
Interval Constraint Satisfaction and
Optimization for Biological Homeostasis and

Multistationarity
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Abstract. Homeostasis occurs in a biological system when some output
variable remains approximately constant as one or several input param-
eters change over some intervals. When the variable is exactly constant,
one talks about absolute concentration robustness (ACR). A dual and
equally important property is multistationarity, which means that the
system has multiple steady states and possible outputs, at constant pa-
rameters. We propose a new computational method based on interval
techniques to find species in biochemical systems that verify homeostasis,
and a similar method for testing multistationarity. We test homeostasis,
ACR and multistationarity on a large collection of biochemical models
from the Biomodels and DOCSS databases. The codes used in this paper
are publicly available at: https://github.com/Glawal/IbexHomeo.

1 Introduction

The 19th century French physiologist Claude Bernard introduced the concept
of homeostasis that plays a crucial role in understanding the functioning of liv-
ing organisms. As he put it, homeostasis, defined as constancy, despite external
changes, of the ”milieu intérieur” that contains organs, tissues and cells, is a
prerequisite of life. A simple example of homeostasis is the constancy of body
temperature: our body temperature is maintained in a narrow range around 37◦C
despite large variation of the environment temperature. Another example is the
concentration of many biochemical species (cell processes drivers and regulators
such as glucose, ATP, calcium, potassium, cell surface receptors, transcription
factors, etc.) whose steady state values are kept constant by tight control. Rather
generally, homeostasis refers to constancy of the output w.r.t. variation of pa-
rameters or inputs [10]. Several other concepts such as robustness, resilience or
viability are closely related to homeostasis and sometimes used with overlap-
ping meaning. Robustness refers to the lack of sensitivity of temporal and static
properties of systems w.r.t. parameters and/or initial conditions variation, thus
encompassing homeostasis [4, 11, 26]. Resilience or viability has a more global,
dynamical significance, meaning the capacity of systems to recover from pertur-
bations via transient states that stay within bounds [3].



In [27], a special type of homeostasis is studied, named absolute concentra-
tion robustness (ACR), consisting in invariance of the steady state w.r.t. changes
of initial conditions. For chemical reaction network (CRN) models, they pro-
posed a sufficient graph-theoretical criterion for ACR. Replacing invariance by
infinitesimal sensitivity, [10] presents a way to detect homeostasis in paramet-
ric systems of ordinary differential equations (ODEs). Their approach, based on
the singularity theory, was applied to gene circuit models [1]. Our work builds
on this reasoning, using a slightly different definition of homeostasis. Instead
of looking at the infinitesimal variation, we choose to look at intervals. The
steady states of ODE models are computed as solutions of algebraic equations.
We are interested in finding intervals containing all the steady state values of
model variables. If the variables values are contained inside sufficiently narrow
intervals, those variables are stated homeostatic. Sensitivity-like calculations of
the input-output relationship compute derivatives of the output w.r.t. the input
and boil down to linearizations. In contrast, our method guarantees intervals
containing the output w.r.t the initial system. This is crucial in applications,
whenever parameters change on wide ranges and models are strongly nonlinear.
The interval approach has thus larger applicability.

Our approach also provides a novel method for testing the multistationarity
of CRNs, occurring when one or several variables can have several values at
the steady state. In this case, we are interested in the number and the actual
space position of all the steady states. Multistationarity is an important problem
in mathematical biology and considerable effort has been devoted to its study,
with a variety of methods: numerical, such as homotopy continuation [28] or
symbolic, such as real triangularization and cylindrical algebraic decomposition
[6]. However, as discussed in [6], numerical errors in homotopy based methods
may lead to failure in the identification of the correct number of steady states,
whereas symbolic methods have a double exponential complexity in the number
of variables and parameters. As solving a system of algebraic equations is the
same as finding intersections of manifolds, each manifold corresponding to an
equation, our problem is equivalent to solving a system of constraints.

In this paper we use the interval constraint programming (ICP) and opti-
mization solvers provided by the Ibex (Interval Based EXplorer) tool, for testing
homeostasis and multistationarity. Although interval solvers are combinatorial
in the worst-case, polynomial-time acceleration algorithms embedded in these
solvers generally make them tractable for small or medium-sized systems. In-
terval constraint satisfaction methods offer an interesting compromise between
good precision and low complexity calculations. ICP is an important field in
computer science and its interaction with biology has cross-fertilization poten-
tial. Although interval methods have already been used in systems biology for
coping with parametric models uncertainty [17,31], to the best of our knowledge,
this is their first application to homeostasis and multistationarity. In an algo-
rithmic point of view, this paper reports the first (portfolio) distributed variant
of the IbexOpt Branch and Bound optimizer, where several variants of the solver
are run on different threads and exchange information. Our approach has been
tested on two databases, and this benchmarking represents the first systematic
study of homeostasis, in particular ACR, on realistic CRN models.



Together, our tools can be used to address numerous problems in fundamen-
tal biology and medicine, whenever the stability and controlability of biochemical
variables are concerned. In fundamental biology, both homeostasis and multista-
tionarity are key concepts for understanding cell decision making in development
and adaptation. In personalized medicine, our tests could be used not only for
a better understanding of the loss of homeostasis, for instance in aging and de-
generative disease, but also for diagnosis and for predicting the effect of therapy
to bring back a normal functioning.

2 Settings and Definitions

Our definition of homeostasis is general and can be applied to any system of
ODEs. For all the applications discussed in this paper, the ODEs systems re-
sult from chemical reactions whose rates are given either by mass action (as in
Feinberg/Shinar’s analysis of ACR) or by more general kinetic laws.

We consider thus the variables x1, ..., xn, representing species concentrations,
the parameters p1, ..., pr, representing kinetic constants, and a set of differential
equations :

dx1
dt

= f1(x1, ..., xn, p1, ..., pr), . . . ,
dxn
dt

= fn(x1, ..., xn, p1, ..., pr), (1)

where the functions fi, 1 ≤ i ≤ n are at least piecewise differentiable.
We are interested in systems that have steady states, i.e. such that the system

f1(x1, ..., xn, p1, ..., pr) = 0, . . . , fn(x1, ..., xn, p1, ..., pr) = 0 (2)

admits real solutions for fixed parameters p1, . . . , pr. Because x1, ..., xn represent
concentrations, we constrain our study to real positive solutions.

