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Abstract

We propose in this paper a new interval constraint propaga-
tion algorithm, called MOnotonic Hull Consistency (Mohc),
that exploits monotonicity of functions. The propaga-
tion is standard, but the Mohc-Revise procedure, used
to filter/contract the variable domains w.r.t. an individ-
ual constraint, uses monotonic versions of the classical
HC4-Revise and BoxNarrow procedures.
Mohc-Revise appears to be the first adaptive revise pro-
cedure ever proposed in (interval) constraint programming.
Also, when a function is monotonic w.r.t. every variable,
Mohc-Revise is proven to compute the optimal/sharpest
box enclosing all the solutions of the corresponding con-
straint (hull consistency). Very promising experimental re-
sults suggest that Mohc has the potential to become an alter-
native to the state-of-the-art HC4 and Box algorithms.

Introduction
Interval-based solvers can solve systems of numerical con-
straints (i.e., nonlinear equations or inequalities over the
reals). Their reliability and increasing performance make
them apply to various domains such as robotics design and
kinematics (Merlet 2007), or dynamic systems in robust con-
trol or autonomous robot localization (Kieffer et al. 2000).

Two main types of contraction algorithms allow solvers
to filter variable domains. Interval Newton and related al-
gorithms generalize to intervals standard numerical anal-
ysis methods (Moore 1966). Contraction/filtering algo-
rithms issued from constraint programming are also in the
heart of interval-based solvers. The constraint propaga-
tion algorithms HC4 and Box (Benhamou et al. 1999;
Van Hentenryck, Michel, and Deville 1997) are very often
used in solving strategies. They perform a propagation loop
and filter the variable domains (i.e., improve their bounds)
with a specific revise procedure (called HC4-Revise and
BoxNarrow) handling the constraints individually.

In practice, HC4-Revise often computes an optimal
box enclosing all the solutions of one constraint c when
no variable appears twice in c. When one variable appears
several times in c, HC4-Revise is generally not optimal.
In this case, BoxNarrow is proven to compute a sharper
box. The new revise algorithm presented in this paper, called
Mohc-Revise, tries to handle the general case where sev-
eral variables have multiple occurrences in c.
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When a function f is monotonic w.r.t. a variable x in a
given box, it is well-known that the monotonicity-based in-
terval extension of f produces no overestimation induced by
the multiple occurrences of x. Mohc-Revise exploits this
property to improve contraction/filtering. Monotonicity is
generally verified for a few pairs (f, x) at the beginning of
the search, but can be detected for more pairs at the bottom
of the search tree, when smaller boxes are handled.

After the background, we describe the Mohc-Revise
algorithm. Conditions are then stated to improve the al-
gorithm. Also, when a function is monotonic w.r.t. every
variable, a proposition states that Mohc-Revise computes
the optimal/sharpest box enclosing all the solutions of the
constraint (hull consistency property). Experiments finally
highlight the performance of Mohc.

Intervals and numerical CSPs
Intervals allow reliable computations on computers by man-
aging floating-point bounds and outward rounding.

Definition 1 (Basic definitions, notations)
An interval [v] = [a, b] is the set {x ∈ R, a ≤ x ≤ b}.
IR denotes the set of all the intervals.
v = a (resp. v = b) denotes a floating-point number which
is the left bound (resp. the right bound) of [v].
Mid([v]) denotes the midpoint of [v].
Diam([v]) := v − v denotes the diameter, or size, of [v].
A box [V ] = [v1], ..., [vn] represents the Cartesian product
[v1]× ...× [vn].

Interval arithmetic has been defined to extend to IR ele-
mentary functions over R (Moore 1966). For instance, the
interval sum is defined by [v1] + [v2] = [v1 + v2, v1 + v2].
When a function f is a composition of elementary functions,
an extension of f to intervals must be defined to ensure a
conservative image computation.

Definition 2 (Extension of a function to IR)
Consider a function f : Rn → R.
[f ] : IRn → IR is an extension of f to intervals if:

∀[V ] ∈ IRn [f ]([V ]) ⊇ {f(V ), V ∈ [V ]}
∀V ∈ Rn f(V ) = [f ](V )

The natural extension [f ]N of a real function f corre-
sponds to the mapping of f to intervals using interval arith-
metic. The monotonicity-based extension is particularly use-
ful in this paper. A function f is monotonic w.r.t. a variable
v in a given box [V ] if the evaluation of the partial derivative



of f w.r.t. v is positive (or negative) in every point of [V ].
For the sake of conciseness, we sometimes write that v is
monotonic.
Definition 3 (fmin, fmax, monotonicity-based extension)
Let f be a function defined on variables V of domains [V ].

