
Journal of Global Optimization manuscript No.
(will be inserted by the editor)

Node Selection Strategies in Interval Branch and Bound
Algorithms

Bertrand Neveu · Gilles Trombettoni ·
Ignacio Araya

Received: date / Accepted: date

Abstract We present in this article new strategies for selecting nodes in in-
terval Branch and Bound algorithms for constrained global optimization. For a
minimization problem the standard best-first strategy selects a node with the
smallest lower bound of the objective function estimate. We first propose new
node selection policies where an upper bound of each node/box is also taken
into account. The good accuracy of this upper bound achieved by several
contracting operators leads to a good performance of the node selection rule
based on this criterion. We propose another strategy that also makes a trade-
off between diversification and intensification by greedily diving into potential
feasible regions at each node of the best-first search. These new strategies
obtain better experimental results than classical best-first search on difficult
constrained global optimization instances.

1 Introduction

The paper deals with continuous global optimization (nonlinear programming)
deterministically handled by interval Branch and Bound (B&B). Several works
have been performed for finding good branching strategies [10], but little
work for the node selection itself. The interval solvers generally follow a best

Ignacio Araya is supported by the Fondecyt Project 11121366.

B. Neveu
Imagine LIGM Université Paris–Est, France
E-mail: Bertrand.Neveu@enpc.fr

G. Trombettoni
LIRMM, University of Montpellier, CNRS, France
E-mail: Gilles.Trombettoni@lirmm.fr

I. Araya
Pontificia Universidad Católica de Valparáıso, Chile
E-mail: rilianx@gmail.com

2 Bertrand Neveu et al.

first search strategy, with some studies for limiting its exponential memory
growth [6,20].

To our knowledge, the only node selection strategies for interval B&B al-
gorithms were proposed by Casado et al. in [6], Csendes in [9] and Markot
et al. in [14]. One criterion to maximize is suitable for unconstrained global
minimization, called C3 in [14]:

C3 :=
f∗ − lb
ub− lb

[lb, ub] = [f]([x]) is the interval obtained by an interval evaluation of the
real-valued objective function f in the current box [x], i.e. [lb, ub] is a range
interval that includes all real images of any point in [x] by f . f∗ is the minimal
objective value of any feasible point in the studied domain. Since f∗ is generally
not known, f̃ , the objective value of the best feasible point found so far, can
be used as an approximation of f∗. This criterion favors boxes with tight
objective range [lb, ub] and nodes with good lb. For constrained optimization,
another criterion (to maximize), numbered C5, is equal to C3 × fr. It takes
into account a feasibility ratio fr computed from all the inequality constraints.
The criterion C7 proposes to minimize lb

C5
.

Other node selection strategies have been studied for deterministic (while
non interval-based) B&B algorithms. Depth-first, breadth-first or best-first
search strategies are the most commonly used strategies in existing optimiza-
tion codes. It is important to understand that depth-first search favors the
exploitation (intensification) of the search space because the search goes down
towards the feasible solutions inside the region visited. Best-first search fa-
vors the exploration (diversification) in that nodes explored consecutively can
belong to significantly different regions. Also, best-first search selects a node
with small lower bound, so with the greatest potential improvement of the
objective value.

Different node selection strategies are proposed in the Solving Constraint
Integer Programs (SCIP) optimization code [22]. Depth-first, breadth-first and
best-first search strategies are available. With the option restartdfs, the
SCIP solver performs a depth first search, but periodically (i.e., every k = 100
backtracking steps) selects the best node. The most sophisticated strategy,
called Upper Confidence bounds for Trees (UCT) [13], is used for handling the
mixed integer linear programming subclass. This strategy keeps all the nodes
of the search tree, including the closed ones, and maintains a label (UCT score)
for each of them depending on its evaluation and on the number of times it has
been visited. At each iteration, the algorithm traverses again the search tree
from the root until an open node (i.e., a leaf) is reached by following, at each
level, the child whose UCT score is the higher. The score of the visited nodes
are decreased in order to diversify the search (i.e., to avoid that the same path
is followed every time). A conclusion found in [22] is that UCT is costly but
can improve the performances when limited to the first nodes of the search.

The node selection strategy of the Baron global optimization solver is
briefly described in [24]. The default node selection rule switches between

Node Selection Strategies in Interval Branch and Bound Algorithms 3

the node with the minimal violation and the one with a smallest lower bound.
When memory limitations become stringent, Baron temporarily switches to a
depth-first search. The violation value of a node is defined by the summation of
the violation errors contributed by each variable during node processing. These
variable violation errors are computed from the violations of the nonconvex
constraints by the solution of the relaxed (convex) problem.

Node selection strategies have also been studied for convex Mixed Integer
Non Linear Programs (MINLP). The default strategy of the Bonmin solver [5]
selects the best lower bound. Depth-first and breadth-first search are also
available. Finally, a dynamic strategy starts with depth-first search and turns
to best-first search once three integer feasible solutions have been found.

The K-Best-First Search [11] (KBFS) has been proposed for selecting nodes
in the open list for combinatorial (discrete) optimization problems. KBFS(k)
performs node expansion cycles iteratively. In each cycle, the k best open nodes
are expanded. Their children are generated and added to the open nodes list
before a new cycle is performed. Thus, KBFS makes a tradeoff between a
breadth-first and a best-first search. If k = 1, then KBFS(1) resorts to a best-
first search. KBFS(∞) resorts to breadth-first search since it expands all the
nodes at the same level before going to the next level.

