
Using Graph Decomposition for Solving

Continuous CSPs

Christian Bliek

1

, Bertrand Neveu

2

, and Gilles Trombettoni

1

1

Arti�cial Intelligence Laboratory, EPFL

CH-1015 Lausanne, Switzerland

{cbliek,trombe}@lia.di.epfl.ch

2

CERMICS, équipe Contraintes

2004 route des lucioles, 06902 Sophia-Antipolis Cedex, B.P. 93, France

Bertrand.Neveu@sophia.inria.fr

Abstract. In practice, constraint satisfaction problems are often struc-

tured. By exploiting this structure, solving algorithms can make impor-

tant gains in performance. In this paper, we focus on structured continu-

ous CSPs de�ned by systems of equations. We use graph decomposition

techniques to decompose the constraint graph into a directed acyclic

graph of small blocks. We present new algorithms to solve decomposed

problems which solve the blocks in partial order and perform intelligent

backtracking when a block has no solution.

For under-constrained problems, the solution space can be explored by

choosing some variables as input parameters. However, in this case, the

decomposition is no longer unique and some choices lead to decompo-

sitions with smaller blocks than others. We present an algorithm for

selecting the input parameters that lead to good decompositions.

First experimental results indicate that, even on small problems, signif-

icant speedups can be obtained using these algorithms.

1 Introduction

In the area of continuous CSPs, research has traditionally focused on techniques

to enforce some form of local consistency. These techniques are used in com-

bination with dichotomic search to �nd solutions. We use Numerica, a state

of the art system for solving the speci�c type of CSPs considered in this pa-

per [Hentenryck et al., 1997].

In practice, constraint satisfaction problems are often structured. However,

little has been done to exploit the structure of continuous CSPs to make gains

in performance. In this paper, we focus on e�cient solution strategies for solving

structured CSPs. We will restrict our attention to CSPs which are de�ned by

nonlinear equations and study the general case in which the system is not nec-

essarily square. This paper brings together techniques to decompose constraint

graphs with backtracking algorithms to solve the decomposed systems.

Although our approach is general, we have chosen to present 2D mechanical

con�guration examples. By doing so, we do not want to convey that our approach

applies only to this type of problems. We mainly use these examples for didactical

reasons; they are easy to understand and to illustrate.

2 The Dulmage and Mendelsohn Decomposition

In this paper, a constraint graph G is a bipartite graph (V;C;E) where V are

the variables, C are the constraints and there is an arc between a constraint in

C and each of its variables in V .

A maximum matching of a bipartite constraint graph includes a maximum

number of arcs which share no vertex. A matching implicitly gives a direction to

the corresponding constraint graph; a pair (v; c) corresponds to a directed arc

from c to v and directed arcs from v to other matched constraints connected to

v. The D&M decomposition is based on the following theorem.

Theorem 1 (Dulmage and Mendelsohn, 1958) Any maximum-matching of a

constraint graph G gives a canonical partition of the vertices in G into three

disjoint subsets: the under-constrained part, the over-constrained part and the

well-constrained part.

Observe that one or two of the three parts may be empty in the general case.

Starting from any maximum matching of the graph, the over-constrained

part is formed with all nodes reachable from any non matched constraint in C

by a reverse path. The under-constrained part is formed with all nodes reachable

from any non matched variable in V by a directed path. The well-constrained

part is formed with the other nodes and yields a perfect matching of the cor-

responding subgraph. Figure 1 shows an example. Variables are represented by

circles, constraints by rectangles; a pair in the matching is depicted by an ellipse.

The well-constrained part can be further decomposed. The perfect matching of

overconstrained well−constrained underconstrained
kjihgfedcba

a b c d e f g h i j k

1 2 3 4 5 6 7 8 9 10 11 12

1

2

3

4

5

6

7

8

9

10

11

12

Fig. 1. The D&M decomposition of a constraint graph (left) and the equivalent matrix

representation (right).

this part implicitly de�nes a directed graph. We then compute its strongly con-

nected components, called blocks, to obtain a directed acyclic graph (DAG) of

blocks.

It turns out that this decomposition, called the �ne decomposition, is inde-

pendent of the matching performed.

Theorem 2 (König, 1916) Every perfect matching of a (square) bipartite graph

leads to a unique decomposition into strongly connected components.

Note that König's theorem does not apply in case of non perfect matching.

