
An Interval Constraint Propagation Algorithm
Exploiting Monotonicity

Ignacio Araya, Bertrand Neveu, Gilles Trombettoni

INRIA, University of Nice-Sophia, CERTIS, France
FirstName.Name@sophia.inria.fr

Abstract. When a function f is monotonic w.r.t. a variable x in a given
box, it is well-known that the monotonicity-based interval extension of
f computes a sharper image than the natural interval extension does.
Indeed, the overestimation due to the variable x with multiple occur-
rences in f disappears. However, monotonicity has not been exploited in
interval filtering/contraction algorithms for solving systems of nonlinear
constraints over the reals.
We propose in this paper a new interval constraint propagation algo-
rithm, called MOnotonic Hull Consistency (Mohc), that exploits mono-
tonicity of functions. The propagation is standard, but the Mohc-Revise

procedure, used to filter/contract the variable domains involved in an in-
dividual constraint, is novel. This revise procedure uses two main bricks
for narrowing intervals of the variables involved in f . One procedure is
a monotonic version of the well-known HC4-Revise. A second procedure
performs a dichotomic process calling interval Newton iterations, close
to (while less costly than) the procedure BoxNarrow used in the Box con-
traction algorithm.
When f is monotonic w.r.t. every variable with multiple occurrences,
Mohc is proven to compute the optimal/sharpest box enclosing all the
solutions of the constraint (hull consistency). Experiments show that
Mohc is a relevant approach to handle constraints having several variables
with multiple occurrences, contrarily to HC4 and Box.

1 Introduction

Interval-based solvers can solve systems of numerical constraints (i.e., equations
or inequalities over the reals). They are becoming useful for handling numerical
CSPs encountered in dynamic systems defined in robust control or autonomous
robot localization [13]. Also, novel applications emerge from various domains
such as robotics design and kinematics [17], or proof of conjectures (e.g., the
proof of Lorentz’s strange attractors detailed in [22]).

Two main types of algorithms allow solvers to remove inconsistent values
from the domains of variables. Interval Newton and related algorithms general-
ize to intervals standard numerical analysis methods [12, 19]. Contraction algo-
rithms issued from constraint programming are also in the heart of interval-based
solvers. The constraint propagation algorithms HC4 [3] and Box [23, 3] are very
often used by solvers. They perform a propagation loop and filter the variable
domains (i.e., improve their bounds) with a specific Revise procedure (called
HC4-Revise and BoxNarrow) handling the constraints individually.

2 Ignacio Araya, Bertrand Neveu, Gilles Trombettoni

In practice, HC4-Revise often computes an optimal box enclosing all the so-
lutions to one constraint c when no variable appears twice in c. When one critical
variable appears several times in c, HC4-Revise is generally not optimal. In this
case, BoxNarrow is proven to compute a sharper box. The new revise algorithm
presented in this paper, called Mohc-Revise, tries to handle the general case
when several variables have multiple occurrences in c.

When a function f is monotonic w.r.t. to a variable x in a given box, it
is well-known that the monotonicity-based interval extension of f produces no
overestimation related to the multiple occurrences of x. Mohc-Revise exploits
this property to improve contraction/filtering. Monotonicity is generally verified
for a few pairs (f, x) at the beginning of the search, but can be detected for
more pairs as long as one goes to the bottom of the search tree, handling smaller
boxes.

After introducing notations and background in Section 2, Sections 3 and 4
describe the Mohc-Revise algorithm, leading to two constraint propagation vari-
ants called LazyMohc and Mohc. Section 5 details related properties. In particu-
lar, when f is monotonic w.r.t. every variable with multiple occurrences, Mohc
(a variant in fact) is proven to compute the optimal/sharpest box enclosing all
the solutions of the constraint (hull consistency property). Experiments shown
in Section 6 highlight that Mohc is a relevant approach to handle constraints
having several variables with multiple occurrences.

2 Background

The algorithms presented in this paper aim at solving systems of equations or,
more generally, numerical CSPs.

Definition 1 A numerical CSP (NCSP) P = (X, C,B) contains a set of
constraints C and a set X of n variables. Every variable xi ∈ X can take a
real value in the interval [xi] and B is the Cartesian product (called a box)
[x1]× ...× [xn]. A solution of P is an assignment of the variables in X satisfying
all the constraints in C.

Since real numbers cannot be represented in computer architectures, note
that the bounds of an interval [xi] should actually be defined as floating-point
numbers. Most of the set operations can be achieved on boxes, such as inclusion
and intersection. An operator Hull is often used to compute an outer approxi-
mation of the union of several boxes. It returns the minimal box including the
input boxes.

x, resp. x, denotes the lower bound, resp. the upper bound, of [x]. Mid([x])
denotes the midpoint of [x] while Diam([x]) ≡ x − x denotes the diameter, or
size, of the interval [x].

To find all the solutions of an NCSP with interval-based techniques, the
solving process starts from an initial box representing the search space and
builds a search tree. The tree search bisects the current box, that is, splits
on one dimension (variable) the box into two sub-boxes, thus generating one
choice point. At every node of the search tree, filtering (also called contraction)
algorithms reduce the bounds of the current box. These algorithms comprise

An Interval Constraint Propagation Algorithm Exploiting Monotonicity 3

interval Newton algorithms issued from the numerical analysis community [12,
20] along with contraction algorithms issued from the constraint programming
community. The process terminates with atomic boxes of size at most ω on
every dimension.

The contraction algorithm presented in this paper proposes new procedures.
They are adaptations of the classical HC4-Revise [3] and BoxNarrow [23, 3] pro-
cedures that take advantage of the monotonicity of functions.

The HC4 algorithm performs an AC3-like propagation loop. Its revise proce-
dure, called HC4-Revise, traverses twice the tree representing the mathematical
expression of the constraint for narrowing all the involved variable intervals. An
example is shown in Fig. 1.

Box is also a propagation algorithm. For every pair (f, x), where f is a func-
tion of the considered NCSP and x is a variable involved in f , the a other vari-
ables in f are replaced with their interval [y1], ..., [ya], and the BoxNarrow proce-
dure reduces the bounds of [x] such that the new left (resp. right) bound is the
leftmost (resp. rightmost) solution of the univariate equation f(x, [y1], ..., [ya]) =
0. Existing revise procedures use a shaving principle to narrow [x]: Slices [si] in-
side [x] with no solution are discarded by checking whether f([si], [y1], ..., [ya])
does not contain 0 and by using a univariate interval Newton. Box is stronger
than HC4 in that the narrowing effort performed by Box on a variable x with
multiple occurrences removes the overestimation effect on it. However, it is not
optimal in case the other variables yi also have multiple occurrences.