Let X ⊆ V be a subset of monotonic variables.
Consider the values x+

i and x−i such that: if xi ∈ X is an
increasing (resp. decreasing) variable, then x−i = xi and
x+

i = xi (resp. x−i = xi and x+
i = xi).

Consider W = V \ X the set of variables not detected
monotonic. Then, fmin and fmax are functions defined by:

fmin(W ) = f(x−1 , ..., x−n ,W )

fmax(W ) = f(x+
1 , ..., x+

n ,W )
Finally, the monotonicity-based extension [f ]M of f in the

box [V ] produces the following interval image:

[f ]M ([V ]) =
[
[fmin]N ([W ]), [fmax]N ([W ])

]
Monotonicity of functions is generally used as an exis-

tence test checking that 0 belongs to the interval image of
functions. It has also been used in quantified NCSPs to eas-
ily contract a universally quantified variable that is mono-
tonic (Goldsztejn, Michel, and Rueher 2009).

Consider for example f(x1, x2, w) = −x2
1 + x1x2 +

x2w − 3w in the box [V ] = [6, 8]× [2, 4]× [7, 15].
[f ]N ([x1], [x2], [w]) = −[6, 8]2 + [6, 8]× [2, 4] + [2, 4]×

[7, 15]− 3× [7, 15] = [−83, 35].
∂f
∂x1

(x1, x2) = −2x1 + x2, and [ ∂f
∂x1

]N ([6, 8], [2, 4]) =
[−14,−8]. Since [−14,−8] < 0, we deduce that f is de-
creasing w.r.t. x1. With the same reasoning, we deduce
that x2 is increasing. Finally, 0 ∈ [ ∂f

∂w ]N ([x1], [x2], [w]) =
[−1, 1], so that w is not deduced monotonic. Following
Def. 3, the monotonicity-based evaluation yields:
[f ]M ([V ]) =

[
[f ](x1, x2, [w]), [f ](x1, x2, [w])

]
=

[
[f ](8, 2, [7, 15]), [f ](6, 4, [7, 15])

]
= [−79, 27]

The dependency problem (multiple occurrences)
The dependency problem is the main issue of interval arith-
metic. It is due to multiple occurrences of a same variable
in an expression that are handled as different variables by in-
terval arithmetic. In our example, it explains why the inter-
val image computed by [f ]M is different from (and sharper
than) the one produced by [f ]N . Also, if a factorized form,
e.g., −x2

1 + x1x2 + (x2 − 3)w, was used, we would then
obtained an even better image. The dependency problem
renders in fact NP-hard the problem of finding the optimal
interval image of a polynomial (Kreinovich et al. 1997).
(The corresponding extension is denoted by [f ]opt.) The fact
that the monotonicity-based extension replaces intervals by
bounds explains the following proposition.
Proposition 1 Let f be a function of V that is continuous
over [V ]. Then,

[f ]opt([V ]) ⊆ [f ]M ([V ]) ⊆ [f ]N ([V ])
In addition, if f is monotonic in the box [V ] w.r.t.

all its variables appearing several times in f , then the
monotonicity-based extension computes the optimal image:

[f ]M ([V ]) = [f ]opt([V ])

Numerical CSPs
The Mohc algorithm presented in this paper aims at solving
nonlinear systems of constraints or numerical CSPs.
Definition 4 (NCSP) A numerical CSP P = (V,C, [V ])
contains a set of constraints C, a set V of n variables with
domains [V ] ∈ IRn.
A solution S ∈ [V ] to P satisfies all the constraints in C.