Generally, it is possible to have one or several steady states, or no steady state
at all. The number of steady states can change at bifurcations. For practically all
biochemical models, the functions f1, . . . , fn are rational, and at fixed parameters
(2) defines an algebraic variety. The local dimension of this variety is given by

the rank defect of the Jacobian matrix J , of elements Ji,j = ∂fi
∂xj

, 1 ≤ i, j ≤ n.

When J has full rank, then by the implicit function theorem, the steady
states are isolated points (zero dimensional variety) and all the species are locally
expressible as functions of the parameters:

x1 = Φx1
(p), . . . , xn = Φxn

(p). (3)

The functions Φy were called input-output functions in [10], where the input is
the parameters pi and the output variable y is any of the variables xi, 1 ≤ i ≤ n.
Also in the full rank case, a system is called multistationary when, for fixed
parameters there are multiple solutions of (2), i.e. multiple steady states.

J has not full rank in two cases. The first case is at bifurcations, when the
system output changes qualitatively and there is no homeostasis. The second
case is when (1) has l ≤ n independent first integrals, i.e. functions of x that are
constant on any solution of the ODEs (1). In this case the Jacobian matrix has



rank defect l everywhere and steady states form an l-dimensional variety. For
instance, for many biochemical models, there is a full rank constant matrix C
such that

∑n
j=1 Cijfj(x1, ..., xn, p1, ..., pr) = 0, for all x1, ..., xn, p1, ..., pr, 1 ≤ i ≤

l. In this case there are l linear conservation laws, i.e.
∑n

i=1 Cijxj = ki, 1 ≤ i ≤ l
are constant on any solution. Here ki depends only on the initial conditions,
ki =

∑n
i=1 Cijxj(0). In biochemistry, linear conservation laws occur typically

when certain molecules are only modified, or complexified, or translocated from
one compartment to another one, but neither synthesized, nor degraded. The
constant quantities ki correspond to total amounts of such molecules, in various
locations, in various complexes or with various modifications.

A biological system is characterized not only by its parameters but also by
the initial conditions. For instance, in cellular biology, linear conservation laws
represent total amounts of proteins of a given type and of their modifications,
that are constant within a cell type, but may vary from one cell type to another.
Therefore we are interested in the dependence of steady states on initial con-
ditions, represented as values of conservation laws. Because conservation laws
can couple many species, steady states are generically sensitive to their values.
ACR represents a remarkable exception when steady states do not depend on
conservation laws. In order to compute steady states at fixed initial conditions,
we solve the extended system

f1(x1, ..., xn, p1, ..., pr) = 0, . . . , fn−l(x1, ..., xn, p1, ..., pr) = 0,

C11x1 + . . .+ C1nxn = k1, . . . , Cl1x1 + . . .+ Clnxn = kl, (4)

where ki are considered as extra parameters, and f1, . . . , fn−l are linearly in-
dependent functions. In this case, excepting the degenerate steady states with
zero concentrations discussed at the end of this section, the Jacobian of the ex-
tended system has full rank and one can define again input-output functions as
unique solutions of (4). Similarly, when the biochemical models has non-linear
conservation laws [9], an independent set of those can be added at the end of
the system to obtain a full rank Jacobian. A system is multistationary if at fixed
parameters there are multiple solutions of (4).

Homeostasis is defined using the input-output functions.

Definition 1. We say that y is a khom-homeostatic variable if no bifurcations
happen in P and if in the path of steady states given by Φy we get :

maxp∈P (Φy(p))

minp∈P (Φy(p))
≤ khom,

where khom ≥ 1. We take khom = 2 in this paper, but a different khom can
be used, depending on the tolerance of the biological system to variation. For
instance, for human glucose homeostasis khom ∈ [1.32, 1.95]. P represents the
space of parameters (P is compact in our examples), and p is a point inside P .
So, we consider homeostasis of y for any change of parameters in P .

We exclude from our definition trivial solutions xi = 0 obtained when

fi(x1, ..., xn, p1, ..., pr) = xni
i gi(x1, ..., xn, p1, ..., pr),



where ni are strictly positive integers, gi are smooth functions with non-zero
derivatives ∂fi/∂xi for xi = 0. These solutions persist for all values of the pa-
rameters and are thus trivially robust. In this case we replace the problem fi = 0
by the problem gi = 0 that has only non-trivial solutions xi 6= 0.

3 Interval Methods for Nonlinear Constraint Solving and
Optimization

3.1 Intervals

Contrary to standard numerical analysis methods that work with single values ,
interval methods can manage sets of values enclosed in intervals. By these meth-
ods one can handle exhaustively the set of possible constraint systems solutions ,
with guarantees on the answer. Interval methods are therefore particularly useful
for handling nonlinear, non-convex constraint systems.

Definition 2. An interval [xi] = [xi, xi] defines the set of reals xi such that
xi ≤ xi ≤ xi. IR denotes the set of all intervals. A box [x] denotes a Cartesian
product of intervals [x] = [x1]× ...× [xn]. The size or width of a box [x] is given
by w[x] = maxi(w([xi])) where w([xi]) = xi − xi.

Interval arithmetic [22] has been defined to extend to IR the usual mathemat-
ical operators over R (such as +, ·, /, power, sqrt, exp, log, sine). For instance,
the interval sum is defined by [x1] + [x2] = [x1 + x2, x1 + x2]. When a function
f is a composition of elementary functions, an extension of f to intervals must
be defined to ensure a conservative image computation.

Definition 3. (Extension of a function to IR)
Consider a function f : Rn → R.

[f ] : IRn → IR is said to be an extension of f to intervals iff:

∀[x] ∈ IRn [f ]([x]) ⊇ {f(y), y ∈ [x]}
∀x ∈ Rn f(x) = [f ]([x, x])

The natural extension of a real function f corresponds to the mapping of
f to intervals using interval arithmetic. More sophisticated interval extensions
have been defined, based on interval Taylor forms or exploiting function mono-
tonicity [13].