These algorithms are used in our experiments as a sub-contractor embedded
in a 3B algorithm [15] (or a variant 3BCID [21]). 3B uses a shaving refutation
principle similar to SAC [7]. The main procedure splits an interval into slices.
A slice at the bounds is discarded if calling a sub-contractor (e.g. HC4) on the
resulting subproblem leads to no solution.

The Mohc algorithm exploits the monotonicity of functions to better contract
intervals. Let us first introduce the well-known monotonicity-based interval ex-
tension of f , denoted [f]M in this article. It appears that the overestimation
due to a variable x occurring several times in f disappears when f is mono-
tonic w.r.t. x in a given box. (For the sake of conciseness, we sometimes write
that “x is monotonic”.) Let us take f(x) = x3 − 3x2 + x as an example. The
image of [3, 4] calculated by the natural interval extension [f] of f (i.e., us-
ing interval arithmetic for each primitive operator) yields [−18, 41], which is an
overestimation of the optimal image. But the derivative f ′(x) = 3x2 − 6x + 1,
and f ′([3, 4]) = [3, 30] > 0. We deduce that f is monotonic (increasing) in
[x] = [3, 4]. In this case, the image can be optimally obtained at both bounds of
[x]: [f]M ([3, 4]) = [f(3), f(4)] = [3, 20].

3 The Monotonic Hull-Consistency Algorithm

The MOnotonic Hull-Consistency algorithm (in short Mohc) is a new constraint
propagation algorithm that exploits monotonicity of functions to better contract
a box. The propagation loop is exactly the same AC3-like algorithm performed by
the famous HC4 and Box. Its novelty lies in the Mohc-Revise procedure handling
one contraint individually and described in Algorithm 1.

4 Ignacio Araya, Bertrand Neveu, Gilles Trombettoni

Algorithm 1 Mohc-Revise (in-out [B]; in f , Y , W , ρmohc, τmohc, ε)
HC4-Revise(f(Y, W) = 0, Y, W, [B])
if W 6= ∅ and ρmohc[f] < τmohc then

[G]← GradientCalculation(f, W, [B])
(fog, W)← OccurrenceGrouping(f, W, [B], [G])
(fmax, fmin, X, W)← ExtractMonotonicVars(fog, W, [B], [G])
MinMaxRevise([B], fmax, fmin, Y, W)
MonotonicBoxNarrow([B], fmax, fmin, X, [G], ε)

end if

This procedure aims at narrowing the current box [B]. It works on a unique
equation1 f(Y, W) = 0, in which the variables in Y occur once in the expression
f whereas the variables in W occur several times in f .

Mohc-Revise starts by a call to HC4-Revise (an exception terminating the
procedure is raised if an empty box is obtained, proving the absence of solution).
If f contains variables with multiple occurrences (W 6= ∅) and if another con-
dition is fulfilled (see Section 4.1), then five procedures are called to detect and
exploit the monotonicity of f .

The GradientCalculation function simply computes the gradient of f . More
precisely, it computes the partial derivatives w.r.t. every variable w in W having
multiple occurrences.

The OccurrenceGrouping function is not required in Mohc-Revise and can
be viewed as an improvement of it. It rewrites the expression f into a new
form fog such that the image [fog]M ([B]) computed by the monotonicity-based
interval extension is sharper than, or at worst equal to, the image [f]M ([B]) ⊂
[f]([B]). This sophisticated function is briefly introduced in Section 4.2.

Using the vector [G], for every variable w ∈ W (with multiple occurrences),
the function ExtractMonotonicVars checks whether 0 belongs to the partial
derivative ∂fog

∂w ([B]). If it does not, it means that fog is monotonic w.r.t. w, so
that w is removed from W to be added in X. At the end, X contains variables
with multiple occurrences that are monotonic; W contains those that are not
detected to be monotonic. (In the following, [gi] = ∂fog

∂xi
([B]) is the ith component

of [G]. It denotes the partial derivative on the ith variable xi in X.) Finally, the
function returns the two expressions exploiting, for every variable xi ∈ X, the
monotonicity of fog w.r.t. xi. fmin is the expression fog in which every [xi] is
replaced by xi (resp. xi) if fog is increasing (resp. decreasing) w.r.t. xi. For fmax,
every [xi] is replaced by xi (resp. xi) if fog is increasing (resp. decreasing) w.r.t.
xi.

The next two routines are in the heart of Mohc-Revise and are detailed
below. They mainly work with the two functions fmin and fmax. The procedure
MinMaxRevise narrows the variables in Y (appearing once in f and thus in fog)
and those in W . The procedure MonotonicBoxNarrow narrows the monotonic
variables in X.

At the end, if Mohc-Revise has contracted the interval of a variable in W
(more than a user-defined ratio τpropag), then the constraint is pushed into
1 The procedure can be straightforwardly extended to handle an inequality.

An Interval Constraint Propagation Algorithm Exploiting Monotonicity 5

the propagation queue in order to be handled again in a subsequent call to
Mohc-Revise. Otherwise, we know that a fixpoint in terms of filtering has been
reached (under some assumptions). Indeed, nice properties presented in Section 5
explain why MinMaxRevise contracts [Y] optimally while MonotonicBoxNarrow
contracts [X] optimally. The constraint is thus not pushed into the propagation
queue.

Note that a variable y in Y , appearing once in f , is handled by MinMaxRevise,
and not by MonotonicBoxNarrow, even if it is monotonic. We have made this
choice because MinMaxRevise is less costly than MonotonicBoxNarrow (see Propo-
sition 3) and has the same power of filtering on [y] (see Lemma 2).

3.1 The MinMaxRevise procedure

Algorithm 2 MinMaxRevise (in-out [B]; in fmax, fmin, Y , W)
HC4-Revise(fmin(Y, W) ≤ 0, Y, W, [B]) /* also called MinRevise */
HC4-Revise(fmax(Y, W) ≥ 0, Y, W, [B]) /* also called MaxRevise */

MinMaxRevise brings a contraction on variables in Y and W . The monotoni-
city-based interval evaluation yields [f]M ([B]) = [[fmin]([B]), [fmax]([B])], where
[fmin], resp. [fmax], denotes the natural extension of fmin, resp. fmax.
Checking that 0 ∈ [f]M ([B]) ([f]M ([B]) ⊂ [f]([B])) amounts in checking that:

[fmin]([B]) ≤ [0, 0] ≤ [fmax]([B])

This inequality is thus split into two parts and each of both is used by
HC4-Revise to narrow intervals of variables in Y and W . Figure 1 illustrates how
the first part of Mohc-Revise narrows the box of the constraint: x2−3 x+y = 0,
with [x] = [4, 10] and [y] = [−80, 30].

Fig. 1. HC4-Revise (Left), MinRevise (Center) and MaxRevise (Right) applied to
x2 − 3 x + y = 0.