This paper proposes new node selection policies in interval Branch and
Bound algorithms for constrained or unconstrained optimization.

After presenting the necessary background in Section 2, a first node selec-
tion rule is described in Section 3. This approach uses, not only a lower bound
of a given node, but also an upper bound of the optimal cost. This upper
bound is made more accurate by using contraction methods that eliminate
infeasible sub-regions. The adopted policy selects randomly the node with a
smallest lower bound or the node with a smallest upper bound (to be defined
more precisely further).

A second approach makes a simple tradeoff between exploration and ex-
ploitation. A best-first interval B&B runs a greedy diving at each node to
better focus on feasible regions (see Section 4).

Section 5 carries out an empirical study of different variants of these novel
strategies and shows that they perform well on difficult non convex constrained
optimization problems belonging to the Coconut benchmark [23].

2 Background and Interval B&B Algorithms

An interval [xi] = [xi, xi] defines the set of reals xi s.t. xi ≤ xi ≤ xi. A box [x]
is a Cartesian product of intervals [x1]× ...× [xi]× ...× [xn].

The paper deals with continuous global optimization under inequality con-
straints defined by:

min
x∈[x]

f(x) s.t. g(x) ≤ 0

4 Bertrand Neveu et al.

where f : Rn → R is the real-valued objective (non convex) function and
g : Rn → Rm is a vector-valued (non convex) function.1 x = (x1, ..., xi, ...xn)
is a vector of variables varying in a domain (i.e., a box) [x]. A point x is said
to be feasible if it satisfies the constraints.

An interval (or spatial) B&B scheme for continuous constrained global
optimization (also known as nonlinear programming) is described below. Al-
gorithms 1 and 2 correspond to the algorithms implemented in IbexOpt [26]
and IBBA [15,21] solvers and help understanding the node selection strategies
that follow. However, these strategies can be embedded in any interval Branch
and Bound algorithm.

The algorithm is launched with the vector of constraints g, the objective
function f and with the input domain initializing a list Boxes of boxes to
be handled. εobj is the absolute or relative precision required on the objective
function and is used in the stopping criterion. Therefore, the algorithm com-
putes a feasible point of cost f̃ such that no other solution exists with a cost
lower than f̃ − εobj . We add a variable xobj in the problem (to the vector x
of variables) corresponding to the objective function value, and a constraint
f(x) = xobj .

The B&B algorithm maintains two main types of information during the
iterations:

– f̃ : the value of the best feasible point xf̃ found so far, and

– fmin: the minimal value of the lower bounds xobj of the nodes [x] to explore,
i.e. the minimal xobj in the list of open nodes.

In other terms, in every box [x], there is a guarantee that no feasible point
exists with an objective function value lower than xobj .

The procedure SelectBox selects the next node to handle. If the criterion
selects a box [x] with a minimal lower bound estimate of the objective function
(xobj), the B&B algorithm will implement the standard best-first search.

The selected box [x] is then split into two sub-boxes [y] and [z] along
one dimension (selected by any branching strategy). Both sub-boxes are then
handled by the Contract&Bound procedure (see Algorithm 2).

A constraint xobj ≤ f̃ − εobj is first added to the problem for decreasing

the upperbound of the objective function in the box. Imposing f̃ − εobj as

a new upperbound (and not only f̃) aims at finding a solution significantly
better than the current best feasible point. The procedure then contracts the
handled box without loss of feasible part [8]. In other words, some infeasible
parts at the bounds of the domain are discarded by constraint programming
(CP) [28,3,19] and convexification [25,17] algorithms. This contraction works
on the extended box including the objective function variable xobj and on

1 We restrict the problem to inequality constraints because our IbexOpt software, in which
the new strategies proposed have been developed, must perform a rigorous upperbounding in
a feasible region with a nonempty interior. However, the node selection rules proposed in this
paper can also apply to the more general optimization problem having equality constraints.

Node Selection Strategies in Interval Branch and Bound Algorithms 5

Algorithm IntervalBranch&Bound (f , g, x, box, εobj , εsol)

fmin ← −∞; f̃ ← +∞;
fsbmin ← +∞ /* The lowest cost of the nodes having reached the εsol precision. */
Boxes← {box}
while Boxes 6= ∅ and f̃ − fmin > εobj and f̃−fmin

|f̃ |
> εobj do

[x] ← SelectBox (Boxes, criterion); Boxes ← Boxes \ {[x]}
([y], [z]) ← Bisect ([x])

([y], x
f̃

, f̃ , Boxes) ← Contract&Bound ([y], f , g, x, εobj , x
f̃

, f̃ , Boxes)

([z], x
f̃

, f̃ , Boxes) ← Contract&Bound ([z], f , g, x, εobj , x
f̃

, f̃ , Boxes)

(fsbmin, Boxes) ← UpdateBoxes ([y],εsol, f
sb
min,Boxes)

(fsbmin, Boxes) ← UpdateBoxes ([z],εsol, f
sb
min, Boxes)

fmin ← min(fsbmin, min[x]∈Boxes xobj)

Algorithm 1: Interval-based Branch and Bound

Algorithm Contract&Bound ([x], f , g, x, εobj , xf̃ , f̃ , Boxes)

g′ ← g ∪ {xobj ≤ f̃ − εobj}
[x] ← Contraction ([x], g′ ∪ {f(x) = xobj})
if [x] 6= ∅ then

// Upperbounding:
(x

f̃
, cost)← FeasibleSearch ([x], f , g′, εobj)

if cost < f̃ then
f̃ ← cost
Boxes← FilterOpenNodes(Boxes, f̃ − εobj)

return ([x], x
f̃

, f̃ , Boxes)

Algorithm 2: The Contract&Bound procedure run at each node of the B&B
algorithm

the associated constraint, so improving xobj amounts to improving the lower

bound of the objective function image (lowerbounding).

