our first intuitions: paying attention to the way the threshold decreases at the end is not
fruitfull. That is why we have adopted the simple delta management A ;4. Details
are given below.

Agdaptive turned out to quickly converge to 1 while being far above the best solu-
tions. Indeed, when making progress becomes difficult, the particles are not uniformly
distributed (in terms of cost) between the threshold and the best particle, more and more
particles remain at the threshold and dist(i) becomes null.



To overcome this drawback, Ay.s; is based on the largest possible adaptive distance
since cost(B) — cost(1) becomes null only when GWW-LS terminates.

Finally, the bad results obtained by a management based on Ay.s; against the simple
Apring On instances with non flat criteria have led us to correct the latter, and we have
designed and adopted A;_ping- The series of tests leading to this choice are gathered in
Table 1.

| [ time ] blind | adaptive | best | sblind ] user
Ted50_15c || 103 61 (44) 12 (42) 0.9 (42) 0.2 (41) =
16450 _25¢ || 70 1.4 (29) 10.2 (32) 10.1 (31) 10.1 (31) -
1at300_28 || 112 3.7 (48) 3.4 (48) 3.6 (43) 3.7 (49) -
celar8 140 | 303 (103) 335 (123) 306 (99) 289 (106) 303 (104)
celar6 102 | 3504 (49) 3515 (64) 3557 (43) | 3451 (49) 3537 (41)
celar? 135 | 372125 (138) | 627774 (152) | 422616 (135) | 377214 (141) | 370784 (138)

Table 1: Threshold management. The cells report the average solution cost (weighted
sum of violated constraints) obtained by GWW-grw in a given running time in seconds
(second column); into parentheses, the average number of threshold modifications. The
best results are bold-faced.

For every instance, 10 trials have been performed and average values are reported in
the table®. The celar instances have been handled with B = 50 (B = 200 for celar§),
S =200, N = 40. The graph coloring instances have been solved with B = 20, .S = 2000
and several values for N.

First, the tests on 1e450_25c and £1at300_28 are not informative. Second, Aqaptive
is often the worst and A, generally gives worse results than A;_piing. Third, As piing
is never bad and is often the best.

5.3 Tuning the parameters

An advantage of GWW-grw is that each of its four parameters seems to have a specific role.
However, three among the four parameters are a priori not easy to be tuned. Indeed,
reducing T or increasing the value of B and S always leads to better bounds with a worse
performance. It is indeed not straightforward to select a value implying an asymptotic
behavior or to decide which parameter to favor to improve bounds. However, a very
fine tuning of the parameters seems not to be useful in practice, and we have already
obtained promising tuning procedures. Our experiments and the literature lead to tune
the parameters in the following heuristic way (in order):

1. T: The asymptotic behavior of T is the easiest to observe. In our experiments,
the ratio Tspiing and Tyng were always chosen between 0.5% and 2%; the ratio
Tyest between 0.5% and 10%. Bigger ratios lead to very bad bounds and smaller
ratios do not improve the bound while wasting a lot of time. Therefore, starting
with a ratio with value 1%, a few trials (typically 2-4) are sufficient to select an
acceptable value’.

6 A trial-and-error process is necessary to select the adequate value of a threshold parameter leading
to a given average time...
7Small default values for B, S and N can be chosen at this step, e.g., B = 20, S = 200, N = 50.



2. N: Experiments reported below show that the value of IV has a significant impact
on the performance. Interesting in practice, two or three tests with different small
values of B and S are sufficient to determine an acceptable value of N for a given
instance.

3. S: Following the study performed in [6], tests described further would allow us
to determine a walk length sufficiently long to uniformly explore the search graph
sub-components.

4. B: Once the previous parameters have been tuned, B can be increased until a
good solution is obtained.

Of course, this study should be considered a first approach. Our experiments make
us believe that tuning T and N is easy. A deeper understanding of the GWW-grw behavior
should explain why our first attempt for tuning S and B is acceptable and should lead
to a more accurate tuning policy.

Tuning N

Tuning N on celar6 Tuning N on celar?

3460 T T T T T T T v 1.1e+06 T T T T T T T T
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Figure 1: Tuning the N parameter. The values chosen for parameters B and S are
indicated in the figures.

Figure 1 shows the curves obtained for tuning the parameter N on the chosen in-
stances. The value of N is given in abscissa and the ordinates give the cost of the best
solution (average on 10 tries). The conclusions are the following;:

o It is not difficult to tune N since the curves own a minimum. Indeed, if N is too
small, particles cannot make progress; if it is too large, particles cannot exit from
local minima.