3.2 Interval Methods for Constraint Solving

Several interval methods have been designed to approximate all the real solu-
tions of equality constraints (h(x) = 0) in a domain defined by an initial box [x].
These methods build a search tree that explores the search space exhaustively
by subdividing [x]. The tree built contains a set of nodes, each of them corre-
sponding to a sub-box of [x]. At each node, the Branch and Contract process
achieves two main operations:



– Bisection: The current box is split into two sub-boxes along one variable
interval.

– Contraction: Both sub-boxes are handled by contraction algorithms that
can remove sub-intervals without solution at the bounds of the boxes.

At the end of this tree search, the “small” boxes of size less than a user-
given precision ε contain all the solutions to the equation system. The process
is combinatorial, but the contraction methods are polynomial-time acceleration
algorithms that make generally the approach tractable for small or medium-
sized systems. Without detailing, contraction methods are built upon interval
arithmetic and can be divided into constraint programming (CP) [5,23,32] and
convexification [21,29] algorithms.

4 Multistationarity

The constraint solving strategy roughly described above is implemented by the
IbexSolve strategy available in the Ibex C++ interval library. IbexSolve can
find all the solutions of (4) with fixed parameters in a straightforward way.

This method is useful for small and medium systems, and sometimes for
large systems, depending on the nature of the constraints and the efficiency of
the contractors. Also, it provides as output each solution box. This output is
easy to read, because (4) has always a finite set of solutions.

In case of large systems, it can be easier to answer the question: do we have
zero, one, or several steady states? In this case, we can use another strategy,
described in the next section, where the problem is reformulated in terms of 2n
constrained global optimization problems: for every variable xi, we call twice an
optimization code that searches for the minimum and the maximum value of xi
while respecting the system (4).

– If the system admits at least two distinct solutions, the criterion used in
Definition 1 (using khom close to 1) will fail for at least one species, i.e. we
will find a species xi whose minimum and maximum values are not close to
each other.

– If the system admits no solution, the first call to the optimizer (i.e., mini-
mizing x1) will assert it.

– And if we have only one solution, every species will respect the criterion.

Let us give a simple example given by the model 233 in the Biomodels
database [15]. In this model we have two species x and y together with seven
parameters (one for the volume of the compartment, four for kinetic rates, and
two for assumed fixed species). The system of ODEs is given by:

dx

dt
=

2k2k6y − k3x2 − k4xy − k5x
k1

,
dy

dt
=
−k2k6y + k3x

2

k1
. (5)

After replacing the symbolic parameters by their given values, the steady state
equations read:

16y − x2 − xy − 3

2
x = 0, −8y + x2 = 0. (6)



The system (6) has two non-zero solutions, given by (6,4.5) and (2,0.5). When
the system (6) is tested by IbexHomeo (the dedicated strategy for homeostasis)
on a strictly positive box (to avoid the trivial solution (0,0)), we find x ∈ [2, 6]
and y ∈ [0.5, 4.5]. The homeostasy criterion fails at fixed parameters and we
know that we have multistationarity.

5 IbexHomeo for Finding Homeostatic Species

The new interval solver dedicated to homeostasis proposed in this paper resorts
to several calls to optimization processes. Let us first recall the principles behind
interval Branch and Bound codes for constrained optimization.

5.1 Interval Branch and Bound Methods for Constrained Global
Optimization

Constrained global optimization consists in finding a vector in the domain that
satisfies the constraints while minimizing an objective function.

Definition 4. (Constrained Global Optimization)
Let x = (x1, ..., xn) varying in a box [x], and functions f : Rn → R, g : Rn → Rm,
h : Rn → Rp.

Given the system S = (f, g, h, x, [x]), the constrained global optimization
problem consists in finding f∗ :

f∗ ≡ min
x∈[x]

f(x) subject to g(x) ≤ 0 and h(x) = 0.

f denotes the objective function (Φy in Definition 1), f∗ being the objective
function value (or best ”cost”), g and h are inequality and equality constraints
respectively. x is said to be feasible if it satisfies the constraints.

Interval methods can handle constrained global optimization (minimization)
problems having non-convex operators with a Branch and Bound strategy gen-
eralizing the Branch and Contract strategy described in the previous section.
The Branch and Bound solver maintains two bounds lb and ub of f∗. The upper
bound ub of f∗ is the best (lowest) value of f(x) satisfying the constraints found
so far, and the lower bound lb of f∗ is the highest value under which it does not
exist any solution (feasible point). The strategy terminates when ub − lb (or a
relative distance) reaches a user-defined precision εf . To do so, a variable xobj
representing the objective function value and a constraint xobj = f(x) are first
added to the system. Then a tree search is run that calls at each node a bisection
procedure, a contraction procedure, but also an additional bounding procedure
that aims at decreasing ub and increasing lb. Improving lb can be performed by
contraction: it is given by the minimum value of xobj over all the nodes in the

search tree. Improving the upper bound is generally achieved by local numerical
methods. Like any other Branch and Bound method, improving the upper bound
ub allows the strategy to eliminate nodes of the tree for which ub < xobj .



Remark. Interval Branch and Bound codes can solve the optimization problem
defined in Def. 4, but they sometimes require a significant CPU time because of
the guarantee on the equality constraints. A way to better tackle the problem in
practice is to relax equalities h(x) = 0 by pairs of inequalities −εh ≤ h(x) and
h(x) ≤ +εh, where εh is a user-defined positive parameter. Therefore, in practice,
interval Branch and Bound codes generally compute a feasible vector x satisfying
the constraints g(x) ≤ 0 and −εh ≤ h(x) ≤ +εh such that |f∗ − f(x)| ≤ εf .

The interval Branch and Bound strategy roughly described above is imple-
mented by the IbexOpt strategy available in the Ibex C++ interval library [7].
IbexOpt is described in more details in [24,30].

5.2 A Dedicated Solver for Homeostasis Based on IbexOpt

Remember that we consider a variable xi to be homeostatic if it verifies Defi-
nition 1. For identifying homeostasis, we consider the system (4) in which the
parameters pi and ki can vary.