The last part of the procedure carries out upperbounding. FeasibleSearch
calls one or several heuristics searching for a feasible point xf̃ that improves the

best cost f̃ found so far. If the upperbound of the objective value is improved,
the FilterOpenNodes procedure performs a type of garbage collector on all

the open nodes by removing from Boxes all the nodes having xobj > f̃ − εobj .
In Algorithm 1, after the calls to Contract&Bound, the last calls to Update-

Boxes (see Algorithm 3) generally push the two sub-boxes in the set Boxes of
open nodes. However, if the size of a box reaches the precision εsol, the box
will be no more studied (i.e., bisected) and only the minimal value fsbmin of the
objective function of these small discarded boxes is updated.

Note that if the search tree is traversed in best-first order, then an expo-
nential memory may be required to store the nodes to handle.

6 Bertrand Neveu et al.

Algorithm UpdateBoxes ([x], εsol, f
sb
min, Boxes)

if [x] 6= ∅ then
if w([x]) > εsol then

Push ([x], Boxes)

else
fsbmin ← min(fsbmin, xobj) /* or min(fsbmin, [f]([x])) */

return (fsbmin, Boxes)

Algorithm 3: Routine for updating the list of open nodes or the minimal
objective function value of small boxes no more studied.

Let us recall that xobj is a lower bound of the objective function in the box

[x] (no feasible point below xobj) and xobj is an upper bound of the minimum

of the objective function in the box [x]. Remark that xobj does not generally
correspond to the objective value of a feasible point. Interval arithmetic [18]
provides an easy way to compute xobj and xobj . With interval arithmetic, we
replace the standard mathematical operators in f by their interval counterpart
to compute [f]([x]). Therefore, [f]([x]) computes a lower bound xobj while

[f]([x]) computes an upper bound xobj . In the next section, we compute better
lower and upper bounds that also take into account the constraints, i.e. the
feasible region.

3 New Selection Rule Using Upper and Lower Bounds

In optimization, the selection of the next node to expand is crucial for ob-
taining a good performance. The best node we can choose is such that it will
improve the most the upperbound. Indeed, the upperbound improvement re-
duces globally the feasible space due to the constraint: xobj ≤ f̃ − εobj . There
exist two phases in a Branch and Bound:

1. a phase where the algorithm tries to find the optimal solution, and
2. a second phase where one has to prove that this solution is optimal, which

requires one to expand all the remaining nodes.

Therefore the node selection matters only in the first phase.
We define in this section new strategies aggregating two criteria for select-

ing the box to be subdivided:

1. LB: The well known criterion used by best-first search and selecting the
open node with the smallest xobj . This criterion is optimistic since we
hope to find a solution with cost fmin, in which case the search would end.

2. UB: This criterion selects the node having the smallest upperbound, i.e. the
open node with the smallest xobj . Thus, if a feasible point is found in a
sub-box, it will more likely improve the best cost found so far.

Node Selection Strategies in Interval Branch and Bound Algorithms 7

This first UB criterion is symmetric to the LB one. For every box, xobj and
xobj are computed by the Contract&Bound procedure and label the node before
storing it in the set of open boxes. Remember that a variable xobj representing
the value of the objective function has been introduced. In this case, xobj
and xobj are simply the bounds of the interval [xobj] after contraction by
Algorithm 2. Constraint programming techniques like 3BCID [27] can improve
[xobj] by handling and discarding small slices at the bounds of [xobj] (shaving
process).

Note that the contraction of the problem including xobj produces generally
an even better computation of xobj than using a natural interval evaluation of
the objective function (i.e., xobj = ub computed by [lb, ub]← [f]([x])). In our
work, xobj constitutes an upper bound on the minimal value of the objective

value satisfying the constraints and lower than f̃ − εobj . Indeed, since we have
added the constraint xobj = f(x), the contraction on x due to the constraints
g(x) ≤ 0 are propagated on xobj . Therefore, a slice at the bounds of [xobj] may
be eliminated because it corresponds to a non feasible region.

We propose two ways to aggregate these two criteria.

– LB+UB

This strategy selects the node [x] with the smallest value of the sum xobj +
xobj . This corresponds to a minimization of both criteria with the same
weight, that is, a minimization of the middle of the interval of the objective
function estimate in the box.

– LBvUB: alternating criteria
In this second strategy, the next box to handle is chosen using one of the
two criteria. A random choice is made by the SelectBox function at each
node selection, with a probability UBProb of choosing UB.
If UB (resp. LB) is chosen and several nodes have the same cost xobj (resp.
xobj), then we use the other criterion LB (resp. UB) to break ties.
Experiments showed that the performance is not sensitive to a fine tuning
of the UBProb parameter provided it remains between 0.2 and 0.8, so that
the parameter has been fixed to 0.5. The experiments presented in Section 5
highlight the positive impact of this criterion on performance.