HC4-Revise works in two phases (Fig. 1-left). The evaluation phase eval-
uates every node bottom-up and attachs the result to the node. The second
phase, due to the equality node, starts by intersecting the top interval [−94, 118]
with 0, and proceeds top-down by applying “inverse” (projection) functions. For
instance, since nplus = nminus + y, the inverse function of this sum yields
the difference [y]← [y]∩ [nplus]− [nminus] = [0, 0]− [−14, 80] = [−80, 14]. The

6 Ignacio Araya, Bertrand Neveu, Gilles Trombettoni

symmetric operation on nminus produces [−14, 80], but this narrowing does not
allow a contraction lower in the tree, so that [x] is left unchanged. After this step,
OccurrenceGrouping detects that the function is monotonic w.r.t. x (trivial case
when the derivative is positive so that f = fog), hence ExtractMonotonicVars
puts x in the set X of monotonic variables.

Fig. 1-center shows the first step of MinMaxRevise. The tree represents the
inequality fmin(4, y) ≤ 0. Calling HC4-Revise on this expression produces a
new contraction on y because [x] is replaced by x = 4. On the top of the tree,
the narrowing phase intersects [−76, 18] with [−∞, 0] (inequality), and the first
inverse projection function yields [y] ← [y] ∩ [nplus] − [nminus] = [−76, 0] −
[4, 4] = [−80,−4]. Following the same principle, MaxRevise applies HC4-Revise
to fmax(10, y) ≥ 0 and narrows [y] to [−70,−4] (see Fig. 1-right).

3.2 The MonotonicBoxNarrow procedure

Algorithm 3 MonotonicBoxNarrow (in-out [B]; in fmax, fmin, X, [G], ε)
for all variable xi ∈ X /* xi contains multiple occurrences and is monotonic */ do

if [fmin]([B]) < 0 and applyFmax[i] then
if [gi] > 0 then
LeftNarrowFmax([xi], f

xi
max, [gi], ε)

else if [gi] < 0 then
RightNarrowFmax([xi], f

xi
max, [gi], ε)

end if
end if

if [fmax]([B]) > 0 and applyFmin[i] then

if [gi] > 0 then
RightNarrowFmin([xi], f

xi
min, [gi], ε)

else if [gi] < 0 then
LeftNarrowFmin([xi], f

xi
min, [gi], ε)

end if
end if

end for

The procedure MonotonicBoxNarrow (Algorithm 3) aims at narrowing the
interval of every monotonic variable xi in X. Without loss of generality, as-
sume in the following that xi is increasing. If the condition [fmin]([B]) < 0 and
applyFmax[i], detailed in Section 4.3, is not fulfilled, then the left bound of [xi]
cannot be improved. Otherwise, the LeftNarrowFmax procedure is used to im-
prove the left bound of [xi] with the function fxi

max. Also, RightNarrowFmin is
used to narrow the right bound of [xi] with the function fxi

min (if [fmax]([B]) > 0
and applyFmin[i]). fxi

max and fxi
min denote univariate thick/interval functions de-

pending on xi. They have similarities with the interval function used in the
classical Box algorithm. fxi

max and fxi
min are produced by replacing in the fog

expression all the variables except xi with a punctual or an interval value. All
the monotonic variables in X, except xi, are replaced with the right bound and
all the variables in Y and W are replaced with their current interval in [B].

An Interval Constraint Propagation Algorithm Exploiting Monotonicity 7

We detail below how the left bound of [xi] is improved by the LeftNarrowFmax
procedure. Note that if MonotonicBoxNarrow is called, this requires MinMax-
Revise be terminated with no failure. This means that LeftNarrowFmax will
never return an empty interval for [xi]: either [xi] is left unchanged, or [xi] is
narrowed to a non-empty interval (see cases 1 and 2 in Fig. 4).

3.3 The LeftNarrowFmax procedure

This procedure has a close connection with the LeftNarrow procedure used by
the well-known Box algorithm [23, 3]. However, because f is monotonic w.r.t.
xi, the contraction process is faster, that is, it is a true dichotomic, and thus
log-time, process.

Algorithm 4 LeftNarrowFmax (in-out [x]; in fx
max, [g], ε)

if [fx
max](x) < 0 /* test of existence */ then

[l]← [x]

size← ε× Diam([l])

while Diam([l]) > size do

xm ← Mid([l]); zm ← fx
max(xm) /* zm ← fx

min(xm) in {Left|Right}NarrowFmin */

[l]← [l] ∩ xm − zm
[g]

/* Newton iteration */

end while

[x]←
ˆ
l, x

˜
end if

Let us illustrate LeftNarrowFmax (Algorithm 4) applied to the fx
max function

depicted in Fig. 2. Starting with [l] = [x], the goal is to narrow the bounds of
[l] for providing a tight approximation of the point L, i.e., the new left bound
of [x]. LeftNarrowFmax provides a sharp enclosure of L and keeps only its left
bound at the end (last line of Algorithm 4).

A first existence test checks that fx
max(x) < 0, i.e., the point A in Fig. 2-left

is below zero. Otherwise, a zero occurs in x so that [x] cannot be narrowed,
leading to an early termination of the procedure.

A dichotomic process is then run until Diam([l]) < size. A classical Newton
iteration is iteratively launched from the midpoint xm of [l], e.g., from the point
B in Fig. 2-left, and from the point C in Fig. 2-right.

Graphically, an iteration of a univariate interval Newton [20] intersects [l]
with the projection on the x axis of the cone (dotted lines) enclosing all the par-
tial derivatives. Note that the cone forms an angle of at most 90 degrees because
the function is monotonic and the derivative [g] is positive2. This explains why
the diameter of [l] is divided by at least 2 at each iteration. Indeed, if zm < 0
(Fig. 2-left), then the term − zm

[g] is positive and the dichotomic process will con-
tinue in the right side of xm. If zm > 0 (Fig. 2-right), then − zm

[g] < 0 and one
will proceed with the left side of xm.
2 Every Newton iteration could recompute a tighter partial derivative [g] although we

do not perform it in our implementation.

8 Ignacio Araya, Bertrand Neveu, Gilles Trombettoni

Fig. 2. First two Newton iterations for narrowing the left bound of [x].

Lemma 1. The procedures LeftNarrowFmax, RightNarrowFmin, LeftNarrow-
Fmin, RightNarrowFmax terminate and run in time O(log2(1

ε)), where ε is a
precision expressed as a ratio of interval diameter.

Finally note that Newton iterations called inside LeftNarrowFmax and Right-
NarrowFmax work with zm = fx

max(xm), that is, a punctual curve (in bold in the
figure), and not with a thick function. In the same way, LeftNarrowFmin and
RightNarrowFmin work with zm = fx

min(xm).