To find all the solutions of an NCSP with interval-based
techniques, the solving process starts from an initial box rep-
resenting the search space and builds a search tree, following
a Branch & Contract scheme:
• Branch: the current box is bisected on one dimension

(variable), generating two sub-boxes.
• Contract: filtering (also called contraction) algorithms

reduce the bounds of the box with no loss of solution.
The process terminates with atomic boxes of size at most

ω on every dimension. Contraction algorithms comprise in-
terval Newton-like algorithms issued from the numerical
interval analysis community (Moore 1966) along with algo-
rithms from constraint programming. The contraction algo-
rithm presented in this paper takes advantage of the mono-
tonicity of functions, adapting the classical HC4-Revise
and BoxNarrow procedures. The HC4 algorithm per-
forms an AC3-like propagation loop. Its revise procedure,
called HC4-Revise, traverses twice the tree representing
the mathematical expression of the constraint for narrowing
all the involved variable intervals. An example is shown in
Fig. 1. Box is also a propagation algorithm. For every pair
(f, x), where f is a function of the considered NCSP and x is
a variable involved in f , BoxNarrow first replaces the other
a variables in f by their interval [y1], ..., [ya]. Then, the pro-
cedure reduces the bounds of [x] such that the new left (resp.
right) bound is the leftmost (resp. rightmost) solution of the
equation f(x, [y1], ..., [ya]) = 0. Existing revise procedures
use a shaving principle where slices [si] in the bounds of [x]
that do not satisfy the constraint are eliminated from [x].

Contracting optimally a box w.r.t. an individual con-
straint is referred to as the hull-consistency problem. Sim-
ilarly to the optimal interval image computation, due to
the dependency problem, hull-consistency is not tractable
in general. HC4-Revise is known to achieve the hull-
consistency of constraints having no variable with multi-
ple occurrences, provided that the function and projection
functions are continuous. The Box-consistency achieved by
BoxNarrow is stronger (Collavizza, Delobel, and Rueher
1999) and enforces the hull-consistency when the constraint
contains only one variable with multiple occurrences. In-
deed, the shaving process performed by BoxNarrow on a
variable x suppresses the overestimation effect on x. How-
ever, it is not optimal in case the other variables yi also have
multiple occurrences.

These algorithms are sometimes used in our experiments
as a sub-contractor of a 3BCID (Trombettoni and Chabert
2007), a variant of 3B (Lhomme 1993). 3B uses a shaving
refutation principle that splits an interval into slices. A slice
at the bounds is discarded if calling a sub-contractor (e.g.,
HC4) on the resulting subproblem leads to no solution.

The Mohc algorithm
The MOnotonic Hull-Consistency algorithm (in short Mohc)
is a new constraint propagation algorithm that exploits



monotonicity of functions to better contract a box. The
propagation loop is exactly the same AC3-like algo-
rithm performed by HC4 and Box. Its novelty lies in
the Mohc-Revise procedure handling one constraint1
f(V ) = 0 individually and described in Algorithm 1.

Algorithm 1 Mohc-Revise (in-out [V ]; in f , V , ρmohc, τmohc, ε)
HC4-Revise (f(V ) = 0, [V ])
if MultipleOccurrences(V ) and ρmohc[f ] < τmohc

then
(X, Y, W, fmax, fmin, [G])←PreProcessing(f, V, [V ])
MinMaxRevise ([V ], fmax, fmin, Y, W )
MonotonicBoxNarrow ([V ], fmax, fmin, X, [G], ε)

end if

Mohc-Revise starts by calling the well-known and
cheap HC4-Revise procedure. The monotonicity-
based contraction procedures (i.e., MinMaxRevise and
MonotonicBoxNarrow) are then called only if V con-
tains at least one variable that appears several times (func-
tion MultipleOccurrences). The other condition
makes Mohc-Revise adaptive. This condition depends on
a user-defined parameter τmohc detailed in the next section.
The second parameter ε of Mohc-Revise is a precision
ratio used by MonotonicBoxNarrow.

The procedure PreProcessing computes the gradient
of f . The gradient is stored in the vector [G] and used to
partition the variables in V into three subsets X , Y and W :
• variables in X are monotonic and occur several times in f ,
• variables in Y occur once in f (they may be monotonic),
• variables w ∈ W appear several times in f and are not

detected monotonic, i.e., 0 ∈ [ ∂f
∂w ]N ([V ]).

The procedure PreProcessing also determines the
two functions fmin and fmax, introduced in Definition 3,
that approximate f by using its monotonicity.

