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Abstract. In order to obtain reliable deterministic global optima, all the computed bounds have to be certified in a way that no
numerical error due to floating-point operations can discard a feasible solution. Interval arithmetic Branch and Bound algorithms
which are developed since the 1980th possess this property of reliability. However, some new accelerating techniques, such as
convex relaxation, could improve the convergence of those reliable global optimization algorithms while keeping the property of
reliability. In this work, we show that a floating-point solution obtained by solving a relaxed convex program can be corrected in
order to certify that this new lower bound is lower than the real global optimum.

INTRODUCTION

The use of automatic convex relaxations inside global optimization software such as BARON or COUENNE is extremely
powerful. Indeed, they make it possible to compute efficient lower bounds by solving a convex program with a local
solver such as ipopt; note that if the program is convex with the objective function stricktly convex, a local solution
is also a global one (unicity property). Unfortunately, the so-obtained local optima yield lower bounds that are not
numerically reliable. In interval Branch&Bound algorithms such as Ibex, IBBA and GlobSol, it is necessary to be
rigorous in a sense that all the numerical floating point computations have to be reliable.

This paper provides two theorems that make it possible to correct the bounds computed by a local solver applied
to relaxed convex programs. Remark that in [1], Jansson provided the same theorem for the constrained convex case.
However, our proof is different and comes from the KKT-conditions. Furthermore, in this paper, we detail the entire
procedure to compute reliable lower bounds using interval arithmetic computations.

In the next two sections, we provide two theorems yielding reliable bounds for unconstrained and constrained
convex programs. In the following section, we present a way to numerically compute those reliable bounds by using
interval arithmetic, before concluding.

RELIABLE LOWER BOUNDS FOR BOX-CONSTRAINED CONVEX PROBLEM

Consider the following convex optimization problem with only bound constraints:

(UP)


min
x∈IRn

f (x)

s.t.
xi ≤ xi ≤ xi, ∀i ∈ {1, · · · , n},

where f is a real twice differentiable convex function in X; where X =

n∏
i=1

[xi, xi]. Let x∗ denote the global solution of

problem (UP).



Theorem 1 For all x̃ ∈ X, one obtains:

f (x∗) ≥ f (x̃) + (z − x̃)T .∇ f (x̃),

where

zi :=
{

xi if ∂ f
∂xi

(x̃) ≤ 0
xi otherwise,

Proof:
By using a Taylor expansion of f at the second order, we obtain:

∀y ∈ X,∃ξ ∈ X, such that, f (y) = f (x̃) + (y − x̃)T .∇ f (x̃) +
1
2

(y − x̃)T .H(ξ).(y − x̃),

where H(ξ) is the Hessian matrix which is computed at point ξ ∈ X.
Because f is convex by assumption, H(x) is positive definite ∀x in X and then, we have (y − x̃)T .H(ξ).(y − x̃) ≥ 0

for all y ∈ X and x̃ ∈ X.
Hence,

f (y) ≥ f (x̃) + (y − x̃)T .∇ f (x̃),∀y ∈ X,∀x̃ ∈ X. (1)

Note that (y − x̃)T .∇ f (x̃) =

n∑
i=1

(yi − x̃i).
∂ f
∂xi

(x̃), and then by taking zi := xi if ∂ f
∂xi

(x̃) ≤ 0 and zi := xi otherwise, we

obtain the following inequalities.
Thus, if ∂ f

∂xi
(x̃) ≤ 0, one has for all (yi, x̃i) ∈ X2

i :

zi := xi ≥ yi,

zi − x̃i ≥ yi − x̃i,

(zi − x̃i)
∂ f
∂xi

(x̃) ≤ (yi − x̃i)
∂ f
∂xi

(x̃).

Now, if ∂ f
∂xi

(x̃) ≥ 0, one has for all (yi, x̃i) ∈ X2
i :

zi := xi ≤ yi,

zi − x̃i ≤ yi − x̃i,

(zi − x̃i)
∂ f
∂xi

(x̃) ≤ (yi − x̃i)
∂ f
∂xi

(x̃).

Therefore in both cases, we obtain:

(yi − x̃i)
∂ f
∂xi

(x̃) ≥ (zi − x̃i)
∂ f
∂xi

(x̃),∀(yi, x̃i) ∈ X2
i ,∀i ∈ {1, · · · , n}. (2)

Hence, by using (1) and 2, we obtain

f (y) ≥ f (x̃) + (z − x̃)T .∇ f (x̃),∀y ∈ X,∀x̃ ∈ X, (3)

and then the result follows.
�

Remark 1 Note that if x̃ is the floating point solution provided by a local search algorithm, if all the numerical
computations behave well we obtain x∗ ' x̃ and then the correcting negative term (z − x̃)T .∇ f (x̃) is close to zero. This
is the term which makes it possible to provide a reliable lower bound on f (x∗) from a point x̃ ∈ X.

Remark 2 Note that if the problem is not box-constrained, the reliable lower bound is −∞.