Bi-optimization for a Given Species xi

Since we want to compute the minimum and the maximum value of xi = Φxi
(p),

the homeostasis detection amounts to two optimization problems, one minimiz-
ing the simple objective function xi, and one maximizing xi, i.e. minimizing −xi.
The two values returned are finally compared to decide the xi homeostasis. It is
useful to consider that minimizing and maximizing xi are somehow symmetric,
allowing the strategy to transmit bounds of xi from one optimization process to
the dual one. These bounds can also be compared during optimization to stop
both optimizations if they give enough information about homeostasis. Indeed,
an optimizer minimizing xi computes [ln, un] 3 min(xi), where ln and un are
lb and ub of the objective function xi. An optimizer maximizing xi computes
[ux, lx] 3 max(xi), where ux and lx are −ub and −lb of the objective function
−xi. Without detailing, lx/ln is an overestimate of the “distance” between any
two feasible values of xi, and a small value states that the species is homeostatic
(see Def. 1). Conversely, ux/un is an underestimate of any two feasible values
distance, and ux/un > khom asserts that the species is not homeostatic. This
TestHom decision procedure is implemented by Algorithm 1.

Algorithm TestHom(un, ln, ux, lx, khom)
if lx/ln ≤ khom then

return 2 /* homeostatic variable */

if ux/un > khom then
return 1 /* non homeostatic variable */

else
return 0 /* not enough information */

Algorithm 1: The TestHom decision procedure.



Improving Upper Bounding with Fixed Parameters

The bi-optimization described above runs on the system S corresponding to
the system (4), where the equations fj(x, p) = 0 are relaxed by inequalities
−εh ≤ fj(x, p) ≤ +εh; the parameters p can vary in a box [p] and are added to
the set of processed variables. As we are checking for homeostasis, it is important
to notice that a steady state is expected for every parameter vector p ∈ [p] (this
is not valid, for instance, in the neighborhood of a saddle-node bifurcation, which
should be avoided by re-defining [p]). We exploit this key point by also running
minimization and maximization of xi on a system S′, corresponding to the sys-
tem S where the parameters have been fixed to a random value p ∈ [p], with
the hope that reducing the parameter space allows a faster optimization. The
computed values constitute feasible points for the initial problem (i.e., with pa-
rameters that can vary) and can fasten the bi-optimization algorithm described
above. Recall indeed that finding feasible points enables to improve the upper
bound ub of f∗ and to remove from the search tree the nodes with a greater cost.

Overall, homeostasis detection of species xi is performed by Algorithm 2.

Algorithm Bi-Optimize(xi, t, S = (x× p, [x]× [p], system (4), εh),
P = (εf , t),FP )

Execute in parallel until timeout t:
(un, ln, FP )← Minimize(xi, S,minxi(FP ), P )
(ux, lx, FP )← Minimize(−xi, S,maxxi(FP ), P )
while true do

S′ ← FixRandomParameters(S)
FP ← Minimize(xi, S

′,+∞, P )

return (un, ln, ux, lx, FP )

Algorithm 2: The double optimization process on a given species xi. P is
the set of solver parameters: εf is the user-defined precision on the objective
function value, t is the timeout required.

All the optimization processes are run in parallel and exchange newly found
feasible points stored in FP . Every call to Minimize on S can start with an initial
upper bound initialized with the best feasible point found so far (minxi

(FP ) or
maxxi

(FP )).
The minimization processes on S′ are generally fast so that several ones can

be called in a loop (with different parameters fixed to random values) until the
end of the main minimization processes on S.

A Portfolio Strategy for the Bi-optimization

It is important to understand that IbexSolve and IbexOpt are generic strategies.
That is, different procedures can be selected for carrying out the choice of the
next variable interval to bisect (called branching heuristic) or for selecting the
next node to handle in the search tree. It is known that some heuristics in
general useful can be sometimes bad for some specific problems. Therefore we
propose a portfolio parallelization strategy where different processes (threads)
run Branch and Bound algorithms using different branching heuristics (called



cutters hereafter) or node selection heuristics (called nodeSel). These threads
can communicate their bounds to each other, reducing the risks of an ineffective
strategy. In practice, we should modify a call to Minimize as follows:

Minimize(xi, S, P, cutters, nodeSel)

where cutters denotes a set of branching heuristics and nodeSel denotes a set of
node selection heuristics. This routine calls |cutters|×|nodeSel| threads, each of
them corresponding to one Branch and Bound using one branching heuristic in
cutters and one node selection heuristic in nodeSel. These threads work in the
same time on the same problem, but they build different search trees. Therefore
one optimizer can compute an lb value better (greater) than the others. In this
case, it sends it to the other threads.

Heuristics used to split a box are all the variants of the smear branching
strategy described in [30] and [2]. Strategies used to select the next node to be
handled are described in [24]. The cutting strategy lsmear [2] is generally more
efficient than the others, and will be more often used.

The Main IbexHomeo Algorithm

Finally, because we want to determine all the homeostatic species, we run the
double optimization n times, for every species xi, as shown in Algorithm 3. After
a first call to a FirstContraction procedure that contracts the domain [x]× [p],
IbexHomeo calls two successive similar loops of different performance. The first
loop iterates on every species xi and calls on it the double optimization function
Bi-Optimize. The optimization threads are all run using the lsmear branching
heuristic and have a “short” timeout in order to not be blocked by a given
species computation. If a bi-Optimization call on xi reaches the timeout t without
enough information about homeostasis, xi is stored in L and the computation
continues on subsequent species. Since the feasible region defined by S is the
same for each optimization, the next iterations can learn (and store in FP ) new
feasible points than can be exploited by other optimization processes. Therefore
the second loop is similar to the first one, but with a greater timeout and more
threads in parallel running more various branching heuristics.

To summarize, the IbexHomeo algorithm creates communicating threads for:

– exploiting the duality min/max of the bi-optimization related to a given
species homeostasis detection,

– finding feasible points more easily,
– running a portfolio of similar Branch and Bound algorithms using different

heuristics.