3.1 Improving the UB Criterion by Favoring Feasible Regions

The xobj value of each open box was computed when handled by Contract&Bound

(before being pushed into the heap of open nodes). Thanks to the modifica-
tions brought to Contract&Bound (see Algorithm 4), all xobj values fall in four
main categories. This explains how the UB criterion selects the next box to be
subdivided. The UB value xobj is:

1. lower than f̃ − εobj if the contraction procedure reduced xobj in the box,

2. equal to f̃ − εobj , if the box is a descendant of the box containing the

current best feasible point f̃ ,

8 Bertrand Neveu et al.

3. equal to f̃ − 0.9 εobj if the box was handled after the last update of f̃ ,

4. greater than f̃ − 0.9 εobj in the remaining case.

Algorithm Contract&Bound ([x], f , g, x, εobj , xf̃ , f̃)

g′ := g ∪ {xobj ≤ f̃−0.9εobj}
[x] ← Contraction ([x], g′ ∪ {f(x) = xobj})
if [x] 6= ∅ then

/* Upperbounding: */
(x

f̃
, cost)← FeasibleSearch ([x], f , g′, εobj)

if cost < f̃ then
f̃ ← cost
xobj ← f̃ − εobj
Boxes← FilterOpenNodes(Boxes, f̃ − εobj)

return ([x], x
f̃

, f̃)

Algorithm 4: Modification of the Contract&Bound procedure for improving
the UB criterion

As shown in the Contract&Bound pseudocode, this modification favors the
boxes that are issued by a bisection of boxes where the current best feasible
point was found.

The good experimental results obtained by the LBvUB strategy (see Sec-
tion 5) suggest that it is important to invest both in intensification (UB) and
in diversification (LB). In other words, the use of a second criterion allows the
search to avoid the drawback of using one criterion alone, i.e. (for LB) choosing
promising boxes with no feasible point and (for UB) going deeply in the search
tree where only slightly better solutions will be found trapped inside a local
minimum.

3.2 Implementation of the Set of Open Nodes

In our implementation, the set Boxes of open nodes was initially implemented
by a heap data structure, i.e. a binary tree, ordered by the LB criterion, thus
performing a best-first search. For the LBvUB strategy, several implementations
have been tested to select the nodes according to both criteria (LB and UB).
Several implementation choices have been tested.

One heap sorted by xobj

In this case, the node selection using UB comes at a linear cost in the number
of open nodes. In practice, on the tested instances, the time spent on the heap
management takes about 10% of the total time when the number of open
nodes exceeds 50,000.

Node Selection Strategies in Interval Branch and Bound Algorithms 9

Thus, we designed a variant that still uses one heap and checks |Boxes|:
If |Boxes| exceeds 50,000, the UBProb probability is changed to 0.1; otherwise
UBProb remains equal to 0.5. This variant leads to fewer calls to the xobj
minimization criterion.

Two heaps

Finally, we tried a cleaner implementation, with two heaps, one for LB, one for
UB.2 In addition, each element in one heap has a pointer to the corresponding
node in the other heap. All the operations, such as additions or removals,
must be performed twice, but are achieved in time log2(|Boxes|). Only the
heap filtering process, achieved by the FilterOpenNodes procedure (launched
by Contract&Bound) each time a better feasible point is found, remains in
linear time.

We ran experiments to test the different policies. It appeared that the
implementation using two heaps gave the best results. All the results of an
LBvXX strategy shown in the experimental part use this implementation.

4 New Selection Rule Based on a “Feasible Diving” Procedure

We have designed a second node selection strategy that makes a tradeoff be-
tween exploitation and exploration. The interval B&B algorithm described in
Algorithm 5 performs a best-first search that significantly differs from Algo-
rithm 1. The node selection strategy is a variant of the LB criterion that selects
a node [x] with a smallest xobj . We just add other criteria to break ties:

1. the highest node in the tree is selected,
2. in case of equality on the two criteria (xobj and then depth in the tree),

one selects the node generated first.

At each node of this interval B&B search, we now call a probing procedure
based on a greedy depth-first search to better intensify the search. This Fea-
sible Diving procedure is described in Algorithm 6. From the selected node,
FeasibleDiving builds a tree in depth-first search and keeps the more promis-
ing node at each iteration. The box in the node is bisected along one dimen-
sion (chosen by the same branching strategy as in the B&B algorithm, e.g. the
SmearSum relative branching strategy [26]) and the two sub-boxes are han-
dled by the Contract&Bound procedure (see Algorithm 2). The sub-box of [x]
with the smallest xobj is handled in the next step while the other sub-box is
pushed into the global heap Boxes implementing the list of open nodes. Con-
trarily to a standard depth-first search, FeasibleDiving does not perform any
backtracking. That is why we call it a greedy or diving algorithm.