The next two routines are in the heart of Mohc-Revise
and are detailed below. Using the monotonicity of fmin

and fmax, MinMaxRevise contracts [Y ] and [W ] while
MonotonicBoxNarrow contracts [X].
HC4-Revise, MinMaxRevise and Monotonic-

BoxNarrow sometimes compute an empty box [V ], prov-
ing the absence of solution. An exception terminating the
procedure is then raised.

At the end, if Mohc-Revise has contracted one inter-
val in [W ] (more than a user-defined ratio τpropag), then the
constraint is pushed into the propagation queue in order to
be handled again in a subsequent call to Mohc-Revise.
Otherwise, we know that a fixpoint in terms of filtering has
been reached (see Lemmas 2 and 4).

The MinMaxRevise procedure
We know that:
(∃X ∈ [X])(∃Y ∈ [Y ])(∃W ∈ [W ]) : f(X ∪Y ∪W ) = 0
=⇒ fmin(Y ∪W ) ≤ 0 and 0 ≤ fmax(Y ∪W )

The contraction brought by MinMaxRevise is thus sim-
ply obtained by calling HC4-Revise on the constraints
fmin(Y ∪W ) ≤ 0 and 0 ≤ fmax(Y ∪W ) to narrow in-
tervals of variables in Y and W (see Algorithm 2).

1The procedure can be straightforwardly extended to handle an
inequality.

Algorithm 2 MinMaxRevise (in-out [V ]; in fmax, fmin, Y , W )
HC4-Revise(fmin(Y ∪W ) ≤ 0, [V ]) /* MinRevise */
HC4-Revise(fmax(Y ∪W ) ≥ 0, [V ]) /* MaxRevise */

Fig. 1 illustrates how MinMaxRevise contracts the box
[x]× [y] = [4, 10]× [−80, 14] w.r.t. the constraint:

f(x, y) = x2 − 3 x + y = 0
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Figure 1: MinRevise (left) and MaxRevise (right) ap-
plied to x2 − 3 x + y = 0.

Fig. 1-left shows the first step of MinMaxRevise. The
tree represents the inequality f(4, y) = fmin(y) ≤ 0.
HC4-Revise works in two phases. The evaluation phase
evaluates every node bottom-up (with interval arithmetic)
and attachs the result to the node. The second phase, due
to the inequality node, starts by intersecting the top inter-
val [−76, 18] with [−∞, 0] and, if the result is not empty,
proceeds top-down by applying projection (“inverse”) func-
tions. For instance, since nplus = nminus + y, the in-
verse function of this sum yields the difference [y] ← [y] ∩
([nplus] − [nminus]) = [−80, 14] ∩ ([−76, 0] − [4, 4]) =
[−80,−4]. Following the same principle, MaxRevise ap-
plies HC4-Revise to f(10, y) = fmax(y) ≥ 0 and nar-
rows [y] to [−70,−4] (see Fig. 1-right).

Note that a standard HC4-Revise called directly on the
constraint x2−3 x+y = 0 (hence not using the monotonicity
of f ) would have brought no contraction to [x] or [y].

The MonotonicBoxNarrow procedure
This procedure performs a loop on every monotonic vari-
able xi in X for narrowing [xi]. At each iteration, it works
with two interval functions, in which all the variables in X ,
excepting xi, have been replaced by one bound of the corre-
sponding interval:
[fxi

min](xi) = [f ]N (x−1 , ..., x−i−i, xi, x
−
i+1, ..., x

−
n , [Y ], [W ])

[fxi
max](xi) = [f ]N (x+

1 , ..., x+
i−i, xi, x

+
i+1, ..., x

+
n , [Y ], [W ])

Because Y and W have been replaced by their domains,
[fxi

max] and [fxi
min] are univariate interval functions depend-

ing on xi (see Fig. 2).
MonotonicBoxNarrow calls two subprocedures:
• If xi is increasing, then it calls:

– LeftNarrowFmax on [fxi
max] to improve xi,

– RightNarrowFmin on [fxi
min] to improve xi.

• If xi is decreasing, then it calls:

– LeftNarrowFmin on [fxi
min] to improve xi, and

– RightNarrowFmax [fxi
max] to improve xi.



We detail in Algorithm 3 how the left bound of [x] is im-
proved by the LeftNarrowFmax procedure using [fx

max].