6 Experimental Results

For benchmarking the multistationarity test we have used DOCSS (Database of
Chemical Stability Space, http://docss.ncbs.res.in), a repository of mul-
tistationary biochemical circuits. DOCSS contains biochemical circuits with up
to four species and up to five catalytic reactions. The catalytic reactions are



Algorithm IbexHomeo(S = (x× p, [x]× [p], system (4), εh), P = (εf , t, khom))
cutters← {lsmear}
nodeSel← {double heap, cell beam search}
[x]← FirstContraction([x], S)
FP ← ∅, L← ∅
foreach xi ∈ x do

(un, ln, ux, lx, FP )← Bi-Optimize(xi, t, S, P, FP, cutters, nodeSel)
[xi]← [un, ux]
if timeout(t) and TestHom(un, ln, ux, lx, khom)=0 then

L← L ∪ xi
t← 10 t
cutters← {lsmear, smearSum, smearSumRel, smearMax, smearMaxRel}
foreach xi ∈ L do

(un, ln, ux, lx, FP )← Bi-Optimize(xi, t, S, P, FP, cutters, nodeSel)
[xi]← [un, ux]

return HomeostaticSpecies([x],x,khom)

Algorithm 3: Main frame of IbexHomeo. khom ∈ [1, 2] is defined in Def. 1.
Via the procedure HomeostaticSpecies, the algorithm returns the set of
homeostatic variables.

decomposed into several mass action laws, elementary steps. In DOCSS, the
models are specified as short strings of symbols coding for the catalytic reac-
tions and as lists of numeric parameters. These specifications were first parsed
to SBML files, then to systems of differential equations and conservation laws
using tools developed in [16], and transformed into an input file for our algo-
rithms. For the benchmarking we have selected all the 210 DOCSS circuits with
3 species (denoted a,b,c) and 3 catalytic reactions. The mass action models have
up to 6 variables (i.e., the species a,b,c, and several complexes resulting from the
decomposition of catalytic reactions into mass action steps). The steady states
of all models in DOCSS were numerically computed in [25] using a homotopy
continuation method [28]. For all the 3× 3 models both homotopy and interval
IbexSolve methods find 3 or 4 steady states. Although the positions of most of
the solutions are almost identical using the two methods (see Figure 1), there
are a few exceptions where the two solutions diverge. We have investigated each
of these exceptions. The result is presented in Table 1.

The main reason of discrepancy is a different number of solutions com-
puted by the two methods. For the models with discrepancies we have also
computed symbolic steady state solutions using the Symbolic Math Toolbox of
Matlab R2013b (MathWorks, Natick, USA), though this was not possible for all
the models. The comparison to IbexSolve and homotopy solutions shows that
IbexSolve always finds the right number of solutions in a fraction of a second
and computes their positions with better precision than the homotopy method.
We conclude that discrepancies result from the failure of the homotopy method
to identify the right number of solutions.

The homeostasis tests were benchmarked using the database Biomodels (ht
tps://www.ebi.ac.uk/biomodels/), a repository of mathematical models
of biological and biomedical systems; parsed from SBML files to systems of
differential equations and conservation laws using tools developed in [16], and
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Fig. 1. Comparison between homotopy and IbexSolve steady states. All the tested
models are multistationary. a) Models were partitioned into two classes, with 3 (ap-
pearing first) and 4 homotopy solutions, then sorted by the average of the steady
state concentrations in the homotopy solutions. Homotopy and IbexSolve solutions
are represented as lines (red, green and blue for models with 3 steady states, cyan
for the fourth) and crosses, respectively. b) Values of the steady state concentration a
computed by homotopy and IbexSolve. Each IbexSolve steady state was related to
the closest homotopy state (red +), in the Euclidean distance sense; reciprocally, each
homotopy state was related to the closest IbexSolve state (blue crosses).

Table 1. Comparison of most divergent Ibex vs. homotopy solutions to symbolic solu-
tions. n is the number of steady states. dist is the distance between sets of steady states
solutions computed by homotopy or IbexSolve and the symbolic solutions, computed
as 1

2n
(
∑n

i=1 minj di,j) + 1
2ns

(
∑ns

j=1 mini di,j), where di,j is the Euclidean distance be-
tween the numerical solution i and the symbolic solution j, ns is either the number of
solutions nh found by the homotopy method or the number ni found by IbexSolve.

model n sym nh homo ni Ibex dist homo dist Ibex
M338-2 3 4 3 0.020087 2.9101e-05
M464-1 3 4 3 0.012388 4.7049e-05
M464-2 3 4 3 0.029019 3.5893e-05
M488-1 3 4 3 0.011739 2.4117e-05
M488-2 3 4 3 0.010935 2.3473e-05
M488-3 3 4 3 0.017165 5.5298e-05
M506-1 4 3 4 0.10086 2.6487e-05
M506-2 4 3 4 0.0069613 4.3250e-06
M506-14 4 3 4 0.0092411 5.0559e-05
M95-1 4 3 4 0.0033133 1.1911e-05
M95-2 4 3 4 0.00063113 1.1230e-05

transformed into an input file for our algorithms. Of the 297 models initially
considered, 72 were selected. These models have a unique steady state where
every species has a non null concentration. To select them we have considered
several tests described in Table 2.



The selected models were partitioned into three categories depending on the
possible tests: kinetics rates, conservation laws, and volume compartments. We
also tested for ACR the three models described in [27] in which the parameters
have been fixed to random values. These models were previously tested for ACR
by the Shinar/Feinberg topological criterion, therefore should remain so for any
parameter set. As expected, the three models respect the ACR condition.

The initial boxes/domains for the conservation laws and parameters values
were determined from the nominal initial conditions and parameter values found
in the SBML files. The initial intervals bounds were obtained by dividing and
multiplying these nominal values by a factor 10 for total amount of conservation
laws and for volume compartments, and by a factor 100 for kinetics parameters,
respectively. Homeostasis was tested using Definition 1. ACR was tested using
Definition 1 with k → 1, i.e. almost zero width intervals, and where the varying
input parameters are the conservation laws values.

The execution time statistics are given in Table 3.

Table 2. The methodology applied to select models to be tested for homeostasis from
the initial set of models. A test using IbexSolve guarantees the existence and position
of all steady states. Then, each model with a unique steady state having a non zero
concentration is selected. To avoid false positive answer due to a given precision, a
time course beginning from the steady state indicated by IbexSolve has been achieved
using COPASI [12]. These false positive answers may occur in a limit cycle or in a
focus since we use relaxed equalities.