The FeasibleDiving procedure tries to dive inside the feasible region (or
tries to prove that no such a feasible region exists) thanks to the Contraction

2 The heaps contain references (pointers) to the actual nodes.

10 Bertrand Neveu et al.

Algorithm IntervalBranch&BoundBis (f , g, x, box, εobj , εsol)

fmin ← −∞; f̃ ← +∞
fsbmin ← +∞ /* The lowest cost of the nodes having reached the εsol precision. */
Boxes← {box}
while Boxes 6= ∅ and f̃ − fmin > εobj and f̃−fmin

|f̃ |
> εobj do

[x] ← SelectBox (Boxes, criterion); Boxes ← Boxes \ {[x]}
([x], x

f̃
, f̃ , fsbmin, Boxes) ← FeasibleDiving ([x], g, f , x, εsol, xf̃ , f̃ , fsbmin,

Boxes)
if [x] 6= ∅ and w([x]) < εsol then fsbmin ← min(fsbmin, xobj)

fmin ← min(fsbmin, min[x]∈Boxes xobj)

Algorithm 5: Interval-based Branch and Bound calling Feasible Diving at
each node

Algorithm FeasibleDiving ([x], g, f , x, εsol, xf̃ , f̃ , f
sb
min, Boxes)

while [x] 6= ∅ and w([x]) > εsol do
([y], [z]) ← Bisect ([x])

([y], x
f̃

, f̃) ← Contract&Bound ([y], f , g, x, εobj , x
f̃

, f̃)

([z], x
f̃

, f̃) ← Contract&Bound ([z], f , g, x, εobj , x
f̃

, f̃)

([x]best, [x]worst) ← Sort ([y], [z], criterion) /* [x]best < [x]worst */

(fsbmin, Boxes) ← UpdateBoxes ([x]worst, εsol, f
sb
min, Boxes)

[x]← [x]best

return ([x], x
f̃

, f̃ , fsbmin, Boxes)

Algorithm 6: The Feasible Diving procedure run at each node of a best-
first interval B&B algorithm.

and FeasibleSearch (upperbounding) procedures performed at each itera-
tion. In other terms, if we follow the [x]best node from the root of the tree
built by FeasibleDiving, slices of [x]best with no feasible points are discarded
by the Contraction procedure (potentially leading to en empty box guaran-
teed to contain no feasible point) and feasible points are searched for inside
[x]best at each node. That is why we call this procedure Feasible Diving.

Overall, we should highlight that this B&B alternates a diversification
phase that selects the nodes in best-first order and an intensification phase,
performed by FeasibleDiving, where the nodes are selected by a greedy div-
ing.

It is mentioned in [4] and [5] that a procedure similar to FeasibleDiving

has been proposed for mixed integer linear programming solvers. While not
detailed in the literature, this Probed Diving procedure seems to be used by
the IBM Ilog CPLEX MIP solver with some success.

Node Selection Strategies in Interval Branch and Bound Algorithms 11

5 Numerical Experiments

We have run experiments on a sample of constrained global optimization in-
stances. Section 5.1 reports the implementation and the protocol used. Sec-
tion 5.2 justifies that completely forgetting the LB criterion leads to poor re-
sults in practice. Section 5.3 compares node selection rules randomly choosing
at each node between the LB criterion and another one. Section 5.4 compares
FeasibleDiving and LBvUB to the standard best-first search LB strategy.

5.1 Experimental Protocol and Implementation

All the variants of our IbexOpt global optimization solver [26] have been imple-
mented using the Interval-Based EXplorer (in short: Ibex) free C++ library [7,
8]. The main ingredients in IbexOpt include:

– For contraction and lower bounding:

– Interval constraint programming contractors such as the well-known
HC4 constraint propagation algorithm [3,15] and the more recent ACID
contractor [19].

– Interval-based polyhedral relaxation algorithms based on X-Taylor [1]
and ART [16,21] (affine arithmetic relaxation technique).

– For the upper bounding phase:
An original approach extracts an inner region (box or polytope) in the fea-
sible space using the inHC4 and in-XTaylor heuristics [2]. Inside an inner
region, one candidate point is picked by different techniques (monotonicity
analysis of the objective function, random selection – for non monotonic
dimensions, minimization of an affine approximation of the objective func-
tion) and the upperbound is updated accordingly.

Note that a Lagrangian method and a convexity analysis are not imple-
mented yet in the current version of IbexOpt due to the difficulty of rendering
these methods rigorous.

We selected all the instances from the series 1 and 2 of the Coconut con-
strained global optimization benchmark [23] that:

– are solved between 1 and 3600 seconds by one competitor (objective func-
tion precision εobj = 1e-6),

– have between 6 and 50 variables,
– are solved by IbexOpt using the best branching strategy among Smear sum

absolute (ssa) or relative (ssr), Smear max (sm), Largest interval first (lf)
and Round robin (rr).

This gives the 82 instances listed in Annex A (Table 3) with the chosen
branching strategy, the same for all methods.

Note that the equations h(x) = 0 in these benchmarks have been relaxed
by inequalities −10−8 ≤ h(x) ≤ +10−8 because IbexOpt needs to achieve
upperbounding in nonempty feasible regions [2].

12 Bertrand Neveu et al.

All the tests have been carried out using the recent version 2.1.10 of Ibex
on a X86-64 processor under Linux Ubuntu.

5.2 Bad Performance Without the LB Criterion

This section highlights that the only promising strategies, i.e. that give better
performance results than LB (best-first search), still run LB at certain nodes of
the search tree.

Indeed, LB can solve all the 82 instances within the timeout of one hour.
LBvUB can also solve the 82 instances and gives better results generally. Details
are provided in the next sections.