Algorithm 3 LeftNarrowFmax (in-out [x]; in [fx
max], [g], ε)

if [fx
max]N (x) < 0 /* test of existence */ then

size← ε× Diam([x])
[l]← [x]
while Diam([l]) > size do

xm ← Mid([l]); zm ← [fx
max](xm)

/* zm ← [fx
min](xm) in {Left|Right}NarrowFmin */

[l]← [l] ∩ xm − zm
[g]

/* Newton iteration */
end while
[x]←

ˆ
l, x

˜
end if

The process is illustrated by the function depicted in
Fig. 2. The goal is to contract [l] (initialized to [x]) for
providing a sharp enclosure of the point L. The user
specifies the precision parameter ε (as a ratio of interval
diameter) to determine the quality of the approximation.
LeftNarrowFmax keeps only l at the end, as shown in
the last line of Algorithm 3 and in step 4 on Fig. 2.

[fmax]
x

[l0]=[x]

x

A
B

C

1

2

3

L

[x]←[l,x]

4

[l1]

[l2]

Figure 2: Interval Newton iterations for narrowing x.

A preliminary existence test checks that [fx
max]N (x) <

0, i.e., the point A in Fig. 2 is below zero. Otherwise,
[fx

max]N ≥ 0 is satisfied in x so that [x] cannot be narrowed,
leading to an early termination of the procedure. We then
run a dichotomic process until Diam([l]) ≤ size. A classical
univariate interval Newton iteration is iteratively launched
from the midpoint xm of [l], e.g., in Fig. 2:

1. from the point B (middle of [l0], i.e., [l] at step 0), and

2. from the point C (middle of [l1]).

Graphically, an iteration of the univariate interval New-
ton intersects [l] with the projection on the x axis of a cone
(e.g., two lines emerging from B and C). The slopes of
the lines bounding the cone are equal to the bounds of the
partial derivative [g] = [∂fx

max

∂x ]N ([x]). Note that the cone
forms an angle of at most 90 degrees because the function is
monotonic and [g] is positive. This explains why Diam([l])
is divided by at least 2 at each iteration.

Lemma 1 Let ε be a precision expressed as a percentage
of interval diameter. LeftNarrowFmax and symmetric
procedures terminate and are called at most 2 log( 1

ε ) times
by the procedure MonotonicBoxNarrow.

Observe that Newton iterations called inside Left-
NarrowFmax and RightNarrowFmax work with zm =
[fx

max](xm), that is, a degenerate curve (in bold in the fig-
ure), and not with the interval function [fx

max](xm).

Advanced features of Mohc-Revise
How to make Mohc-Revise adaptive
The user-defined parameter τmohc ∈ [0, 1] allows the
monotonicity-based procedures to be called more or less
often during the search (see Algorithm 1). For every con-
straint, the procedures exploiting monotonicity of f are
called only if ρmohc[f ] < τmohc. The ratio ρmohc indi-
cates whether the monotonicity-based image of a function
is sufficiently sharper than the natural one:

ρmohc[f ] =
Diam([f ]M ([V ]))
Diam([f ]N ([V ]))

As confirmed by our experiments, this ratio is relevant
for the bottom-up evaluation phases of MinRevise and
MaxRevise, and also for MonotonicBoxNarrow in
which a lot of evaluations are performed.

ρmohc is computed in a preprocessing procedure called
after every bisection/branching. Since more cases of mono-
tonicity occur as long as one goes down to the bottom of
the search tree (handling smaller boxes), Mohc-Revise is
able to activate in an adaptive way the machinery related to
monotonicity. Mohc-Revise thus appears to be the first
adaptive revise procedure ever proposed in (interval) con-
straint programming.
Occurrence Grouping for enhancing monotonicity
A new procedure called OccurrenceGrouping has been
in fact added in Mohc-Revise just after the preprocess-
ing. When f is not monotonic w.r.t. a variable x, it is how-
ever possible that f be monotonic w.r.t. a subgroup of oc-
currences of x. Thus, this procedure uses a Taylor-based
approximation of f and solves on the fly a linear program
to perform a good occurrence grouping that enhances the
monotonicity-based evaluation of f . Details and experimen-
tal evaluation appear in (Araya 2010).