4 Advanced features of Mohc-Revise

4.1 The user-defined parameter τmohc and the array ρmohc

The user-defined parameter τmohc ∈ [0, 1] allows the monotonicity-based proce-
dures to be called more or less often (see Algorithm 1). For every constraint,
ρmohc[f] tries to predict whether the monotonicity-based treatment that fol-
lows is promising: the procedures exploiting monotonicity are called only if
ρmohc[f] < τmohc. These ratios are computed in a preprocessing procedure called
after every bisection (i.e., choice point) on the current box [B], as follows:

ρmohc[f] =
Diam([f]M ([B]))
Diam([f]([B]))

=
Diam([[fmin]([B]), [fmax]([B])])

Diam([f]([B]))

This ratio thus indicates whether the monotonicity-based image of a function
is sufficiently sharper than the natural one. As confirmed by the experiments
detailed in Section 6, this ratio is relevant for the bottom-up evaluation phases
of Minrevise and Maxrevise, and also for MonotonicBoxNarrow in which a lot
of evaluations are performed.

The experiments below show that the parameter τmohc is useful when Mohc
is a sub-contractor of 3BCID [21]. In this case, Mohc is called many times between
two branching points, so that the CPU time required by the preprocessing pro-
cedure filling the array ρmohc is negligible. This trend would also be true for any
other sophisticated contractor calling a constraint propagation sub-contractor,
such as 3B [15], Quad [14] or Box-k [2]. Future experiments will confirm if tun-
ing a parameter τmohc is still useful when Mohc is called only once between two
branching points.

An Interval Constraint Propagation Algorithm Exploiting Monotonicity 9

4.2 The OccurrenceGrouping function

The motivation is the following. If 0 ∈ ∂f
∂x ([B]), then one cannot deduce that x is

monotonic. However, it is possible that there exists a subgroup of the occurrences
of x, which are replaced by a new auxiliary variable xa, such that ∂f

∂xa
([B]) ≥ 0.

Also, another subgroup of occurrences, which are replaced by a new auxiliary
variable xb, may verify ∂f

∂xb
([B]) ≤ 0. In this case, such an occurrence grouping

rewrites the expression f into a new form fog such that the image [fog]M ([B])
computed by the monotonicity-based interval extension is sharper than, or at
worst equal to, the image [f]M ([B]) = [f]([B]).

This problem can be formalized by a linear program and solved by a specific
algorithm OccurrenceGrouping in time O(k log2(k)) for each variable x occur-
ring k times in a function f . Details can be found in the companion paper [1].

Consider the function f1(x) = −x3 + 2x2 + 6x, with [x] = [−1.2, 1]. f1 is
not detected monotonic since the image of [−1.2, 1] by natural evaluation of the
derivative f ′1(x) = −3x2 + 4x + 6 contains 0. OccurrenceGrouping produces:
f1(x) = fog

1 (xa, x) = −x3
a + 2(0.35xa + 0.65x)2 + 6 xa. We can observe that:

[fog
1]M ([x]) = [−5.472, 7] ⊆ [f1]M ([x]) = [−8.2, 10.608].

At the end, OccurrenceGrouping returns the new expression fog and a new
set W that includes the new variables xa and xb, if any. (ExtractMonotonicVars
tranfers xa and xb into the set X of monotonic variables.)

4.3 Avoiding calls to the dichotomic process

This section gathers several features that have been introduced in Monotonic-
BoxNarrow to avoid calls to LeftNarrowFmax (and symmetric procedures).

First condition

Fig. 3. Monotonic functions fxi
max and fxi

min

We first depict in Figure 3 the increasing functions fxi
max and fxi

min enclosing
fog. The function between the two curves in bold is sharper than the natural
enclosure used in the standard BoxNarrow because the monotonic variables in
X \ {xi} are replaced by points. However, it is still an overestimation of the
optimal function because of the multiple occurrences of variables in W .

fxi
max is above fxi

min. Note that both functions can overlap in the general case
although the upper function fxi

max (in bold) is always above fxi
min.

10 Ignacio Araya, Bertrand Neveu, Gilles Trombettoni

We have represented on the figure an initial value for [xi], before a call to
LeftNarrowFmax. The figure justifies the condition [fmin]([B]) ≥ 0 in Algo-
rithm 3 that avoids the call to LeftNarrowFmax. Let [zmin] be [fmin]([B]) (ver-
tical segment in bold on the figure). It immediately shows that since zmin ≥ 0,
xi is solution, so that the lower bound of [xi] cannot be improved.

Arrays applyFmin and applyFmax

For every monotonic variable xi ∈ X, the booleans applyFmin[i] and apply-
Fmax[i] are initialized to true. They are updated in the four procedures Left-
NarrowFmax, RightNarrowFmax, LeftNarrowFmin and RightNarrowFmin. With
no loss of generality, let us explain the principle assuming that f is increasing
w.r.t. x1 (x1 ∈ X+; X+ denotes the set of increasing variables; X− denotes the
set of decreasing variables; X+ denotes the vector in which every xi ∈ X+ is
replaced with the upper bound xi.) Since x1 is increasing, LeftNarrowFmax is
called to narrow the left bound of [x1]. Three cases may occur according to x1,
as illustrated in Fig. 4.

Fig. 4. Three possible cases for the left bound of [x1].

In the cases 1 and 2, and not in the case 3, there is a point v1 ∈ [x1] which is a
zero (i.e., which belongs to the segment in bold). That is: ∃v1 ∈ [x1] s.t. 0 ∈ [z1],
with: [z1] = fx1

max(v1) = [f](v1, X+ \ {x1}, X−, [Y], [W]).
Cases 1 and 2 are easily detected at the first line of LeftNarrowFmax, by

slightly complexifying the existence test. The key point is that the relation 0 ∈
[z1] implies:

∀i 6= 1,∀vi ∈ [xi] : zi ≤ z1 ≤ 0

With3:
[zi] = [f](vi, X

+ \ {xi}, X−, [Y], [W]) = fxi
min(vi)

The rightmost inequality comes directly from 0 ∈ [z1]. The leftmost inequal-
ity comes from the study of monotonicity of f : vi ≤ xi and the bounds of X
selected in [z1] maximize f while the bounds of X selected in [zi] minimize f .

Thus, in cases 1 and 2, we know that fxi
min(vi) ≤ 0. This means that for every

i 6= 1, fxi
min cannot bring any additional narrowing to [xi], the relation used

3 If xi is decreasing, then [zi] = [f](vi, X
+, X− \ {xi}, [Y], [W]).

An Interval Constraint Propagation Algorithm Exploiting Monotonicity 11

to shave the interval being always true, even for vi = xi (if xi is increasing).
In other terms, if xi is increasing (resp. decreasing), then it is useless to call
RightNarrowFmin (resp. LeftNarrowFmin) to contract [xi]. That is why, in the
cases 1 or 2, for all i 6= 1, applyFmin[i] is set to false.