However, the LB+UB strategy could not solve 4 instances in less than one
hour. For the remaining 78 instances, LB+UB gave good results compared to
LB, with a total time gain ratio (i.e., time(LB)/time(LB + UB)) of 1.33 and
an average time gain ratio of 1.58.3 The same phenomenon appeared with
the pure C3, C5 and C7 strategies where a few instances could not be solved
before the timeout.

These results make us believe that it is useful to sometimes choose the
node minimizing the LB (xobj) criterion in order to diversify the search.

5.3 Comparing Variants of LBvXX Selection Rules

We denote by LBvXX a node selection rule that randomly chooses between LB

and another criterion XX at each node of the B&B.
All the experiments test a strategy LBvXX (with a probability 0.5 of choos-

ing one of both criteria for the next node selection). The first criterion is LB

and the XX criterion can be:

– UB0: UB with no bias for the descendants (sub-boxes in the B&B tree) of

the node where the latest f̃ was found.
– UB1: UB with the modification of the Contract&Bound procedure described

in Algorithm 4 that favors the descendants of the node where the latest f̃
was found.

– FUB: UB with an even stronger bias for the descendants of the nodes where
a feasible point was found. One such descendant with the smallest xobj is
selected, if such one node exists; otherwise (i.e., if all the subtrees of nodes
where feasible points were found are entirely explored) another node with
the smallest xobj .

– MID: evaluation of the objective function in the middle of the box, thus
forgetting the feasible region.

3 A total time gain ratio means that the total CPU time required by LB for solving the 78
instances is divided by the total CPU time required by LB+UB for solving the same instances.
An average time gain ratio means that a division between the respective CPU times is
achieved on each instance before computing an average of the 78 results.

Node Selection Strategies in Interval Branch and Bound Algorithms 13

– C3, C5 or C7: the criteria described in [14] and mentioned in introduction.
We modified these criteria for improving their performance. The [lb, ub]
computation is not obtained by interval evaluation but by contracting
[xobj], like for our criteria.

Table 1 shows the synthetic comparison of all these variants. We report
the time and number of nodes gain ratios comparing each strategy s and the
reference strategy LB. We take into account the CPU time and the number of
nodes obtained using a strategy s on an instance i (these measurements are
in fact an averaged value over 10 trials obtained with different seeds, due to
the random choices made by IbexOpt):

timeRatio(i, s) = time(LB, i)/time(s, i)

We have also added a more sophisticated normalized measure of the gains.
Each instance gets a normalized time ratio between 0 and 1 comparing a
strategy s and the reference strategy LB. This ratio gives a value between 0 and
0.5 if LB is better, and a value between 0.5 and 1 if s provides better results. We
then compute an aggregate normalized gain ratio over the instances. Therefore
a value of this normalized ratio greater than 1 denotes a gain, a value smaller
than 1 denotes a loss.

– NormalizedT imeRatio = time(LB, i)/(time(s, i) + time(LB, i))
– AverageNormalizedT imeRatio(s) is an average value of the timeRatio(i, s)

for i.
– aggregate normalized gain ratio (reported value for s):
AverageNormalizedT imeRatio(s)/(1−AverageNormalizedT imeRatio(s))

UB0 UB1 FUB MID C3 C5 C7

Total Time gain 1.33 1.47 1.46 1.22 1.31 0.78 1.18
Average Time gain on the 82 instances 1.50 1.45 1.41 1.35 1.33 0.87 1.07
Average Time gain on instances > 10 sec 2.03 1.92 1.85 1.67 1.65 0.88 1.24
Norm. Time gain on the 82 instances 1.17 1.17 1.15 1.10 1.16 0.82 0.98
Norm. Time gain on instances > 10 sec 1.27 1.34 1.23 1.14 1.32 0.80 1.08

Total Node gain 1.49 1.63 1.64 0.88 1.52 0.83 1.23
Average Node gain 1.78 1.69 1.66 1.60 1.60 1.01 1.12

Table 1 Comparison of different LBvXX strategies selecting a node using LB or “XX”
criterion with a probability 0.5.

We observe that only LBvC5 gives results significantly worse than LB. All
the other LBvXX variants give good results. LBvC3 is the best variant among
Markot’s et al. criteria. LBvUB1 gives the best results in total time and nor-
malized gain. It is the version of LBvUB tested below.

14 Bertrand Neveu et al.

5.4 Detailed Comparison Between LB, LBvUB and FD

Figure 1 shows a diagram comparing LB, LBvUB (i.e., the best variant LBvUB1)
and FD. The scatterplots highlight that:

– LBvUB dominates LB on most instances,
– FD significantly dominates LB,
– FD generally dominates LBvUB.

These comparisons are shown in a more synthetic way in Table 2.

gain gain gain gain equiv. loss loss loss loss
Gain/loss ranges > 5 [2, 5] [1.2, 2] [1.05, 1.2] [0.95, 1.05] [0.8, 0.95] [0.5, 0.8] [0.2, 0.5] <0.2
LBvUB vs LB 2 6 16 12 24 19 3 0 0
FD vs LB 2 19 15 7 15 12 11 1 0
FD vs LBvUB 0 6 30 8 18 10 9 1 0

Table 2 Detailed gains/losses of a given strategy s1 w.r.t. another strategy s2. The gains

are expressed by
time(s2)
time(s1)

. The entries report the number of instances showing a gain in a

given range.