Test # tested # passed
|steady states| ≥ 1 (IbexSolve) 297 191
unique steady state > 0 191 107
non-oscillatory steady state (COPASI) 107 72

Table 3. Statistics on the homeostasis test using IbexHomeo. Selected biomodels have
been classified for three tests. All of them have been tested w.r.t. the kinetics rates,
and each model presenting at least one conservation law has been tested for ACR.
Moreover, models with several compartments have been tested w.r.t. their volume. As
we have many timeout (computed as 360s per species, with an average dimension of
51.92 (15.48 for species, and 36.4 for parameters)), the time columns consider only
models that passed the test. The last two columns indicate the models with ACR in
the first test, or with a 2-homeostatic species in other cases (because we get data during
computation it may occur that a timeout model gives us a homeostasis).

Test IbexHomeo # models # timeout time (s) (min/median/max) yes no
ACR only 33 17 0.19/4.32/10887 3 14
kinetics only 72 41 0.4/122/1923 4 29
compartments only 14 9 0.4/70/189 3 3

We used Biomodels also for multistationarity tests. Among the 297 models
tested for multistationarity using IbexSolve, 63 provide a timeout. For the
solved models, 35 do not have steady-state, 153 have a unique steady state, 42
provide multistationarity, 4 have a continuum of steady states, see Appendix A2.



7 Discussion and Conclusion

The results of the tests show that interval methods are valuable tools for studying
multistationarity and homeostasis of biochemical models.

In multistationarity studies, our interval algorithms outperform homotopy
continuation based numerical methods; they find the correct number of steady
states, and with a high accuracy. In terms of complexity of calculations they be-
have better than symbolic methods. Indeed, IbexSolve solves all the models in
the chosen database (DOCSS). The 210 DOCSS models correspond to 13 differ-
ent symbolic systems of equations (the remaining differences concern numerical
parameters). The symbolic solver did not find explicit solutions for 1 of these
symbolic systems, reduced 3 other models to 4th degree equations in 3.5 to 47 s,
and solved the 9 others in times from 2 to 20 s which should be compared to the
fractions of a second needed for the IbexSolve calculations. We did not perform
symbolic calculations on more complex models from Biomodels, that we expect
out of reach of the Matlab symbolic solver. However, the multistationarity test
using IbexSolve performed well on Biomodels with only 63 models out of the
297 tested producing a timeout. These results are very promising since multi-
stationarity is a computationally hard problem with numerous applications to
cell fate decision processes in development, cancer, tissue remodelling. As future
work, we plan to test multistationarity of larger models using ICP.

In homeostasis studies, interval methods perform well for small and medium
size models in the Biomodels database. Only 18% of the tested models have
some form of homeostasis (see Appendix A3). When the size of compartments
change, 3 models have homeostasis, with 2 of them presenting species indepen-
dent from parameter changes. For the kinetical parameters change, 4 models
present homeostasis and two of them are of small size (for details, see Appendix
A1) : BIOMD614 is a univariate model when steady-state happens only with a
concentration equal to one, and BIOMD629 presents a buffering mechanism (a
buffer is a molecule occurring in much larger amounts than its interactors and
whose concentration is nearly constant). The other two models are BIOMD048
and BIOMD093, where a timeout happens. For the initial conditions change,
3 models presents ACR, and two others (BIOMD041 and BIOMD622) home-
ostasis. Among them, BIOMD413 verifies the conditions of the Shinar-Feinberg
theorem [27], but the other two models (BIOMD489 and BIOMD738) do not
since the deficiency of their reaction network is different from 1. This confirms
that these conditions are sufficient, but not necessary. Our new examples could
be the starting point of research on more general conditions for ACR.

The low proportion of homeostasis could be explained by the possible incom-
pleteness of the biochemical pathways models. Not only these models are not
representing full cells or organisms, but they may also miss regulatory mecha-
nisms required for homeostasis. Negative feed-back interaction is known to be
the main cause of homeostasis (although feed-forward loops can also produce
homeostasis) [8]. As well known in machine learning, it is notoriously difficult to
infer feed-back interaction. For this reason, many of the models in the Biomodels
database were built with interactions that are predominantly forward and have
only few feed-back interactions. It is therefore not a surprise that models that



were on purpose reinforced in negative feed-back to convey biological homeosta-
sis, such as BIOMD041, a model of ATP homeostasis in the cardiac muscle, or
BIOMD433, a model of MAPK signalling robustness, or BIOMD355, a model of
calcium homeostasis, were tested positively for homeostatic species.

Interestingly, our approach emphasizes a duality relationship between home-
ostasis and multistationarity; the former means constant output at variable in-
put, whereas the latter means multiple output at constant input. In this paper
we were mainly motivated by the formal aspects of this duality allowing to treat
the two problems within the same formalism. Nevertheless, it would be intriguing
to look for biological consequences of this formal duality.

For future work, several directions will be investigated. Homeostasis bench-
marking was restricted to non-oscillating steady states to avoid a detection of
a second steady state inside the oscillatory component, due to equality relax-
ation used in IbexOpt, that could break the homeostasis test. This includes limit
cycles and foci. However, oscillations are ubiquitous in biology and it is worth ex-
tending our homeostasis definitions to these cases as well. Biological systems are
characterized not only by their attractors, but also by the characteristic times
of relaxation to attractors. Homeostasis of relaxation could be approached with
our formalism because relaxation times are reciprocals to solutions of polynomial
characteristic equations.

Other possible improvements concern the performances. As one could see,
many models tested cannot be solved within the timeout. If we can explain
this with a high dimension of the model, several improvements are possible.
First, we know that some convexification contractors using affine arithmetic [19,
20], or specific to quadratic forms, in particular bi-linear forms [18] (and the
pattern x1 x2 is often present in chemical reaction networks) could improve the
contraction part of our strategy.

Another promising improvement should be to exploit that these models come
from ODEs. Indeed, if a steady state is attractive, it is possible to perform a
simulation (with fixed parameters) starting from a random or chosen point of
the box that can end near this steady state. Then, a hybrid strategy using
this new simulation and the branch and bound strategy should be able to get
a feasible point more easily, rendering the comparison for homeostasis more
efficient. Moreover this simulation could be used to check if a steady state found
is unstable or not. Also, adding as a stop criterion the homeostasis test could be
another way to improve it, instead of checking it at a given time.
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Appendix A1: Homeostasis of Low Complexity Models

BIOMD614 is a one species model, with equation:

ẋ = k1 + k2k3x− k1x− k2k3x2 (7)

At steady state, this leads to:

k1 + k2k3x = (k1 + k2k3x)x (8)

If k1 6= 0, the only solution to (8) is x = 1, which is the answer given by
IbexHomeo. The model describes the irreversible reaction kinetics of the confor-
mational transition of a human hormone, where x is the fraction of molecules
having undergone the transition, which is inevitably equal to one at the steady
state [14].