3 Overview

In this part, we give a general overview of the algorithms described in this paper

and of how they work together. As input, we have a set of numeric equations

which may be non-square. We make the general assumption that square n � n

systems give a discrete set of solutions. This is in fact a basic assumption of

Numerica [Hentenryck et al., 1997], the tool we use to solve systems of equations.

In a number of pathological cases, this assumption is not veri�ed, then we can

for example use probabilistic methods to diagnose the problem (see Section 7).

We �rst perform a D&M decomposition [Pothen and Chin-Fan, 1990] and

handle the three parts, if present, in the order over-constrained, well-constrained

and �nally under-constrained part.

Over-constrained Part In this part, the number of equations m is greater

than the number n of variables. If the corresponding equations are independent,

the system has no solution. We can deal with this situation in a number of ways.

First, through a backtrack-free selection process, we could let the user remove

m � n equations to make the part well-constrained

1

. Alternatively, the m � n

extra constraints might be kept as soft constraints. They are simply veri�ed after

the solution process. If the m � n equations are redundant, we get solutions,

otherwise there is no solution.

Well-constrained Part As explained in Section 2, for this part, we can perform

a �ne decomposition. The result is a DAG of blocks. Each block is solved by

Numerica and, in the subsequent blocks, the implied variables are replaced by

the values found. To ensure completeness, backtracking is performed as soon

as a block has no solution. Section 5 describes several intelligent backtracking

algorithms that take advantage of the partial order of the DAG to avoid useless

work. Observe that this process looks like the resolution of a �nite CSP: the

blocks are the variables and the solutions to a block form the domain of the

variable.

Under-constrained Part Once we have solved the well-constrained part and

replaced the variables by the values found, we are left with the under-constrained

part. This part contains n variables and m equations with n > m. At this point

r = n�m driving input variables (divs) must be given a value to obtain a m�m

problem. There are a number of issues related to the selection of the r divs in

the under-constrained part.

First, some sets of r input variables may lead to �badly-constrained� systems,

that is, systems for which there exists no perfect matching. This means that we

cannot arbitrarily choose r of the n variables as divs. Section 6.1 presents a new

algorithm which allows the selection of the r divs one by one and forbids certain

future choices after each selection. This approach might be used for example in

physical simulation [Serrano, 1987], where the user explicitly changes di�erent

parameters in order to understand the behavior of a system.

1

This process is the dual of the one for removing variables in the under-constrained

part as described in Section 6.1.

Second, König's theorem does not hold for the under-constrained part. That

is, the DAG of blocks obtained is not unique and depends on the matching. In

particular, certain choices of divs lead to decompositions with smaller blocks

than others and are usually easier to solve. Section 6 presents new algorithms

to �nd decompositions with small blocks. Interactive sketching applications (see

[Bliek et al., 1998]) should favor this type of decompositions.

4 Examples

In this section, we present 2 examples that will be used throughout this paper.

Didactic Example (Figure 2) Various points (white circles) are connected with

c

b

a

e f

g i

j

d

h

xb,yb

xa,ya xc,yc

xe,ye xf,yf

xg,yg

xh,yh

xi,yi

xj,yj

yd

1

2

4

3

5

Fig. 2. Didactic problem and a corresponding DAG of blocks.

rigid rods (lines). Rods only impose a distance constraint between two points.

Point h (black circle) di�ers from the others in that it is attached to the rod

hg; ii. Finally, point d is constrained to slide on the speci�ed line. The problem is

to �nd a feasible con�guration of the points so that all constraints are satis�ed.

Mini-robot (Figure 3) The triangle a�b�c represents the base and is �xed. Since

the robot is symmetrical, let us describe the left half. Point d is the left shoulder.

The rod ha; di has a variable length r

s

, and is used to rotate the rod hc; di. On

this rod we have an arm mechanism whose length is variable and depends on

the parameter r

a

. The gray point e is constrained to slide on the rod hc; di. The

black point f is attached to both the rod he; gi and hd; hi, and hereby forces these

rods to act like a scissor. The position of the end point i of the arm can now be

positioned by controlling r

a

and r

s

.