Remarks

– FeasibleDiving also obtained very good results on other problems.
It is the case on an instance called concon in the Coconut benchmark when
the ssr by-default branching strategy is used.4 FeasibleDiving can solve
the instance in 10 seconds on 8 of the 10 trials while all the other tested
variants always reach a timeout of 1000 seconds.
The Coconut instance called chem could be added to the list of 82 instances.
chem can be solved within one hour only when the B&B uses the round
robin branching strategy. With this branching strategy, FeasibleDiving
can solve chem to optimality in 2790 seconds, whereas LB requires 4988
seconds and LBvUB requires 4884 seconds.

– Remember that the B&B algorithm calls an upperbounding procedure at
each node explored by FeasibleDiving. Indeed, each iteration of Feasi-
bleDiving calls Contract&Bound that itself calls the Contraction and
FeasibleSearch procedures. It is possible to very often call Feasible-
Search in IbexOpt because it corresponds to two relatively cheap heuristics
(called InHC4 and In-XTaylor in [2]). This could explain the good results
obtained using FeasibleDiving.

4 These results should be seen in perspective since the instance can be solved to optimility
in a fraction of a second using a largest-first branching strategy.

Node Selection Strategies in Interval Branch and Bound Algorithms 15

(e) Scatterplots for all the instances (f) Zoom on instances solvable within 250 sec

Fig. 1 Pairwise comparison between LB, LBvUB and FeasibleDiving. The coordinates of
each point represents the CPU time (in second) required by competitors.

16 Bertrand Neveu et al.

6 Conclusion

The node selection policy is a promising line of research to improve perfor-
mance of interval B&B algorithms. In this article we have proposed two main
new strategies that obtained good experimental results on difficult instances.

Both approaches are based on a best-first interval B&B algorithm. The
first node selection strategy, called LBvUB, switches between the selection of a
node with a smallest lower bound (LB) and with a smallest upper bound (UB).
The UB criterion is biased to slightly favor descendants of nodes where feasible
points have been found. The lower and upper bounds are made accurate by
box contraction operations. Note that the LBvC3 node selection rule randomly
choosing between LB and a version of the C3 criterion proposed by Markot et
al. also leads to promising results.

The second node selection strategy greedily dives into potential feasible
regions at each node of a best-first search using a FeasibleDiving procedure.
Each node handled by this procedure is contracted and explored for finding a
feasible point inside.

Both node selection strategies outperform the standard best-first interval
B&B algorithm, and FeasibleDiving generally obtains the best performance
results. We think that this node selection strategy benefits from a synergy
with the cheap upperbounding procedures available in IbexOpt and used by
the FeasibleDiving procedure.

References

1. Araya, I., Trombettoni, G., Neveu, B.: A Contractor Based on Convex Interval Taylor.
In: Proc. CPAIOR, LNCS, vol. 7298, pp. 1–16. Springer (2012)

2. Araya, I., Trombettoni, G., Neveu, B., Chabert, G.: Upper Bounding in Inner Regions
for Global Optimization under Inequality Constraints. J. Global Optimization (JOGO)
60(2), 145–164 (2014)

3. Benhamou, F., Goualard, F., Granvilliers, L., Puget, J.F.: Revising Hull and Box Con-
sistency. In: Proc. ICLP, LNCS, vol. 5649, pp. 230–244. Springer (1999)

4. Bixby, R., Rothberg, E.: Progress in Computational Mixed Integer Programming – A
Look Back from the Other Side of the Tipping Point. Annals of Operations Research
149, 37–41 (2007)

5. Bonami, P., Kilink, M., Linderoth, J.: Algorithms and Software for Convex Mixed In-
teger Nonlinear Programs. Tech. Rep. 1664, U. Wisconsin (2009)

6. Casado, L., Martinez, J., Garcia, I.: Experiments with a New Selection Criterion in
a Fast Interval Optimization Algorithm. Journal of Global Optimization 19, 247–264
(2001)

7. Chabert, G.: Interval-Based EXplorer (2015). www.ibex-lib.org

8. Chabert, G., Jaulin, L.: Contractor Programming. Artificial Intelligence 173, 1079–1100
(2009)

9. Csendes, T.: New Subinterval Selection Criteria for Interval Global Optimization. Jour-
nal of Global Optimization 19, 307–327 (2001)

10. Csendes, T., Ratz, D.: Subdivision Direction Selection in Interval Methods for Global
Optimization. SIAM Journal on Numerical Analysis 34(3) (1997)

11. Felner, A., Kraus, S., Korf, R.E.: KBFS: K-Best-First Search. Annals of Mathematics
and Artificial Intelligence 39 (2003)

12. Kearfott, R., Novoa III, M.: INTBIS, a Portable Interval Newton/Bisection Package.
ACM Trans. on Mathematical Software 16(2), 152–157 (1990)

Node Selection Strategies in Interval Branch and Bound Algorithms 17

13. Kocsis, L., Szepesvari, C.: Bandit based Monte-Carlo Planning. In: Proc. ECML, LNCS,
vol. 4212, pp. 282–293. Springer (2006)

14. Markot, M., Fernandez, J., Casado, L., Csendes, T.: New Interval Methods for Con-
strained Global Optimization. Mathematical Programming 106, 287–318 (2006)