This advanced feature is a slight generalization of the feature proposed by
Jaulin and Chabert in [11]. In their paper, fxi

min and fxi
max are punctual functions

because there are no sets Y and W .

4.4 Lazy evaluations of fmin and fmax

The implemented MohcRevise procedure is in fact optimized in the aim of
reusing as much as possible the different evaluations of fmin and fmax. In Al-
gorithm 3, intervals [zmin] = [fmin]([B]) and [zmax] = [fmax]([B]) do not need
be recomputed at each iteration. Furthermore, these intervals have been previ-
ously computed in the bottom-up evaluation phases of MinMaxRevise and can
be transmitted from a procedure to the other.

The value zmax can also be used to add a first and cheap call to a Newton
iteration at the very beginning of LeftNarrowFmax: [x]← [x] ∩ x− zmax

[g] .
Finally, the existence test of LeftNarrowFmax makes it possible to reuse the

value [zl] = [fx
max](x). This allows us to add, just after the existence test, a

second cheap Newton iteration : [x]← [x] ∩ x− zl

[g] .

4.5 The LazyMohc variant

LazyMohc is a simplified version of Mohc in which the MonotonicBoxNarrow pro-
cedure only calls the first and cheap Newton iteration described above for every
bound of xi in X. In other words, the LazyMohc variant runs MinMaxRevise, two
cheap Newton iterations per monotonic variable, but no dichotomic process.

5 Properties

A very interesting property concerning Mohc is that the Mohc-Revise procedure
can compute an optimal box w.r.t. an individual constraint if certain conditions
are fulfilled. These conditions thus identify a polynomial subclass (Propositions 1
and 2) of the hull-consistency problem (i.e., searching for an optimal box) which
is difficult when there exist multiple occurrences of variables. The corresponding
propositions appear below and the proofs can be found in appendix.

Proposition 1 Let c : f(X, Y,W) = 0 be a constraint such that f is continuous
and differentiable w.r.t. every variable in the box [B]. Variables in X and W
appear several times in f while variables yi ∈ Y appear once. For every xi ∈ X,
f is monotonic w.r.t. xi.

If W is empty and if for all yi ∈ Y, 0 /∈ ∂f
∂yi

([B]) (implying that yi is mono-
tonic), then:
One call to Mohc-Revise computes the hull-consistency of the constraint c in
[B] (with a precision ε).

The proof is based on the lemma 2 related to the intervals [Y] contracted by
MinMaxRevise, and on the lemma 3 related to the intervals [X] contracted by
MonotonicBoxNarrow.

12 Ignacio Araya, Bertrand Neveu, Gilles Trombettoni

Lemma 2. With the same hypotheses as in Proposition 1, if W is empty and if
for all yi ∈ Y, 0 /∈ ∂f

∂yi
([B]) (implying that yi is monotonic), then:

One call to MinMaxRevise contracts optimally every [yi] ∈ [Y].

Lemma 3. With the same hypotheses as in Proposition 1:
One call to MonotonicBoxNarrow (following a call to MinMaxRevise) con-

tracts optimally every [xi] ∈ [X].

Proposition 2 is in a sense stronger than Proposition 1 because no mono-
tonicity hypothesis is required for the variables yi occurring once in the ex-
pression. However, a stronger and more expensive procedure is used instead
of HC4-Revise. Replacing HC4-Revise with a so-called TAC-revise is a way to
make a system hull-consistent when all the constraints contain only variables
with single occurrence. The fact that a given function f , having only variables
with single occurrence, is continuous ensures that the image produced by the
natural extension [f] is optimal. But the top-down narrowing phase manages in
a sense inverse functions of f that are not necessarily continuous. HC4-Revise
returns the hull of the different continuous subparts provided by the piecewise
analysis performed at each node for the inverse functions. Instead, TAC-revise
combinatorially combines the continuous subparts of different nodes for nar-
rowing optimally the variables, thus achieving hull-consistency. Details about
TAC-revise can be found in [6].

Proposition 2 Let us call Mohc-Revise’ a variant of Mohc-Revise in which
HC4-Revise is replaced by TAC-revise. Let us consider the same hypotheses as
in Proposition 1. Then:

If W is empty, one call to Mohc-Revise’ computes the hull-consistency of
the constraint c in [B] (with a precision ε).

This proposition is significant because in practice, after only a few bisections
in the search tree, HC4-Revise generally computes a box as sharp as TAC-revise
does, except in pathological cases. Thus, Mohc-Revise (calling the standard
HC4-Revise procedure) often computes hull-consistency when all the variables
appear once or are monotonic.

Finally, Proposition 3 details the time complexity of Mohc-Revise.

Proposition 3 Let c be a constraint. Let n be its number of variables, e be the
number of nodes in its expression tree (i.e., twice its number of unary and binary
operators), and k be the maximum number of occurrences of a variable. Let ε be
the precision expressed as a ratio of interval diameter.

Mohc-Revise is time O(n (e log2(1
ε) + k log2(k))). LazyMohc-Revise is time

O(e + n + n k log2(k)).

6 Experiments

We have implemented Mohc and LazyMohc with the interval-based C++ library
Ibex [5, 4]. Mohc has been tested on 17 benchmarks with a finite number of zero-
dimensional solutions issued from COPRIN’s web page [18]. In the presented ex-
periments, all the Mohc-based solving strategies embed Mohc as a sub-contractor
of 3BCID [21].

An Interval Constraint Propagation Algorithm Exploiting Monotonicity 13

6.1 Tuning the user-defined parameters

The first experiments allow us to get an idea of relevant values for τmohc and ε.
Fig. 5-left is interesting because it shows that finely tuning ε has no significant
impact on performance. For most of the NCSPs, the best value falls between 1

32

and 1
8 , and the curves are rather flat. We have thus fixed ε to 10% (at least when

Mohc is a sub-contractor of 3BCID).

Fig. 5. Tuning the user-defined parameters. Left: Tuning ε. For every benchmark, the

curves shows how a ratio Time(Mohc)
Time(LazyMohc)

evolves when ε decreases (i.e., the reached pre-

cision in MonotonicBoxNarrow increases). Right: Tuning τmohc. For every benchmark,

the curve shows how a ratio Time(Mohc)
Time(HC4)

evolves when τmohc increases.

Fig. 5-right shows that, for all the NCSPs, the best value falls between 0.6 and
0.99. 4 More precisely, even on NCSPs that do not benefit from our monotonicity-
based procedures, setting τmohc to 0.6 only slightly decreases the performance
(only 11% in the worst case, i.e., Katsura). That is why the experiments that
follow perform two trials with τmohc = 0.7 and τmohc = 0.99 (for the most
favorable NCSPs).