Properties
Proposition 2 (Time complexity)
Let c be a constraint. Let n be its number of variables, e

be its number of unary and binary operators (n ≤ e). Let
ε be the precision expressed as a ratio of interval diameter.
Then, Mohc-Revise is time O(n e log( 1

ε )) = O(e2 log( 1
ε )).

The time complexity is dominated by Monotonic-
BoxNarrow (see Lemma 1). A call to HC4-Revise and a
gradient calculation are both O(e) (Benhamou et al. 1999).
Proposition 3 Let c : f(X) = 0 be a constraint such that
f is continuous, differentiable and monotonic w.r.t. every
variable in the box [X]. Then, with a precision ε,
MonotonicBoxNarrow computes the hull-consistency of c.

Proofs can be found in (Araya 2010) and (Chabert and
Jaulin 2009). However, the new Proposition 4 below is
stronger in that the variables appearing once (Y ) are handled
by MinMaxRevise and not by MonotonicBoxNarrow.



Proposition 4 Let c : f(X, Y ) = 0 be a constraint, in
which variables in Y appear once in f . If f is continuous,
differentiable and monotonic w.r.t. every variable in the box
[X ∪ Y ], then, with a precision ε,
Mohc-Revise computes the hull-consistency of c.
A complete proof can be found in (Araya 2010). It is

also proven that no monotonicity hypothesis is even required
for the variables in Y provided that Mohc-Revise uses a
combinatorial variant of HC4-Revise.

Lemmas 2, 3 and 4 below mainly show Propositions 3 and
4. They also prove the correction of Mohc-Revise.
Lemma 2 When MonotonicBoxNarrow reduces the in-
terval of a variable xi ∈ X using [fxi

max] (resp. [fxi
min]),

then, for all j 6= i, [fxj

min] (resp. [fxj
max]) cannot bring any

additional narrowing to the interval [xj ].
Lemma 2 is a generalization of Proposition 1 in (Chabert

and Jaulin 2009) to interval functions ([fxi
max] and [fxi

min]).
Lemma 3 If 0 ∈ [z] = [fmax]([Y ∪ W ]) (resp. 0 ∈
[z] = [fmin]([Y ∪ W ])), then MonotonicBoxNarrow
cannot contract an interval [xi] (xi ∈ X) using [fxi

min] (resp.
[fxi

max]).
Lemma 4 If MonotonicBoxNarrow (following a call to
MinMaxRevise) contracts [xi] (with xi ∈ X), then a sec-
ond call to MinMaxRevise could not contract [Y ∪ W ]
further.

Lemmas 2 and 4 justify why no loop is required in
MohcRevise for reaching a fixpoint in terms of filtering.

Proofs of Lemmas 3 and 4
Fig. 3 helps us to understand the proofs in the case f is in-
creasing. We distinguish two cases according to the initial
right bound of the interval [xi].

xi' xi

z

z

z'

z'

z

z

L

xi

z

R

[fmin]
xi

[fmax]
xi

xi

Lemma 3

Lemma 4

[xi]

[xi]

[xi']

Figure 3: Proofs of Lemmas 3 and 4 stressing the duality of
MinMaxRevise and MonotonicBoxNarrow. [z] is the image
of [fmax] obtained by the evaluation phase of MaxRevise.

In Lemma 3, we have 0 ∈ [z] = [fmax]([Y ∪ W ]),
i.e., z ≤ 0 ≤ z. This condition is in particular true when
MaxRevise brings a contraction. We can verify that xi

cannot be improved by RightNarrowFmin: since xi is a
solution of [fxi

max](xi) = 0 (the dark segment in Fig. 3), xi

also satisfies the constraint [fxi
min](xi) ≤ 0 that is used by

RightNarrowFmin.

In Lemma 4, we have 0 < [z] = [fmax]([Y ∪ W ])
(MaxRevise does not bring any contraction). After the
contraction performed by RightNarrowFmin, the right
bound of the interval becomes x′i. A new evaluation of
[fmax]([Y ∪ W ]) yields [z′] that is still above 0, so that a
second call to MaxRevise would not bring any additional
contraction. 2

Improvement of MonotonicBoxNarrow
Finally, Lemmas 2 and 3 provide simple conditions to save
calls to LeftNarrowFmax (and symmetric procedures)
inside MonotonicBoxNarrow.