The decomposition shown in the right side of Figure 3 corresponds to the

above description of the robot. That is, r

a

, r

0

a

, r

s

and r

0

s

are the driving inputs

that control the endpoints. Suppose however that we want the robot to pick up

an object. In this case the end points i and i

0

should go to a speci�c location. The

question now is: what values should r

a

; r

0

a

; r

s

; r

0

s

take to get the two endpoints

at the desired spot? The decomposition of this inverse problem is shown in the

middle of Figure 3.

a b

c

d d’e’e

f f’

g g’
h’h

i i’

Base

LeftArm RightArm

r’s
r’a

rs
ra

xb

xa,ya yb

xc,yc

rs,ra

xd-h,

yd-h

r’s,r’a

xd’-h’,

yd’-h’

xi,yi xi’,yi’

xb

xa,ya yb

xc,yc

xd,yd xd’,yd’

xe,ye

rs r’s

xe’,ye’

ra r’a

xf-h,

yf-h

xi,yi xi’,yi’

xf’-h’,

yf’-h’

Fig. 3.Minirobot (left), DAG of inverse problem (middle) and driving problem (right).

Finally, consider the situation in which a designer is sketching the points

and rods for this robot using a computer, and wants to validate his drawing. In

this case, the input variables may be chosen so that the validation problem is as

simple as possible. In Section 6, we present an algorithm that is designed to do

exactly that. In this example, the best solution is to take y

d

, y

b

, x

i

, x

0

i

, y

0

e

, x

0

d

,

y

0

d

as input parameters, which leads to a decomposition with one block of size 5

and other blocks of size 1, 2 or 3.

5 Solving Well-Constrained Systems

5.1 Introduction

In case the D&M decomposition consists only of a well constrained part, we can

perform a �ne decomposition. By doing so we avoid to send the system as a

whole to the solver. Indeed, we will only need to solve smaller systems which

correspond to the blocks in the DAG. To see this, consider the decomposition

shown in Figure 2 on the right. Respecting the order of the DAG, we �rst obtain

a solution for block 1. We can now substitute the values for the corresponding

variables appearing in the equations of block 2 and obtain a solution from the

solver. Then we process block 3 in a similar fashion, followed by block 4 and 5.

When a block has no solution, one has to backtrack. A chronological back-

tracker goes back to the previous block. It tries a di�erent solution for that block

and restarts to solve the subsequent blocks. However, this approach is ine�cient.

Indeed, in the example above, suppose block 5 had no solution. Chronological

backtracking would go back to block 4, �nd a di�erent solution for it, and solve

block 5 again. Clearly, the same failure will be encountered again in block 5.

A better strategy is to reconsider only those blocks which might have caused

the problem. We could follow the approach used by Con�ict Based Backjumping

(CBJ) [Prosser, 1993]. When no solution is found for block 5, one would go back

directly to block 3. However, when jumping back, CBJ erases all intermediate

search information. Here, the solution of block 4 would be erased when jumping

back to block 3. This is unfortunate; the solution of block 4 is still valid and the

solver may have spent a considerable amount of time �nding it.

This problem can be avoided by holding on to the intermediate search infor-

mation. This approach is taken in dynamic backtracking (DB) [Ginsberg, 1993].

As CBJ, DB jumps back to the cause of the problem. However, when doing so,

it does not erase intermediate nogoods. Instead, it moves the problem variable

to the set of uninstantiated variables and removes only nogoods based on its

assignment. By doing so, DB e�ectively reorders variables. Unfortunately, this

reordering is incompatible with the partial order imposed by the DAG. We

therefore need to resort to algorithms that keep intermediate search informa-

tion but are also �exible enough to respect the partial order imposed by the

decomposition. General Partial Order Backtracking (GPB) [Bliek, 1998] satis�es

these requirements. Below we present a speci�c instance of GPB that can be used

to solve decomposed problems.

5.2 Solving Partially Ordered Problems with GPB

We �rst brie�y describe the GPB algorithm for solving discrete CSPs. At all times

GPBmaintains a complete set of assignmentsX which are incrementally modi�ed

until all constraints are satis�ed. The search process is driven by the addition

of new nogoods. A nogood
 is a subset of assignments of values to variables

which are incompatible. X is modi�ed incrementally so as to remain compatible

with the current set of nogoods. When a new nogood is added, the value of one

of its variables, say y, will be changed. By choosing y,
 becomes an ordered

nogood, denoted by ~
. We call y the conclusion variable, denoted by c(~
), and

the remaining variables antecedent variables a(~
). An ordered nogood ~
 de�nes

an ordering relation x < c(~
) for each antecedent x 2 a(~
).