6.2 Experimental protocol

We have selected all the NCSPs with multiple occurrences of variables found in
the first two sections (polynomial and non polynomial systems) of the Web page.
We have added Brent, Butcher, Direct Kinematics and Virasaro from the
section describing the difficult problems. All the competitors are also available
in Ibex, thus making the comparison fair.

Our Mohc-based solving strategy uses a round-robin variable selection. Be-
tween two branching points, three procedures are called in sequence. First, a
monotonicity test just checks whether every monotonicity-based function evalua-
tion contains zero. Its specificity is that the test does not apply to the initial func-
tions f in the NCSP, but to the functions fog produced by OccurrenceGrouping.
Second, the contractor 3BCID(Mohc) is called. Third, an interval Newton is run
if the current box has a diameter 10 or less. All the parameters in 3BCID, HC4,
Box and Mohc (except τmohc) have been fixed to default values. The precision
4 Although not shown on curves, the value 0.99 seems always better than the value

1.0...

14 Ignacio Araya, Bertrand Neveu, Gilles Trombettoni

ratio in 3B and Box is 10% ; the number of additional slices handled by the CID
part is 1; a constraint is pushed into the propagation queue if the interval of one
of its variables is reduced more than τpropag = 10%.

All the experiments have been performed on an Intel 6600 2.4 GHz, and
a timeout of at least one hour has been chosen for each benchmark.

6.3 Results

Table 1 compares the CPU time and number of choice points obtained by Mohc
with those obtained by competitors: HC4 and Box.

The table reports very good results obtained by Mohc, both in terms of filter-
ing power (low number of choice points) and CPU time. As expected, the bad
results obtained by Box highlight that Box is not relevant when several variables
in a same contraint have multiple occurrences. For the NCSPs Yamamura1, Brent
and Kin1, Box shows a slightly better contraction power than Mohc, but it does
not pay off in terms of performance. This underlines that it is better to perform
a box narrowing effort less often, when monotonicity has been detected for a
given variable.

The comparison with HC4 is more interesting. Mohc and HC4 obtain similar
results on 8 of the 17 benchmarks. With τmohc = 0.7, note that the loss in
performance w.r.t. HC4 is negligible. It is inferior to 5%, except for Redeco8
(9%) and Katsura (25%). On 6 NCSPs, Mohc shows a gain comprised between
2.7 and 7.9. On Butcher, Direct Kinematics and Fourbar, a very good gain
in CPU time of resp. 153, 48 and 37 is observed.

Although the difference is not so significant, Mohc generally provides better
results than LazyMohc, in particular when τmohc = 0.99.

7 Related Work

The first constraint propagation algorithm exploiting monotonicity appears in
the interval-based solver ALIAS [16] developed by Merlet. It is a 2B-consistency
algorihm that is improved when the “GradientSolve” option is selected to com-
pute and exploit the gradient of functions appearing in constraints. Every pro-
jection function fo

proj used to narrow a given occurrence o is first explicitly and
symbolically generated (and simplified) before calling on it a procedure close to
ExtractMonotonicVars (contrarily to HC4-Revise, no expression tree is used).
The monotonicity-based evaluation [fo

proj]M then brings a better contraction on
[o] than [fo

proj] would do.
Monotonicity of functions has also be used in quantified NCSPs to easily

contract a universally quantified variable that is monotonic [10].
Jaulin and Chabert propose in [11] a constraint propagation algorithm called

Octum. Note that Octum and Mohc have been initiated independently in the first
semester of 2009. The most common part is MonotonicBoxNarrow that is nearly
the same in both algorithms. We have already mentioned in Section 4.3 that our
arrays applyFmin and applyFmax are inspired by Octum and have been adapted
to the general case (functions having as well non monotonic variables appearing
once (Y) or several times (W)). Compared to Jaulin and Chabert’s algorithm,
Mohc presents additional features:

An Interval Constraint Propagation Algorithm Exploiting Monotonicity 15

Table 1. Results obtained by Mohc. The first column includes the name of the bench-
mark; the bottom of the cell contains the corresponding number of equations and the
number of solutions. The other columns report the results obtained by different algo-
rithms. Every cell shows the CPU time in second (above) and the number of choice
points (below). The contraction algorithms are 3BCID(HC4) (column HC4), 3BCID(Box)
(column Box), MonoTest followed by 3BCID(HC4) (column MonoTest). MonoTest is also
used before the contractor shown in the four last columns: 3BCID(LazyMohc) with
ρmohc = 0.7 (column Lazy(0.7)), the same with ρmohc = 0.99 (column Lazy(0.99)),
3BCID(Mohc) with ρmohc = 0.7 and ε = 10% (column Mohc(0.7)), the same with
ρmohc = 0.99 (column Mohc(0.99)). All the algorithms are followed by a call to in-
terval Newton before the next bisection. The last column yields the gain obtained by

Mohc, i.e., Time(3BCID(HC4) based strategy)
Time(3BCID(Mohc) based strategy)

(the denominator is given by the best of the

previous two columns).

NCSP HC4 Box MonoTest Lazy(0.7) Lazy(0.99) Mohc(0.7) Mohc(0.99) Gain
Butcher 282528 25867 281664 5221 1986 5026 1842 153
8 3 1.8e+8 1.7e+6 1.8e+8 2.2e+6 346063 2.2e+6 324669 554

Direct kin. 17515 >28800 17507 481 431 458 363 48
11 2 1.4e+6 1.4e+6 11931 8811 9541 5609 250

Fourbar 13121 11011 1069 429 420 366 353 37
4 3 8.5e+6 732429 965343 79697 67397 58571 45695 186

Virasoro 7158 >28800 7173 1538 1413 1241 902 7.9
8 224 2.6e+6 2.6e+6 135833 102997 79211 38739 67

Geneig 598 >7200 390 117 95.2 116 87.6 6.8
6 10 205859 161211 17059 9083 15341 6975 30

Yamam.1 11.8 15.3 11.7 2.26 2.91 2.02 2.69 5.8
8 7 3017 183 3017 357 345 303 297 10

Pramanik 95.9 278 35.9 21.9 22.1 19.6 19.6 4.9
3 2 124661 23017 69259 13817 9649 12691 8435 15

Hayes 41.7 282 41.6 17.2 13.6 17.3 13.9 3.0
8 1 17763 7247 17763 4447 1707 4437 1717 10

Trigo1 150.7 773 151 74.0 92.3 55.8 71.9 2.7
10 9 2565 1005 2565 641 603 461 455 5.6

Caprasse 2.77 32.2 2.73 2.51 2.94 2.74 2.34 1.18
4 18 1309 719 1309 951 499 903 391 3.3