¢ Tuning N has a significant impact on performance. In particular, it allows GWW-grw
to always color in 15 colors le_450_15c in 2 minutes. Only the celar?7 instance
does not seem to be very sensitive to this parameter.

We should mention that, for all tested instances, the curves obtained with different
parameters B and S have roughly the same shape and give the same “best” value for N.
This seems to mean that the value of IV is intrinseque to a given instance.

Tuning S

We have applied the technique described in [6] for the standard GWW. In that article,
tests have been performed with different values of S but a constant value for B x S: the
value of S giving the best solution (on average) is selected. This approach is justified by
the following intuition. In GWW, S must be sufficiently long to allow the particles to be
uniformly distributed into the search graph sub-components. Thus, when this “minimum”
length has been reached, there is no interest to diffuse more.

The situation is more complicated for GWW-grw where S is used to diffuse the particles
within the connected components but also to make progress downto the best solutions.
Also, the technique described above has been applied for GWW which has only two param-
eters B and S, whereas our threshold management adds a third (monotonic) parameter
T (assuming that N has been already tuned and fixed).

Anyway, we have applied this tuning approach to GWW-grw, and obtained two kinds
of curves (not reported here due to a lack of space):

1. For the celar instances, curves give the best cost when S is comprised between 200
and 400, and the same value is obtained for different values of B x S. This leads to
adopt a large value B (several thousands) and a small value S (300) in the following
tests.

2. For the graph coloring instances, the opposite behavior has been observed. The
curves monotically decrease so that the best results are always obtained with a
little number of particles, e.g. 20, and a long walk.

These tests could be a good indication of the relevance of GWW-grw. The interest for
managing several particles in parallel is clear in the first case, whereas a local search
could obtain better results in the second case.

5.4 GWW-grw performance

Table 2 reports the best bounds obtained by GWW-grw on the chosen benchmarks.

The £1at300_28 instance has never been colored in 28 colors. To our knowledge,
only three incomplete algorithms succeeded in coloring it in 31 colors: the distributed
version of the Impasse algorithm [17], a tabu search [9], and a heuristic mixing a genetic
algorithm and local search [11].

[5] and [15] report complete algorithms based on graph-based decomposition and
dynamic programming. The other two instances are really challenging and have never
been proven by a complete algorithm®. The algorithm in [14] is based on a very tuned

8This can be explained by the size of celar8 and by the criterion of celar7.



|| Best algo | bound | time || GWW-grw | time | success | B, S, N

1le450_15¢ [17, 2] 15 col min 15 col (0.2) 1.1 min 8/10 20,2000,20

1e450_25¢ [17] 25 col min 25 col (1.4) 2.3 h 1/10 20,800000,100

£1at300_28 [17, 9, 11] 31 col hours 31 col (1.3) 5.9 min 2/10 20,20000,80
celar6 [5, 15, 21, 14] 3389 min/h 3389 (3405.7) 9.2 min 4/10 500,200,40
celar7 [21, 14] 343592 min 343598 (345941) 5.7h 1/10 5000,300,50
celar8 [21, 14] 262 min 262 (267.4) 33.7 min 2/10 1000,200,30

Table 2: Results on benchmarks. The results of best known algorithms are reported in
the left side of the table; the results of GWW-grw in the right side.

genetic algorithm with a mutation operator encoding a MIP. The algorithm described in
[21] is a local search taking the conflicts into account to select neighbors.

Table 2 reports the impressive results obtained by GWW-grw. The best known bounds
are obtained for all the tested instances. Furthermore, the time required by GWW-grw is
often very satisfactory. To our knowledge, it is among the quickest algorithms for solving
£1at300_28, 1e450_15c and celar6. For the three other instances, the time required
by GWW-grw is greater (hours against minutes for the best known algorithms). However,
note that GWW-grw uses no technique or encoding which is specific to the type of problem,
as opposite to algorithms described in [17, 14].

5.5 Comparing GWW-grw, GWW, and Metropolis

Table 3 gathers comparisons with Metropolis and GWW on the chosen instances. The
column GWW’ reports the results of GWW with the same threshold management as for
GWW-grw. Our Metropolis is standard. It is implemented in the same software [18] and
share most of the code with GWW-grw and GWW. It starts from a random configuration and
a walk of length S is performed as follows:

¢ A new neighbor is accepted if its cost is better or equal than the current one.

e A new neighbor the cost of which is worse than the current one may be accepted
with a probability depending on a given “temperature”. This temperature is con-
stant for Metropolis [4].

e When no neighbor is accepted, the configuration is not changed at the current
iteration.