Nogoods are generated when the current assignments violate a constraint.

In this case the nogood is the constraint violation. Nogoods are also generated

when for a domain of a given variable y, all values are ruled out by nogoods.

In this case a new nogood �(y) is inferred that contains the assignments of all

the antecedent variables a(~

i

) appearing in every nogood ~

i

with y = c(~

i

).

In addition to the conclusion variables of a nogood, one may also modify the

assignment of other variables in X , as long as the new values are acceptable. A

value v is acceptable for the variable x if x = v is compatible with the antecedents

of any of the current nogoods and if v is in the live domain of x. The live domain

of a variable is the set of values of its domain that is not ruled out by a conclusion

of a nogood. When a new nogood with conclusion y is added, all nogoods ~

i

for

which y 2 a(~

i

) are discarded. By doing so, an assignment is ruled out by at most

one nogood. The space complexity of GPB is therefore polynomial. The problem

has no solution when the empty nogood is inferred.

We now present an instance of GPB, called GPB

I

. We will see that this algo-

rithm can easily be adapted to solve decomposed continuous CSPs. Instead of

modifying a complete set of assignments, GPB

I

incrementally extends a consis-

tent partial set of assignments. We therefore have a set of instantiated variables

I and a set of uninstantiated variables U . To ensure termination, it is required

that the selection of the conclusion of a nogood respects a partial order. In GPB

I

we use an ordering scheme <

I

de�ned as follows. The variables in I respect the

total order de�ned by the instantiation sequence and any variable in I precedes

any variable in U . Abusing notation, we de�ne the antecedents of a variable y

as a(y) = fx jx < yg. The descendants of y are de�ned by D(y) = fx j y <

t

xg,

where <

t

is the transitive closure of <. With these de�nitions, we modify GPB

to obtain GPB

I

.

algorithm GPB

I

Until U is empty or the empty nogood is inferred do

Select a variable x 2 U for which a(x) � I and

assign an acceptable value v to x.

if x = v violates some constraint with variables in I then

Generate a nogood
 corresponding to the constraint violation and

Backtrack(
),

else

move x from U to I.

end

end

end.

procedure Backtrack (
)

Select y as conclusion of
 so that y follows a(~
) in the ordering scheme and

store ~
.

Discard all nogoods ~

i

for which y 2 a(~

i

) and

move y and the variables D(y) in I to U .

if the live domain of y is empty then

Backtrack(�(y)).

end

end.

Algorithm 1: GPB

I

GPB

I

is an instance of GPB and therefore terminates. It is also systematic since

it satis�es an additional restriction on the assignments that may be changed. We

refer the reader to [Bliek et al., 1998] for a detailed discussion.

As described above, GPB

I

halts as soon as it �nds a solution. To �nd all

solutions to a given CSP, the algorithm can be modi�ed as follows. When a

solution is found, it is reported and a new nogood is generated that rules out

exactly this set of assignments. We then backtrack from this nogood and restart

the search loop to �nd the next solution.

GPB

I

solves discrete CSPs. We now adapt it to solve continuous problems

that are decomposed into a DAG of blocks. Here the blocks take over the role

of the variables. The discrete domain

2

of possible values for a block x is the set

2

As stated earlier, we assume that we have a discrete set of solutions for each block.

of solutions, denoted by �(x), of the corresponding subproblem. Recall that, for

a given block x, the solutions of the parent blocks, denoted by p(x), are �rst

substituted into the equations of block x. The resulting system is then solved

over the continuous domains of the variables of the block. By solving the system,

all values in the continuous domains are eliminated, except for �(x). One can

view this as the addition of a nogood, denoted by P (x), that has the given block

x as conclusion and p(x) as antecedent variables.

We can now modify GPB

I

to solve decomposed problems. The main di�er-

ence is that the domain �(x) of a block x is not known a priori and has to be

computed based on the values of p(x). We therefore have to make sure that �(x)

is recomputed every time any of the values of p(x) changes. The resulting algo-

rithm is called GPB

�

. The backtrack procedure remains the same. However,

algorithm GPB

�

Until U is empty or the empty nogood is inferred do

select a block x 2 U for which a(x) [p(x) � I

if �(x) is outdated with respect to p(x) then

recompute �(x) using the new values for p(x) and backtrack(P (x)),

else

assign an acceptable value v to x and move x from U to I.

end

end

end.