Due to these added conditions, as confirmed by profiling
tests appearing in (Araya 2010), 35% of the CPU time of
Mohc-Revise is spent in MinMaxRevise whereas only
9% is spent in the more costly MonotonicBoxNarrow
procedure (between 1% and 18% according to the instance).

Experiments
We have implemented Mohc with the interval-based C++ li-
brary Ibex (Chabert 2010). All the competitors are also
available in Ibex, thus making the comparison fair: HC4,
Box, Octum (Chabert and Jaulin 2009), 3BCID(HC4),
3BCID(Box), 3BCID(Octum).
Mohc and competitors have been tested on the same

Intel 6600 2.4 GHz over 17 NCSPs with a finite
number of zero-dimensional solutions issued from CO-
PRIN’s web page2. We have selected all the NCSPs with
multiple occurrences of variables found in the first two sec-
tions (polynomial and non polynomial systems) of the web
page. We have added Brent, Butcher, Direct Kin.
and Virasaro from the section called difficult problems.

All the solving strategies use a round-robin variable se-
lection. Between two branching points, three procedures are
called in sequence. First, a monotonicity-based existence
test, improved by Occurrence Grouping, checks whether the
image computed by every function contains zero3. Second,
the evaluated contractor is called : Mohc, 3BCID(Mohc),
or one of the competitors listed above. Third, an interval
Newton is run if the current box has a diameter 10 or less.
All the parameters have been fixed to default values. The
shaving precision ratio in 3B and Box is 10% ; a constraint
is pushed into the propagation queue if the interval of one
of its variables is reduced more than τpropag = 1% with all
the contractors except 3BCID(HC4) and 3BCID(Mohc)
(10%). For Mohc, the parameter τmohc has been fixed to
70% or 99%. ε is 3% in Mohc and 10% in 3BCID(Mohc).

Results
Table 1 compares the CPU time and number of choice points
obtained by Mohc and 3BCID(Mohc) with those obtained
by competitors. The last column yields the gain obtained by
Mohc, i.e.: Gain = CPU time (best competitor)

CPU time (best Mohc based strategy)

The table reports very good results obtained by Mohc,
both in terms of filtering power (low number of choice
points) and CPU time. Results obtained by 3BCID(Box),

2See www-sop.inria.fr/coprin/logiciels/ALIAS/Benches/benches.html
3The time required by this existence test is small compared to

the total time (generally less than 10%; 1% for 3BCID) while it
sometimes greatly improves the performance of competitors.



Table 1: Experimental results. The first column includes the name
of the system, its number of equations and the number of solutions.
The other columns report the CPU time in second (above) and the
number of choice points (below) for all the competitors.

NCSP HC4 Box 3B(HC4) Mohc70 Mohc99 3B(Mo70) 3B(Mo99) Gain
Butcher >4e+5 >4e+5 282528 >4e+5 >4e+5 5431 1722 163
8 3 1.8e+8 2.2e+6 288773 623

Direct kin. >2e+4 >2e+4 17507 2560 2480 428 356 49.1
11 2 1.4e+6 777281 730995 8859 5503 253

Virasoro >2e+4 >2e+4 7173 1180 1089 1051 897 8.00
8 224 2.5e+6 805047 715407 71253 38389 66.8

Yamam.1 32.4 12.6 11.7 19.2 27.0 2.2 2.87 5.30
8 7 29513 3925 3017 24767 29973 345 295 10.2

Geneig 1966 3721 390 463 435 107 81.1 4.81
6 10 4.1e+6 1.3e+6 161211 799439 655611 13909 6061 26.6

Hayes 163 323 41.6 30.9 27.6 17.0 13.8 3.02
8 1 541817 214253 17763 73317 49059 4375 1679 10.6

Trigo1 93 332 151 30 30.6 57.7 73.2 3.10
10 9 5725 6241 2565 1759 1673 459 443 5.79

Fourbar 863 2441 1069 361 359 366 373 2.40
4 3 1.6e+6 1.1e+6 965343 437959 430847 58571 45561 21.2

Pramanik 26.9 91.9 35.9 30.3 25.0 20.8 21.3 1.29
3 2 103827 81865 69259 87961 69637 12691 8429 8.22