Kin1 1.95 68.7 1.96 1.78 3.33 1.97 3.36 0.99
6 16 87 65 87 83 83 87 81 1.1

Trigexp2 90.1 >3600 90.9 88.2 228 91.4 169 0.99
11 0 15187 15187 14303 12567 15099 7717 2.0

I5 55.7 >3600 55.9 58.4 81.7 58.5 82.9 0.95
10 30 10621 10621 9809 8849 9811 8715 1.2

Eco9 13.9 102.0 13.9 15.1 26.5 14.6 26.0 0.95
9 16 6193 4991 6193 6047 4707 6037 4343 1.4

Brent 19.0 311.0 18.9 20.0 42.1 20.2 41.4 0.94
10 1008 3923 2137 3923 3807 3341 3815 3189 1.2

Redeco8 6.23 69.8 6.28 6.32 11 6.82 10.88 0.91
8 8 2441 1913 2441 2231 1741 2347 1537 1.6

Katsura 77.4 2265 77.8 104 274 103 245 0.75
12 7 4251 3557 4251 3671 3373 3573 3151 1.3

16 Ignacio Araya, Bertrand Neveu, Gilles Trombettoni

– Mohc exploits monotonicity of one function in one variable interval once the
box becomes sufficiently small to make appear this property. Octum requires
a function be monotonic in all its variable intervals simultaneously.

– Occurrence grouping quickly rewrites the constraint expressions in order to
detect more cases of monotonicity.

– Contrarily to Octum, Mohc uses the MinMaxRevise function to quickly con-
tract the intervals of variables occurring once (Y) and of those which are
not monotonic (W). Due to Proposition 2, Mohc does not need to call the
more costly MonotonicBoxNarrow procedure to handle monotonic variables
that appear once in the expression.

8 Conclusion

This paper has presented a new interval constraint propagation algorithm ex-
ploiting the monotonicity of functions. Using ingredients present in the existing
HC4-Revise and BoxNarrow, Mohc has the potential to replace advantageously
HC4 and Box, as shown by our first experiments. To confirm this claim, we need
to also conduct our experiments with strategies using only Box, HC4 or Mohc,
i.e., without 3B or 3BCID.

References

1. I. Araya, B. Neveu, and G. Trombettoni. A New Monotonicity-Based Interval
Extension Using Occurrence Grouping. In Workshop IntCP, 2009.

2. I. Araya, G. Trombettoni, and B. Neveu. Filtering Numerical CSPs Using Well-
Constrained Subsystems. In Proc. CP’09, LNCS 5732, 2009.

3. F. Benhamou, F. Goualard, L. Granvilliers, and J.-F. Puget. Revising Hull and
Box Consistency. In Proc. ICLP, pages 230–244, 1999.

4. G. Chabert. www.ibex-lib.org, 2009.
5. G. Chabert and L. Jaulin. Contractor Programming. Artificial Intelligence,

173:1079–1100, 2009.
6. G. Chabert, G. Trombettoni, and B. Neveu. Box-Set Consistency for Interval-based

Constraint Problems. In SAC - 20th ACM Symposium on Applied Computing,
pages 1439–1443, Santa Fe, USA, 2005.

7. R. Debruyne and C. Bessière. Some Practicable Filtering Techniques for the Con-
straint Satisfaction Problem. In Proc. IJCAI, pages 412–417, 1997.

8. B. Faltings. Arc-consistency for Continuous Variables. Artif. Intelligence, 65, 1994.
9. E. Freuder. A Sufficient Condition for Backtrack-Free Search. J. ACM, 29(1):24–

32, 1982.
10. A. Goldsztejn, C. Michel, and M. Rueher. Efficient Handling of Universally Quan-

tified Inequalities. Constraints, 14(1):117–135, 2009.
11. L. Jaulin and G. Chabert. Hull Consistency Under Monotonicity. In To appear in

Proc. CP’09, LNCS 5732, 2009.
12. L. Jaulin, M. Kieffer, O. Didrit, and E. Walter. Applied Interval Analysis. Springer,

2001.
13. M. Kieffer, L. Jaulin, E. Walter, and D. Meizel. Robust Autonomous Robot Lo-

calization Using Interval Analysis. Reliable Computing, 3(6):337–361, 2000.
14. Y. Lebbah, C. Michel, M. Rueher, D. Daney, and J.P. Merlet. Efficient and safe

global constraints for handling numerical constraint systems. SIAM Journal on
Numerical Analysis, 42(5):2076–2097, 2005.

An Interval Constraint Propagation Algorithm Exploiting Monotonicity 17

15. O. Lhomme. Consistency Techniques for Numeric CSPs. In IJCAI, pages 232–238,
1993.

16. J.-P. Merlet. ALIAS: An Algorithms Library for Interval Analysis
for Equation Systems. Technical Report 621, INRIA Sophia, 2000.
www-sop.inria.fr/coprin/logiciels/ALIAS/ALIAS.html.

17. J-P. Merlet. Interval Analysis and Robotics. In Symp. of Robotics Research, 2007.
18. J-P. Merlet. www-sop.inria.fr/coprin/logiciels/ALIAS/Benches/benches.html, 2009.
19. R.E. Moore, B. Kearfott, and M.J. Cloud. Introduction to Interval Analysis. SIAM,

2009.
20. A. Neumaier. Interval Methods for Systems of Equations. Cambridge Univ. Press,

1990.
21. G. Trombettoni and G. Chabert. Constructive Interval Disjunction. In Proc. CP,

LNCS 4741, pages 635–650, 2007.
22. W. Tucker. A Rigorous ODE Solver and Smale’s 14th Problem. Found. Comput.

Math., 2:53–117, 2002.
23. P. Van Hentenryck, L. Michel, and Y. Deville. Numerica : A Modeling Language

for Global Optimization. MIT Press, 1997.

A Proofs

A.1 Proof of Lemma 2

First recall that in every node of the expression tree Tfmax (resp. Tfmin) repre-
senting fmax (resp. fmin), there is no overestimation due to the variables in X
because they are replaced by points. The proof of Lemma 2 requires us prove that
two traversals of Tfmax (with HC4-Revise) is sufficient to reach a fixpoint in con-
traction on variables yj ∈ Y occurring once in Tfmax. A second proof must ensure
that a second call to MinMaxRevise following the call to MonotonicBoxNarrow
would not bring additional contraction to [yj].