Algorithm 2: GPB

�

in a practical implementation, care has to be taken to represent and handle the

nogoods of the type P (x).

In Figure 4, we illustrate GPB

�

on the example of Figure 2. Suppose we solve

block 1 and select �rst the solution where b is above a and c. Then we proceed

to solve block 2 and select the solution where e is above a and b. We make a

similar choice for f whose solutions are computed in block 3. Now, in block 4,

we select one of the two possible locations for d. Finally, we reach block 5 to

�nd out that there is no solution (dashed). This situation is shown on the left in

Figure 4. At this point, we add a nogood P (5) which is based on the solutions

of blocks 2 and 3 and rules out all possible values for block 5. We �nd that the

domain of 5 is empty and infer a nogood �(5) which states that the solutions of

block 2 and 3 are incompatible. Since block 3 was instantiated after block 2 we

select block 3 as conclusion of this nogood. We now select the other solution for

this block where point f is below b and c. Once again we �nd that block 5 has

no solution (second picture in Figure 4) and backtrack to block 3. However, this

time, both possible solutions of block 3 are ruled out by nogoods, so we continue

backtracking. Since the two nogoods have block 2 as antecedent and P (3) has

block 1 as antecedent, we generate a new nogood stating that the solutions of

cba

e f

g i

j

d

h

cba

e

f

g i

j

d

h

c

b

a

e f

g i

j

d

h

c
b

a

e f

g i

j

d

h

Fig. 4. Example problem.

block 1 and 2 are incompatible. As shown in the third picture in Figure 4, we now

use the other solution for block 2. This search process continues until we reach

the con�guration, depicted on the right in Figure 4, that satis�es all constraints.

Observe that GPB

�

, did not erase the solutions of block 4 when it backtracked

to block 3. However, they would have been erased by CBJ, which would later need

to recompute them.

5.3 Examples

We found that, as compared to solving the system as a whole, the use of GPB

�

on

decomposed systems is very e�ective. Let us illustrate this point with some ex-

amples. As it is usually done when solving CSPs de�ned by systems of equations,

we report the running times to �nd all solutions. All the tests were performed

on a Sun SparcStation 5 with Ilog Numerica 1.0.

On the small didactic example of Figure 2, GPB

�

needs only 2.9 seconds,

while without decomposition Numerica needs 4.8 seconds. The speedups are

more important when the examples are somewhat more complicated. Consider

the mini-robot positioning problem shown in Figure 3. Without decomposing

the problem, it takes Numerica 2153 seconds to solve the problem. Using the

decomposition shown in the middle in Figure 3, with GPB

�

this running time is

reduced to 33.3 seconds.

In some cases very small blocks can be found. In this case, the backtrack

search over the discrete sets of solutions is dominant. Figure 5 shows an example

of such a situation. As before, arcs represent distance constraints and we have

�xed the two coordinates, x

a

and y

a

, of point a as well as one coordinate, x

b

,

of point b. In addition to what is shown in the �gure, there are two variables

that measure the height of each of the legs de�ned as r = (y

i

+ y

h

)=2 and

r

0

= (y

i

0

+ y

h

0

)=2. We limited the possible range on these two variables to stay

within the interval � shown in Figure 5. By doing so, there is only one solution

which is the one shown in the �gure. Without decomposition, it takes Numerica

2091 seconds to solve this problem. With the decomposition shown on the right

in Figure 5, GPB

�

solves the problem in 29 seconds.

6 Handling Structurally Under-constrained Problems

As discussed in Section 3, in this case, we need to �nd r divs such that the

remaining constraint graph has a perfect matching. Two di�erent approaches for

a

b c

e d e’

g f f’ g’

i h h’ i’

x

y

ρ

yb

xbxa,ya

xd,yd

xe,ye

xf,yf

xg,yg

xh,yh

xi,yi

xe’,ye’

xf’,yf’

xg’,yg’

xh’,yh’

xi’,yi’

r r’

xc,yc

Fig. 5. A con�guration of triangles corresponding to a pyramid tower.

doing so are presented below. Once the divs are selected, the problem becomes

well-constrained and can be solved by GPB

�

.