The other classical local search algorithms were not competitive with Metropolis on the
chosen instances.

All the instances have been implemented with the same neighborhood. Of course,
changing also the neighborhood implementation may change the gap between algorithms
on a given instance, e.g., following Minton’s heuristics also for the value choice improves
the behavior of Metropolis on £1at300_28.

The results of our tests can be interpreted as follows. First, the results of the pure
GWW algorithm (with a threshold lowered by 1 at every iteration) are very bad and are
not reported in the table. Second, GWW’ gives bad results on graph coloring instances
and is always worse than GWW-grw. Results are not so bad on celar problems, especially
for celar8.



| Time/trial (min) | Metropolis | GWW? GWW-grw
le450_15c 2 5.9 (2) 536 (410) 0 (0)
1e450_25c 14 31 (2) 17.1 (14) 1(3)
£1at300_28 9 0.9 (0) 6.6 (6) 13 (1)
celar6 14 5048 (3906) 3648 (3427) 3405 (3389)
celar? 6 610° (2.910°) | 583278 (456968) | 368825 (344317)
celar8 50 410 (300) 276 (265) 267 (262)

Table 3: Comparisons on benchmarks. Each cell contains the average cost of the solutions
obtained (on 10 trials); the best cost appears into parentheses.

Metropolis has obtained bad results on celar problems. For celar6 and celar7, it
can be explained by the big violation cost associated to the constraints and for which only
an adaptive temperature could be adequate. It seems better on graph coloring instances.
It is not bad on 1e450_15c and is the best on 1e450_25c and £1at300_28, where it
slightly outperforms GWW-grw.

To conclude, GWW-grw is the best for 4 of the 6 instances and seems to always give
good results (on the six presented instances). Although not reported in the tables above,
the standard deviation of the costs obtained by GWW-grw is generally very small, which
indicates that it is “robust”. Finally, the results seem to confirm that using GWW-grw
is relevant when the user can easily find a walk length S minimizing the cost while
maintaining constant B x S (see end of Section 5.3).

6 Related Work

GWW can be viewed as a simplified version (no crossover operator) of a genetic algo-
rithm [12]. The threshold accepting algorithm [10] and o-algorithm [3] are local search
heuristics based on a threshold. In both algorithms, a random walk is performed. At
each move, the threshold can go down with a given probability. The clustering technique
is mainly used for global optimization (over the reals) [20] where it obtains very good
results. It manages a population and mechanisms are provided for avoiding the grouping
of “particles”.

7 Conclusion

We have designed a hybrid algorithm called GWW-LS introducing local search into the
Go With the Winners algorithm. An instance of this scheme, called GWW-grw, has been
defined. GWW-grw manages 4 parameters and a first attempt to tune them has been
described. The management of the threshold for realistic problems has been studied.
The maximum number N of visited neighbors allows GWW-grw to make progress downto
the best solutions while exiting local minima. It is crucial in practice and seems to be
able to be tuned independently.

GWW-grw has obtained very good results on graph coloring and celar problems. Only a
few other optimization heuristics can reach these bounds on the tested instances. GWW-grw
uses no technique or encoding which is specific to the type of problem.



Of course, GWW-grw should be tried on other types of problems, e.g., on instances
containing hard constraints.

The good experimental results obtained by GWW-grw seem to confirm that the idea
used by genetic algorithms consisting in exploring the search space in parallel is good.
However, the fact that GWW-grw has no cross-over operator leads to several advantages:

e The algorithm is easier to be tuned.

e Since the neighborhood aspect of local search is preserved, incremental data struc-
tures can be used when passing from a configuration to its neighbor.

e The algorithm can be developed on a same plateform as local search algorithms.

As mentioned at the end of Section 2, the greedy descent of GWW-grw violates the
uniform distribution of particles in a connected region (distribution on which the local
expansion property is built). Therefore an interesting issue is to theoretically or ex-
perimentally establish another sufficient condition for the success of GWW-grw, e.g., the
uniform distribution of the particles at every cost level of the connected components.
This would indicate the interest of using a local search within GWW-LS for which particles
are not trapped into local minima.
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