15. Messine, F.: Méthodes d’optimisation globale basées sur l’analyse d’intervalle pour la
résolution des problèmes avec contraintes. Ph.D. thesis, LIMA-IRIT-ENSEEIHT-INPT,
Toulouse (1997)

16. Messine, F., Laganouelle, J.L.: Enclosure Methods for Multivariate Differentiable Func-
tions and Application to Global Optimization. Journal of Universal Computer Science
4(6), 589–603 (1998)

17. Misener, R., Floudas, C.: ANTIGONE: Algorithms for coNTinuous / Integer Global
Optimization of Nonlinear Equations. J. Global Optimization (JOGO) 59(2–3), 503–
526 (2014)

18. Moore, R.E.: Interval Analysis. Prentice-Hall (1966)
19. Neveu, B., Trombettoni, G., Araya, I.: Adaptive Constructive Interval Disjunction: Al-

gorithms and Experiments. Constraints Journal DOI: 10.1007/s10601-015-9180-3,
Accepted for publication (2015)

20. Ninin, J., Messine, F.: A Metaheuristic Methodology Based on the Limitation of the
Memory of Interval Branch and Bound Algorithms. Journal of Global Optimization 50,
629–644 (2011)

21. Ninin, J., Messine, F., Hansen, P.: A Reliable Affine Relaxation Method for Global
Optimization. 4OR-Quaterly Journal of Operations Research (2014). Accepted to
publication. DOI: 10.1007/s10288-014-0269-0

22. Sabharwal, A., Samulowitz, H., Reddy, C.: Guiding Combinatorial Optimization with
UCT. In: Proc. CPAIOR, LNCS, vol. 7298, pp. 356–361. Springer (2012)

23. Shcherbina, O., Neumaier, A., Sam-Haroud, D., Vu, X.H., Nguyen, T.V.: Bench-
marking Global Optimization and Constraint Satisfaction Codes. In: COCOS,
Workshop on Global Constraint Optimization and Constraint Satisfaction (2002).
www.mat.univie.ac.at/~neum/glopt/coconut/Benchmark/Benchmark.html

24. Tawarmalani, M., Sahinidis, N.V.: Global Optimization of Mixed-Integer Nonlinear Pro-
grams: A Theoretical and Computational Study. Mathematical Programming 99(3),
563–591 (2004)

25. Tawarmalani, M., Sahinidis, N.V.: A Polyhedral Branch-and-Cut Approach to Global
Optimization. Mathematical Programming 103(2), 225–249 (2005)

26. Trombettoni, G., Araya, I., Neveu, B., Chabert, G.: Inner Regions and Interval Lin-
earizations for Global Optimization. In: Proc. AAAI, pp. 99–104 (2011)

27. Trombettoni, G., Chabert, G.: Constructive Interval Disjunction. In: Proc. CP, LNCS,
vol. 4741, pp. 635–650. Springer (2007)

28. Van Hentenryck, P., Michel, L., Deville, Y.: Numerica : A Modeling Language for Global
Optimization. MIT Press (1997)

18 Bertrand Neveu et al.

A List of the 82 constrained global optimization instances tested

Name Branching Name Branching Name Branching Name Branching

ex2 1 9 ssr ex8 2 1 ssa linear ssr hs088 lf
ex3 1 1 ssr ex8 4 4 ssr meanvar ssr hs093 ssr
ex5 3 2 ssr ex8 4 5 lf process ssr hs100 ssr
ex5 4 3 ssr ex8 4 6 ssr ramsey lf hs103 ssr
ex5 4 4 ssa ex8 5 1 ssr sambal rr hs104 lf
ex6 1 1 ssr ex8 5 2 ssr srcpm sm hs106 lf
ex6 1 3 ssr ex8 5 6 ssr avgasa ssr hs109 ssr
ex6 1 4 ssr ex14 1 2 ssr avgasb ssr hs113 lf
ex6 2 6 ssr ex14 1 6 ssr batch ssa hs114 rr
ex6 2 8 ssr ex14 1 7 ssr dipigri ssr hs117 ssa
ex6 2 9 ssr ex14 2 1 ssr disc2 ssr hs119 ssa
ex6 2 10 ssr ex14 2 3 ssr dixchlng lf makela3 ssr
ex6 2 11 ssr ex14 2 7 ssr dualc1 ssr matrix2 lf
ex6 2 12 ssr alkyl (rr) lf dualc2 ssr mistake ssa
ex7 2 3 ssr bearing ssr dualc5 ssr odfits ssr
ex7 2 4 lf hhfair ssr genhs28 lf optprloc ssr
ex7 2 8 lf himmel16 ssr haifas ssr pentagon ssr
ex7 2 9 lf house ssr haldmads lf polak5 ssr
ex7 3 4 ssr hydro ssr himmelbk lf robot lf
ex7 3 5 ssr immun rr hs056 lf
ex8 1 8 ssr launch ssr hs087 ssr

Table 3 Benchmark tested. The systems have been selected from the Coconut benchmark
library (series 1 and 2) according to a protocol described in Section 5. The best branching
strategy has been chosen for each system, the same for all methods, among: largest interval
first (lf), round robin (rr), Smear max (sm), Smear sum absolute (ssa) (see [12]) and Smear
sum relative (ssr) (see [26]).