Only two traversals of Tfmax

Since f is a continuous function and, for every yj ∈ Y , 0 /∈ ∂f
∂yj

([B]), then
the (bottom-up) evaluation or (top-down) narrowing functions g called in every
node during HC4-Revise of Tfmin (or Tfmax) are continuous and monotonic
in every of their arguments intervals. This comes from the rule of composition
of functions stating ∂f

∂yj
([B]) = ∂f

∂g (g([B])) × ∂g
∂yj

([B]). Since the multiplication

preserves the 0 in the resulting interval, 0 /∈ ∂f
∂yj

([B]) implies that 0 /∈ ∂f
∂g (g([B]))

and 0 /∈ ∂g
∂yj

([B]). The same rule applies to two nodes g1 and g2 for which g2 is an

argument of g1: ∂f
∂g2

([B]) = ∂f
∂g1

(g1([B])) × ∂g1
∂g2

([B]). The same reasoning yields
that 0 /∈ ∂g1

∂g2
([B]). Thus, every bottom-up evaluation function g is monotonic in

every of their arguments intervals. The same reasoning applies to the top-down
narrowing functions g since an “inverse” function of a monotonic (continuous)
function is also monotonic.

Because every node function g in Tfmin (or Tfmax) is monotonic, g computes
an arc-consistent output interval [zg], i.e., every real number z ∈ [zg] has a
support in the input intervals. Since Tfmin (or Tfmax) is a tree, the two traversals
of Tfmin performed by HC4-Revise then optimally narrow every yj ∈ Y . This is
an application [8] of a result by Freuder [9] concerning the finite-domain CSPs

18 Ignacio Araya, Bertrand Neveu, Gilles Trombettoni

stating that two (directed) arc-consistent traversals of an acyclic CSP makes
it globally-consistent. That is, no propagation loop is necessary and the two
traversals are sufficient to reach the fixpoint in filtering.

No impact of MonotonicBoxNarrow

During MinMaxRevise, every xi ∈ X is replaced by one of its bound xi or xi,
although these bounds are not optimal before the call to MonotonicBoxNarrow.
Fortunately, it turns out that the points picked during MinMaxRevise inside
every [xi] have no impact on the contraction brought to any [yj]. Let us detail
this point on Tfmax (the same reasoning holds for Tfmin) and with a variable
xi being increasing. Before the call to MinMaxRevise, since xi is increasing, it is
replaced by xi in Tfmax. The question becomes: if MonotonicBoxNarrow reduces
xi to a better value x′i, cannot a second call to MinMaxRevise with x′i bring a
new contraction on [yj]?

During MaxRevise, at the end of the bottom-up evaluation phase of Tfmax,
the root interval is [z] = [zl, zu]. Three cases may occur according to the signs
of zl and zu. Fig. 6 illustrates the two interesting cases.

Fig. 6. Two main cases in Mohc-Revise when MaxRevise is applied to fmax.

The case 1 (left side of Fig. 6) occurs when zl < 0 < zu, resulting in
[z′] = [0, zu] after intersection of [z] with [0,+∞] in the top of Tfmax (be-
cause [fmax]([B]) ≥ 0), and thus in a potential contraction of [yj]. However,
MonotonicBoxNarrow cannot contract [xi] with fxi

min (i.e., x′i = xi) since xi is
already a zero. This explains the condition (zl =)[fmax]([B]) > 0 in Algorithm 3.

The case 2 (right side of Fig. 6) occurs when 0 < zl < zu, resulting in
[z′] = [zl, zu] = [z] after intersection of [z] with [0,+∞]. Since [z] is not nar-
rowed, no [yj] is contracted in the top-down narrowing phase of Tfmax. Next,
MonotonicBoxNarrow reduces xi to x′i, but 0 < z′l < z′u remains true (see figure).
Thus, a second call to MinMaxRevise could not contract further [yj].

These cases highlight the duality of the contraction process.
A last trivial case occurs when zl < zu < 0. MinMaxRevise detects that there

is no solution due to an empty intersection with [0,+∞]. (Any other smaller
values for zl and zu, due to xi → x′i, would imply the same failure.) 2

A.2 Proof of Lemma 3

First recall that MonotonicBoxNarrow cannot result in an empty box (no solu-
tion) because MinmaxRevise has been called before with success. This precon-

An Interval Constraint Propagation Algorithm Exploiting Monotonicity 19

dition implies that for any bound of each xi ∈ X, only the three cases depicted
in Fig. 4 may occur. When the case 1 occurs, the dichotomic narrowing pro-
cess performed by LeftNarrowFmax (or symmetric procedures) converges onto
a final interval [l] including surely a zero of fxi

max. Contrarily to the classical
LeftNarrow procedure used by Box [23, 3], [l] surely contains the zero because
the fxi

max evaluations lead to no overestimation (see proof of Lemma 2). When
the cases 2 or 3 occur (see Fig. 4), [xi] cannot be (left) narrowed because the
bound is a zero of the function.

After only one loop on each variable xi ∈ X (i ∈ 1, ..., n), each of the
2 × n bounds of [xi] are optimal either because computed by the dichotomic
process (case 1 explained above), or because applyFmin([i])=true (or apply-
Fmax([i])=true), which ensures that no further reduction is expected in these
cases 2 or 3 (see Section 4.3). 2

A.3 Proof of Proposition 1

Proposition 1 follows Lemmas 2 and 3. One call to MinMaxRevise and one loop
on the monotonic variables in X ensure that hull-consistency is achieved. 2

A.4 Proof of Proposition 2

The lemma 3 also holds for Proposition 2, but the lemma 4 must replace the
lemma 2.

Lemma 4. With the same hypotheses as in Proposition 2, one call to MinMax-
Revise’ (calling TAC-revise) contracts optimally every [yj] ∈ [Y].

The second part of the proof of the lemma 4 follows that of the lemma 2.
The first part of the proof is based on the correctness of TAC-revise.

Remark. We assume in Proposition 2 that f is continuous in the current box.
This hypothesis can be relaxed provided that the bottom-up expression eval-
uations are performed by a “TAC-eval” procedure that would combinatorially
combine the continuous parts extracted in the different nodes of the expression
tree.

A.5 Proof of Proposition 3 (time complexity)

Calls to HC4-Revise (two traversals of an expression tree), GradientCalcula-
tion (computing all the partial derivatives also amounts in two tree traversals)
and MinMaxRevise are O(e). A call to OccurrenceGrouping [2] is O(n k log2(k)).
The complexity of MonotonicBoxNarrow is time O(n e log2(1

ε)). One Newton
iteration takes O(e) (one function evaluation, plus one gradient calculation).
The maximum number of possible slices in one interval [xi] is 1

ε . The num-
ber of Newton iterations is O(log2(1

ε)) (see Lemma 1). In LazyMohc-Revise,
MonotonicBoxNarrow is time O(n) because are called only two constant-time
Newton iterations per interval.

Overall, the time complexity of Mohc-Revise is O(e) plus O(n k log2(k)), plus
O(n e log(1

ε)), or O(n). 2