6.1 Backtrack-Free Driving Inputs' Selection

The algorithm shown below is based on the D&M properties. It allows to choose

the divs one by one in a backtrack-free manner. The time complexity of the algo-

algorithm Free-divs-selection (a constraint graph; its D&M decomposition)

while r divs have not been chosen do

choose as div any variable v in the under-constrained part

if v is matched in the current matching then

� invert in the current matching an alternating path from v to an un-

matched variable

� apply a D&M decomposition on the new matching (which transfers

some nodes from the under-constrained to the well-constrained part)

end

end

end.

Algorithm 3: The backtrack-free div selection

rithm is O(r�(n+m)) for a constraint graph with n variables andm constraints.

Indeed, one path inversion and one �D&M part retrieval� is necessary for each

of the r div selections. Figure 6 illustrates this algorithm. The correctness of

the backtrack-free div selection follows directly from the D&M properties. The

proof can be found in the extended version of this paper [Bliek et al., 1998].

6.2 Finding Small Blocks: OpenPlan

sb

We present below an algorithm called OpenPlan

sb

3

which �nds decompositions

with well-constrained square blocks whose largest block is of minimum size.

3

sb stands for small blocks.

(1) (2)

(3) (4)

a b

c

d

e

f

a b

c

d

e

f

a b c

d

e

f

a b c

d

e

f

Fig. 6. Backtrack-free div selection. (1) Initial maximummatching. 3 divs are to be se-

lected. (2) Selection of variable f as div: variable b is forbidden for further selection. (3)

The selection of e forbids c. (4) The selection of a makes the problem well-constrained.

algorithm OpenPlan

sb

(G: a constraint graph): a DAG of blocks

let D be an empty DAG of blocks

while constraints remain in the constraint graph do

select-free-block

sb

: select a free square block b of smallest size for which there

exists a perfect matching

add b in D (along with the corresponding directed arcs)

remove b from G

end

return D

end.

Algorithm 4: OpenPlan

sb

OpenPlan

sb

is a specialized version of an algorithm called OpenPlan: the proce-

dure select-free-block of OpenPlan can select any free block whereas select-free-

block

sb

imposes restrictions. OpenPlan is based on the PDOF algorithm used

for maintaining constraints in interactive applications [Vander Zanden, 1996]. It

builds a DAG of blocks in reverse order from the leaves to the roots. A free block

has variables which are linked only to constraints within the block. Iteratively se-

lecting and removing blocks which are free ensures that a DAG of blocks is built,

that is, that no directed cycle can appear between blocks [Trombettoni, 1997].

We now detail how OpenPlan

sb

�nds the best decomposition of the constraint

graph of the didactic problem. The process is illustrated on the right side of

Figure 7. First, the block [c

7

,y

d

], a 1� 1 free block, is selected and removed: x

d

becomes a div. Now there is no more 1�1 free block available so that a 2�2 free

block, for example [c

1

,c

3

,x

a

,y

a

], is selected and removed. Then, the free block

[c

4

,c

5

,x

c

,y

c

] is selected and removed. This frees the block [c

6

,c

9

,x

f

,y

f

] which is

selected and removed. The block [c

2

,x

b

] is now free; y

b

becomes a div. In the

YhYg

C8

C10

Xh

C12

Xg Xi

C11

Yj

Xj

Yi

C13

Xd

Yb

Xe

Ya C1 Xb

C2Xa C3

XcC4

Yc
C5

Xf

C6

Yd

C7

Ye

C9

Yf
Xf

Yd

Xd

YcYb

Xb

YeXe

C1

C2

Ya

Xa C3

XcC4

C5

Yf

C6

C7

Yg

C8

Xi

C9

Yh

C10

Xh

C12

Xg

C11

Xj

YjYi

C13

Fig. 7. A decomposition of the didactic problem with one 13 � 13 block (left) and a

decomposition with four 2�2 blocks (a, b, f , (x

g

, x

i

)) and several 1�1 blocks (right).

same way, OpenPlan

sb

�nally selects the blocks [c

8

,y

e

], [c

11

,c

12

,x

g

,x

i

], [c

13

,y

i

]

and [c

10

,x

h

].

Proposition 1 OpenPlan

sb

�nds a decomposition whose largest block has a min-

imum size.

The proof can be found in the extended paper [Bliek et al., 1998].