BIOMD629 has 2 reactions and 5 species, provides a 2-homeostasis for kinet-
ics parameters with conserved total amounts fixed, provided by the SBML file.
This model does not provide ACR, and the homeostasis found can be explained
by the conserved total amounts, that lock species to a small interval. But if we
change these total amounts and try again an homeostasis test, it should fail.
Indeed this model is given by the equations :

ẋ1 = −k2x1x3 + k3x2, ẋ2 = k2x1x3 − k3x2 − k4x2x4 + k5x5,

ẋ3 = −k2x1x3 + k3x2, ẋ4 = −k4x2x4 + k5x5, ẋ5 = k4x2x4 − k5x5,
x4 + x5 = k6, x2 + x5 + x3 = k7, x2 + x5 + x1 = k8 (9)



Here x3 (receptor), and x4 (coactivator) have been found homeostatic w.r.t.
variations of the kinetics parameters. The total amounts are k6 = 30, k7 =

7
2000 , k8 = 1

2000 . With these values, we get x5 ∈ ]0, 1
2000 [, which implies x4 ∈

]29.9995, 30.0005[. In the same way we have x2 + x5 ∈ ]0, 1
2000 [, which implies

x3 ∈ ] 6
2000 ,

7
2000 [. If k6, k7, k8 were closer to each other, there would be no reason

for homeostasis. This example corresponds to the homeostasis mechanism known
in biochemistry as buffering: a buffer is a molecule in much larger amounts than
its interactors and whose concentration is practically constant.

Appendix A2: Multistationarity Statistics

Among the 297 models tested for multistationarity using IbexSolve, 63 provide
a timeout. For the solved models, 35 do not have steady-state, 153 have a unique
steady state, 42 provide multistationarity, 4 have a continuum of steady states.
Theses results are given by IbexSolve, but some multistationarity models, such
as 003, have in reality an oscillatory behavior.

Table 4. Time statistics for multistationarity

# Models size (min/max/median/average) median time (s)
63 (timeout) 3/194/23/37.26 10800
234 (solved) 1/166/8/13.89 0.009439

Multistationnary models :

– 10 steady states : 703.
– 7 steady states : 435.
– 4 steady states : 228, 249, 294, 517, 518, 663, 709.
– 3 steady states : 003, 008, 026, 027, 029, 069, 116, 166, 204, 233, 257, 296,

447, 519, 573, 625, 630, 687, 707, 708, 714, 729.
– 2 steady states : 079, 100, 156, 230, 315, 545, 552, 553, 688, 713, 716.

Appendix A3: Homeostasis Results Tables

.



Table 5. Models with less than 9 species tested for homeostasis w.r.t. the volume of
compartments. Minimum and maximum volume of each compartment is set as value
given by the SBML file divided by 10 and multiplied by 10, respectively. Kinetic rates
and total amount of conservation laws stay fixed. In BIOMD355, all species are 2-
homeostatic (and seems independent of the volume). In BIOMD433, the species MK P
is 2-homeostatic.

Model (compartments) # varhom time (s) # var # param varying
BIOMD0000000115 0 120 2 3
BIOMD0000000191 0 0.4 2 2
BIOMD0000000355 9 189 9 4
BIOMD0000000432 0 70 8 2
BIOMD0000000433 1 13.8 8 2

Table 6. Models with less than 11 species tested for ACR, the second number indicate
the number of species that verify 2-homeostasis (ACR included). The minimum and
maximum value of each total amount of conservation laws is the value computed from
the SBML file, divided by 10 and multiplied by 10, respectively. Kinetic rates and
volume compartments stay fixed. FeinbergShinar models serve as tests to confirm that
we detect ACR. In BIOMD041, ATP and ATPi are detected to be 2-homeostatic despite
the timeout. In BIOMD622, R1B, R1Bubd, and Z are also detected to be 2-homeostatic
despite the timeout. In BIOMD413, auxin verify ACR. In BIOMD738, FeDuo, FeRBC,
FeSpleen, FeLiver, Hepcidin, FeRest, FeBM are ACR.

Model (for ACR) # ACR-# hom time (s) # var # param varying
BIOMD0000000031 0-0 3.81 3 1
BIOMD0000000041 ?-≥ 2 timeout (2830) 10 3
BIOMD0000000057 0-0 0.56 6 1
BIOMD0000000060 0-0 0.19 4 1
BIOMD0000000084 0-0 2.39 8 4
BIOMD0000000150 0-0 1.13 4 2
BIOMD0000000213 timeout (1987) 6 1
BIOMD0000000258 0-0 3.15 3 1
BIOMD0000000405 0-0 0.52 5 1
BIOMD0000000413 1-1 6.68 5 1
BIOMD0000000423 timeout (3071) 9 3
BIOMD0000000432 timeout (2711) 8 3
BIOMD0000000433 timeout (2709) 8 3
BIOMD0000000454 0-0 0.3 3 1
BIOMD0000000622 ?-≥ 3 timeout (3606) 11 1
BIOMD0000000629 0-0 4.32 5 3
BIOMD0000000646 0-0 801 11 1
BIOMD0000000647 0-0 306 11 5
BIOMD0000000738 7-7 557 11 1

FeinbergShinar1 1-1 5.31 7 2
FeinbergShinar2 1-1 3.08 8 2
FeinbergShinar3 1-1 15.23 5 2



Table 7. Models with less than 9 species tested for homeostasis w.r.t. kinetics rates.
The minimum and maximum value of each kinetic rate is given by the SBML file
divided by 100 and multiplied by 100, respectively. In BIOMD614, the unique species
is 2-homeostatic (moreover independent). In BIOMD629, receptor and coactivator are
2-homeostatic.