Caprasse 2.04 11.5 2.73 1.87 2.69 2.64 4.35 1.09
4 18 7671 5957 1309 4577 3741 867 383 3.42

Kin1 6.91 26.9 1.96 5.68 5.65 1.79 3.43 1.09
6 16 1303 689 87 1055 931 83 83 1.05

Redeco8 3769 9906 6.28 3529 2936 6.10 10.65 1.03
8 8 1.0e+7 7.9e+6 2441 6.8e+6 4.6e+6 2211 1489 1.64

Trigexp2 1610 >2e+4 86.9 1507 1027 87 165 1.00
11 0 1.6e+6 14299 1417759 935227 14299 7291 1.96

Eco9 39.9 94.1 13.9 46.8 44.2 14.0 26.6 0.99
9 16 115445 110423 6193 97961 84457 6025 4309 1.44

I5 9310 >2e+4 55.9 7107 7129 57.5 84.1 0.97
10 30 2.4e+7 10621 1.6e+7 1.5e+7 9773 8693 1.22

Brent 497 151 18.9 244 232 19.9 41.4 0.95
10 1008 1.8e+6 23855 3923 752533 645337 3805 3189 1.23

Katsura 182 2286 77.8 106 143 104 251 0.75
12 7 271493 251727 4251 98779 94249 3573 3471 1.22

Octum and 3BCID(Octum) are not reported because the
methods are not competitive at all with Mohc. For instance,
Octum is one order of magnitude worse than Mohc. The su-
periority of Mohc over Box highlights that it is better to per-
form a better box narrowing effort less often, when mono-
tonicity has been detected for a given variable. Mohc and
HC4 obtain similar results on 9 of the 17 benchmarks. With
τmohc = 70%, note that the loss in performance of Mohc
(resp. 3BCID(Mohc)) w.r.t. HC4 (resp. 3BCID(HC4)) is
negligible. It is inferior to 5%, except for Katsura (25%).

On 6 NCSPs, Mohc shows a gain comprised between 2.4
and 8. On Butcher and Direct kin., a very good gain
in CPU time of resp. 163 and 49 is observed. Without the
monotonicity existence test before competitors, a gain of 37
would be obtained in Fourbar. As a conclusion, the com-
bination 3BCID(Mohc) appears to be a must.

Related Work
A constraint propagation algorithm exploiting monotonic-
ity appears in the interval-based solver ALIAS 4. The revise
procedure does not use a tree for representing an expression
f (contrarily to HC4-Revise). Instead, every projection
function fo

proj is generated to narrow every occurrence o and
is evaluated with a monotonicity-based extension [fo

proj ]M .
This is more expensive than MinMaxRevise and is not op-
timal since no MonotonicBoxNarrow procedure is used.

(Chabert and Jaulin 2009) describes a constraint propa-
gation algorithm called Octum. Mohc and Octum have

4See www-sop.inria.fr/coprin/logiciels/ALIAS/ALIAS.html

been initiated independently in the first semester of 2009.
To sum up, Octum calls MonotonicBoxNarrow when
all the variables of the constraint are monotonic.

Compared to Octum, (a) Mohc does not require a func-
tion be monotonic w.r.t. all its variables simultaneously;
(b) Mohc uses MinMaxRevise to quickly contract the
intervals of variables (in Y ) occurring once (see Proposi-
tion 4); (c) Mohc uses an Occurrence Grouping to detect
more cases of monotonicity.

A first experimental analysis (not reported here)
shows that the even better performance of Mohc is
mainly due to the condition stated in Lemma 3 (and
tested during MinMaxRevise), used to save calls to
LeftNarrowFmax (and symmetric procedures).

Conclusion
This paper has presented an interval constraint propaga-
tion algorithm exploiting monotonicity. Using ingredi-
ents present in the existing procedures HC4-Revise and
BoxNarrow, Mohc has the potential to replace advanta-
geously HC4 and Box, as shown by our first experiments.
3BCID(Mohc) seems to be a very promising combination.

The Mohc-Revise procedure manages two user-
defined parameters, including τmohc for tuning the sensitiv-
ity to monotonicity. A significant future work is to render
Mohc-Revise auto-adaptive by allowing τmohc to be au-
tomatically tuned during the combinatorial search.
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