Note that, as opposed to OpenPlan

sb

, the maximum-matching algorithm

�nds decompositions with blocks of arbitrary size: both decompositions of Fig-

ure 7 could be indi�erently obtained by maximum-matching whereas OpenPlan

sb

�nds the one in the right.

Selecting a 1 � 1 free block is the only operation involved in the classical

PDOF. This amounts to searching variables linked to only one constraint. How-

ever, if there is no 1� 1 free block, �nding a well-constrained free block of mini-

mum size is suspected to be NP-hard, so that OpenPlan

sb

is exponential. Indeed,

a naive algorithm which searches for a k� k valid block is O(n

k

), where n is the

number of variables.

Nevertheless, this algorithm can sometimes be used for problems which may

be numerically hard to solve. In this case, the overhead for obtaining the best

decomposition can be neglected over the gain in solving small blocks. Our �rst

experimental results presented in Section 6.4 seem to con�rm this.

6.3 Finding Small Blocks: OpenPlan

hm

When the constraint graphs are large, we have to resort to heuristic methods

to �nd good decompositions. To do so, another instance of OpenPlan, called

OpenPlan

hm

, is proposed for which the procedure select-free-block

hm

is a hill-

climbing heuristic. If no 1 � 1 block has been found, a maximum matching of

the constraint graph is performed. We consider �rst the smallest leaf b

best

of this

matching to be selected by select-free-block

hm

. However, b

best

is not the smallest

possible free block, since other matchings could yield smaller leaves. Therefore,

select-free-block

hm

changes the matching so that a smaller leaf could appear.

Instead of performing a full search over all matchings, a hill-climbing heuristic

is used. One tries to �break� b

best

by inverting a path in the current matching

from a div to a variable in b

best

. If such a path is found which yields a smaller

leaf, the process is reitered until reaching a �xed point. Note that the DAG of

blocks may signi�cantly change after a path inversion so that completely new

blocks may appear.

function select-free-block

hm

(G: a constraint graph): a free block

if there exists a 1� 1 free block b then return b

perform a maximum matching of G that yields a DAG of blocks D

best

let b

best

be the smallest leaf block of D

best

while D

best

is changing do

let cdivs be the set of divs in D

best

such that an alternating path exists from

a div in cdivs to a variable in b

best

D D

best

; b b

best

for every div d in cdivs and every variable v in b

best

do

invert an alternating path from d to v that yields a DAG of blocks D

0

if D

0

has a smaller leaf block b

0

than b then D D

0

; b b

0

end

D

best

 D; b

best

 b

end

return b

best

end.

Algorithm 5: Heuristic method to select a small well-constrained free block

In Figure 7, we show how OpenPlan

hm

obtains the best decomposition (right)

starting from the matching corresponding to the worst one (left). select-free-

block

hm

�rst inverts the path from y

d

to x

e

, which yields the �rst free (1 � 1)

block [c

7

,y

d

]. Then it selects the block [c

1

,c

3

,x

a

,y

a

] by inverting the path from

y

a

to x

b

. Now it can proceed until the best decomposition is obtained.

6.4 First Experimental Results

On the didactic problem, the divs on the left in Figure 7 lead to one unique

block solved by Numerica in 10 s. With the divs in Figure 7 (right), the problem

is solved by GPB

�

in 3.3 s.

We also performed tests on a small distance problem in 3D made of two

tetrahedra and some additional rods shown in Figure 8.

The worst decomposition of this problem has two blocks of size 7. The best

decomposition, obtained by both OpenPlan

sb

and OpenPlan

hm

, includes blocks

of size 2 or 3 only. When the driving inputs correspond to the bad decomposition,

Numerica takes 1284.8 s to solve the whole system. Solving the same problem

with GPB

�

takes 125.4 s. Now when the driving inputs correspond to the good

decomposition, Numerica on the whole system takes 200 s whereas only 22.7 s

are necessary to solve the same problem using GPB

�

.

c

b

4
6

5

3
7

1

d
f

i

10
11

13

9
12

g

14

a

h

e

2

8

Fig. 8. A 3D linkage with two tetrahedra.

7 Related Work

To our knowledge, no existing system which performs graph decomposition com-

bines complete numerical solvers with backtracking. The system presented in

[Serrano, 1987] uses a maximum-matching algorithm to decompose general de-

sign problems. However, completeness is not achieved; blocks are solved using

a traditional Newton-Raphson method and no backtracking is performed. Fur-

thermore, this work is not based on the D&M decomposition. In particular, the

driving inputs cannot be selected in a backtrack-free fashion.