Models (kinetics) # varhom time (s) # var # param varying
BIOMD0000000023 0 301 5 60
BIOMD0000000031 0 93.8 3 12
BIOMD0000000057 0 284 6 25
BIOMD0000000060 0 122 4 10
BIOMD0000000065 timeout (2885) 8 23
BIOMD0000000067 timeout (2523) 7 20
BIOMD0000000076 0 60 1 20
BIOMD0000000084 0 22 8 17
BIOMD0000000115 crashed 2 7
BIOMD0000000150 0 243 4 6
BIOMD0000000159 0 91 3 6
BIOMD0000000191 0 89 2 19
BIOMD0000000203 0 876 5 34
BIOMD0000000213 timeout (2173) 6 46
BIOMD0000000219 0 540 9 74
BIOMD0000000221 timeout (2902) 8 53
BIOMD0000000222 timeout (2909) 8 53
BIOMD0000000228 0 1147 9 40
BIOMD0000000240 timeout (2163) 6 20
BIOMD0000000249 timeout (2883) 8 7
BIOMD0000000258 0 132 3 9
BIOMD0000000284 0 31 6 3
BIOMD0000000325 0 300 5 16
BIOMD0000000355 timeout (2287) 9 22
BIOMD0000000405 0 801 5 5
BIOMD0000000413 0 481 5 12
BIOMD0000000414 0 3.7 1 4
BIOMD0000000417 timeout (360) 1 12
BIOMD0000000423 timeout (3132) 9 16
BIOMD0000000425 0 0.4 1 6
BIOMD0000000432 ≤ 1 timeout (1031) 8 26
BIOMD0000000433 ≤ 3 timeout (1671) 8 26
BIOMD0000000454 timeout (1022) 3 11
BIOMD0000000456 timeout (1375) 4 16
BIOMD0000000458 0 93 2 15
BIOMD0000000459 0 63 3 8
BIOMD0000000460 0 122 3 8
BIOMD0000000495 0 365 9 36
BIOMD0000000519 timeout (1050) 3 8
BIOMD0000000530 0 1923 7 17
BIOMD0000000590 0 540 9 30
BIOMD0000000614 1 17 1 3
BIOMD0000000615 0 160 4 12
BIOMD0000000626 timeout (632) 6 20
BIOMD0000000629 2 1 5 4
BIOMD0000000708 0 1770 5 13
BIOMD0000000728 0 1 2 4



Table 8. Models with more than 10 species tested for homeostasis w.r.t. the volume of
compartments. Minimum and maximum volume of each compartment is set as value
given by the SBML file divided by 10 and multiplied by 10, respectively. Kinetic rates
and total amount of conservation laws stay fixed. In BIOMD738, we know that at least
Hepcidin is 2-homeostatic (and independent) despite the timeout.

Model (compartments) # varhom time (s) # var # param varying
BIOMD0000000041 timeout (3759) 10 2
BIOMD0000000093 timeout (12901) 34 2
BIOMD0000000123 timeout (5681) 14 2
BIOMD0000000192 timeout (3924) 13 2
BIOMD0000000482 timeout (8308) 23 3
BIOMD0000000491 timeout (20962) 57 3
BIOMD0000000492 timeout (19066) 52 3
BIOMD0000000581 timeout (5359) 27 2
BIOMD0000000738 ≥ 1 timeout (3676) 11 7

Table 9. Models with more than 12 species tested for ACR, the second
number indicate the number of species that verify 2-homeostasis (ACR in-
cluded). The minimum and maximum value of each total amount of conser-
vation laws is the value computed from the SBML file, divided by 10 and
multiplied by 10, respectively. Kinetic rates and volume compartments stay
fixed. In BIOMD489, LPS:LBP:CD14:TLR4:TIRAP:MyD88:IRAK4, IkBb mRNA,
IkBe mRNA, LPS:LBP:CD14:TLR4:RIP1:TRAM:TRIF:TBK/IKKe are detected
ACR despite the timeout.

Model (for ACR) # ACR-# hom time (s) # var # param varying
BIOMD0000000009 timeout (7988) 22 7
BIOMD0000000011 timeout (7804) 22 7
BIOMD0000000030 timeout (6318) 18 3
BIOMD0000000038 timeout (4400) 13 4
BIOMD0000000048 timeout (8380) 23 6
BIOMD0000000093 timeout (12115) 34 6
BIOMD0000000123 0-0 4810 14 3
BIOMD0000000192 0-0 1316 13 3
BIOMD0000000270 0-0 10887 32 9
BIOMD0000000431 timeout (9808) 27 6
BIOMD0000000489 ≥ 4 - ≥ 4 timeout (11104) 52 4
BIOMD0000000491 timeout (19323) 57 1
BIOMD0000000492 timeout (17524) 52 1
BIOMD0000000581 timeout (8485) 27 10



Table 10. Models with more than 10 species tested for homeostasis w.r.t. kinetics
rates. The minimum and maximum value of each kinetic rate is given by the SBML file
divided by 100 and multiplied by 100, respectively. In BIOMD048, EGF is detected 2-
homeostatic despite the timeout. In BIOMD093, SHP2 is detected homeostatic despite
the crash.

Models (kinetics) # varhom time (s) # var # param varying
BIOMD0000000009 timeout (8239) 22 32
BIOMD0000000011 timeout (8009) 22 30
BIOMD0000000028 timeout (5810) 16 27
BIOMD0000000030 timeout (6571) 18 32
BIOMD0000000038 timeout (4722) 13 24
BIOMD0000000041 timeout (3952) 10 25
BIOMD0000000048 ≥ 1 timeout (9551) 23 50
BIOMD0000000093 ≥ 1 crashed 34 73
BIOMD0000000123 timeout(5654) 14 22
BIOMD0000000192 timeout (3923) 13 18
BIOMD0000000218 0 541 12 70
BIOMD0000000270 timeout (12271) 32 30
BIOMD0000000294 timeout (3608) 10 10
BIOMD0000000388 timeout (1801) 11 19
BIOMD0000000431 timeout (10028) 27 44
BIOMD0000000482 timeout (8452) 23 56
BIOMD0000000489 timeout (15513) 52 105
BIOMD0000000491 timeout 57 172
BIOMD0000000492 timeout 52 176
BIOMD0000000581 timeout (9131) 27 35
BIOMD0000000622 timeout (3618) 11 25
BIOMD0000000646 timeout (3976) 11 33
BIOMD0000000647 timeout (1173) 11 11
BIOMD0000000707 timeout (1746) 5 10
BIOMD0000000738 timeout (3986) 11 33