In [Ait-Aoudia et al., 1993], the D&M technique is used to study geometric

constraints. However, no attention is paid to the solution aspects.

The D&M decomposition does not take into account the values of the coe�-

cients of the equations. However, some problems, whose D&M decomposition is

structurally well constrained, are in fact made of dependent equations. One way

to detect redundancy in nonlinear systems of equations is to calculate the Ja-

cobian at various randomly selected points [Lamure and Michelucci, 1997]. This

information could then be used to properly decompose this type of systems.

In the case of mechanical con�guration, there exist a number of techniques

to discover subsystems that are rigid [Fudos and Ho�mann, 1997]. By replacing

these rigid subsystems by smaller ones, gains in performance can be made. This

technique is complementary to ours and could be used to further improve the

performance of our algorithms on mechanical con�guration problems.

8 Conclusion

In this paper, we have presented techniques to solve structured continuous CSPs.

Our approach is based on decomposition techniques by Dulmage & Mendelsohn

and König, that decompose structured problems into a directed acyclic graph

of blocks. The contribution of this paper is twofold. First, we propose new algo-

rithms for solving structurally well-constrained problems. They combine the use

of existing solvers, for solving the blocks, with intelligent backtracking techniques

that use the partial order of the DAG to avoid useless work. Second, we present

new algorithms to handle under-constrained problems. These algorithms allow

the selection of driving input variables, whose values are assumed to be set exter-

nally. Input variables can either be selected through an interactive backtrack-free

selection or can be selected automatically using a new algorithm to obtain de-

compositions with small blocks. We have presented a number of examples to

illustrate that signi�cant speedups can be obtained using these algorithms.

References

[Ait-Aoudia et al., 1993] Samy Ait-Aoudia, Roland Jegou, and Dominique Michelucci.

Reduction of constraint systems. In Compugraphic, 1993.

[Bliek et al., 1998] Christian Bliek, Bertrand Neveu, and Gilles Trombettoni. Using

graph decomposition for solving continuous csps. Technical Report 98-287, E.P.F.L.,

Lausanne, Switzerland, 1998.

[Bliek, 1998] Christian Bliek. Generalizing dynamic and partial order backtracking.

In AAAI 98: Fifteenth National Conference on Arti�cial Intelligence, pages 319�325,

Madison, Wisconsin, July 1998.

[Fudos and Ho�mann, 1997] Ioannis Fudos and Christoph Ho�mann. A graph-

constructive approach to solving systems of geometric constraints. ACM Transactions

on Graphics, 16(2):179�216, 1997.

[Ginsberg, 1993] M.L. Ginsberg. Dynamic backtracking. Journal of Arti�cial Intelli-

gence Research, 1:25�46, August 1993.

[Hentenryck et al., 1997] Pascal Van Hentenryck, Laurent Michel, and Yves Deville.

Numerica : A Modeling Language for Global Optimization. MIT Press, 1997.

[Lamure and Michelucci, 1997] Hervé Lamure and Dominique Michelucci. Qualitative

study of geometric constraints. In Beat Brüderlin and Dieter Roller, editors, Work-

shop on Geometric Constraint Solving and Applications, pages 134�145, Technical

University of Ilmenau, Germany, 1997.

[Pothen and Chin-Fan, 1990] Alex Pothen and Jun Chin-Fan. Computing the block

triangular form of a sparse matrix. ACM Transactions on Mathematical Software,

16(4):303�324, 1990.

[Prosser, 1993] P. Prosser. Hybrid algorithms for the constraint satisfaction problem.

Computational Intelligence, 9(3):268�299, August 1993.

[Serrano, 1987] D. Serrano. Constraint Management in Conceptual Design. PhD thesis,

Massachusetts Institute of Technology, Cambridge, Massachusetts, October 1987.

[Trombettoni, 1997] Gilles Trombettoni. Solution Maintenance of Constraint Systems

Based on Local Propagation. PhD thesis, University of Nice-Sophia Antipolis, 1997.

In french.

[Vander Zanden, 1996] Bradley Vander Zanden. An incremental algorithm for satisfy-

ing hierarchies of multi-way, data�ow constraints. ACM Transactions on Program-

ming Languages and Systems, 18(1):30�72, January 1996.