RELIABLE LOWER BOUNDS FOR CONSTRAINED CONVEX PROBLEM

Consider now the following constrained convex optimization problem:

(CP)



min
x∈IRn

f (x)

s.t.
g(x) ≤ 0
Ax = b
xi ≤ xi ≤ xi,∀i ∈ {1, · · · , n}

where f and g are twice differentiable convex functions defined over IRn but g has its value in IRp. A is a real matrix
of size q × n and b a real vector of q components. In fact, one defines an optimization problem (CP) of a convex
function with p convex inequality constraints and q linear equality ones. Let us denote by x∗ the global solution of
problem (UP) and L(x, µ, λ) := f (x) + µT .g(x) + λT .(Ax − b) the Lagrangian function with λ ∈ IRn and µ ∈ (IRn)+ its
corresponding multipliers.

Theorem 2 For all (x̃, µ̃, λ̃) ∈ (X, (IRn)+, IRn), one obtains:

f (x∗) ≥ L(x̃, µ̃, λ̃) + (z − x̃)T .∇xL(x̃, µ̃, λ̃).

where zi := xi if ∂L
∂xi

(x̃, µ̃, λ̃) ≤ 0 and zi := xi otherwise. By developing, one has:

f (x∗) ≥ f (x̃) + µ̃T .g(x̃) − λ̃T .b + (z − x̃)T .
(
∇x f (x̃) + µ̃T .∇xg(x̃)

)
+ zT λ̃T .A.

Proof:
By using a Taylor expansion of the Lagrangian function at the second order, for all (y, µ, λ) ∈ (X, (IRn)+, IRn) and for
all ∀(x̃, µ̃, λ̃) ∈ (X, (IRn)+, IRn), there exists (ξ, µ̂, λ̂) ∈ (X, (IRn)+, IRn), such that one has:

L(y, µ, λ) = L(x̃, µ̃, λ̃) + (y − x̃)T .∇xL(x̃, µ̃, λ̃) +
1
2

(y − x̃)T .Hx(ξ, µ̂, λ̂).(y − x̃),

where ∇xL is the Gradient of L w.r.t. the variables x and Hx(ξ, µ̂, λ̂) is the Hessian matrix of L w.r.t. x at the
point ξ, µ̂, λ̂.

Because f and g are convex and Ax − b = 0 are linear equality constraints, Hx(x, µ, λ) is positive definite for all
x in X, for all µ ∈ (IRn)+ and for all λ ∈ IRn yielding (y− x̃)T .Hx(ξ, µ̂, λ̂).(y− x̃) ≥ 0, for all y ∈ X and all x̃ ∈ X. Hence,
for all (y, µ, λ) ∈ (X, (IRn)+, IRn) and all (x̃, µ̃, λ̃) ∈ (X, (IRn)+, IRn), one has:

L(y, µ, λ) ≥ L(x̃, µ̃, λ̃) + (y − x̃)T .∇xL(x̃, µ̃, λ̃).

Because (y−x̃)T .∇xL(x̃, µ̃, λ̃) =
∑n

i=1(yi−x̃i). ∂L∂xi
(x̃, µ̃, λ̃), the following lower bound can be derived for all (y, µ, λ) ∈

(X, (IRn)+, IRn) and all (x̃, µ̃, λ̃) ∈ (X, (IRn)+, IRn):

L(y, µ, λ) ≥ L(x̃, µ̃, λ̃) + (z − x̃)T .∇xL(x̃, µ̃, λ̃). (4)

where zi := xi if ∂L
∂xi

(x̃, µ̃, λ̃) ≤ 0 and zi := xi otherwise.

The first part of the proof, derives directly from Equation (4) because if x∗ is a solution of problem (CP) then the
constraints are satisfied and therefore, f (x∗) = L(x∗, µ, λ), for all µ ∈ (IRn)+ and all λ ∈ IRn.

From equation (4), one obtains:

f (x∗) ≥ L(x̃, µ̃, λ̃) + (z − x̃)T .∇xL(x̃, µ̃, λ̃),

by developing, one has

f (x∗) ≥ f (x̃) + µ̃T .g(x̃) + λ̃T .(Ax̃ − b) + (z − x̃)T .∇x

(
f (x̃) + µ̃T .g(x̃) + λ̃T .(Ax̃ − b)

)
,

≥ f (x̃) + µ̃T .g(x̃) + λ̃T .(Ax̃ − b) + (z − x̃)T .
(
∇x f (x̃) + µ̃T .∇xg(x̃) + λ̃T .A

)
,

≥ f (x̃) + µ̃T .g(x̃) − λ̃T .b + (z − x̃)T .
(
∇x f (x̃) + µ̃T .∇xg(x̃)

)
+ zT λ̃T .A.

�



Remark 3 Although the connection is not direct, Theorem 2 corresponds to Lemma 1 in [1], where another proof
of this result can be found using linear programming.

RELIABLE INTERVAL COMPUTATIONS FOR THE LOWER BOUNDS

The two previous theoretical results provide bounds for a convex optimization problem. However, on a computer
all the computations are based on floating-point operations and and these operations also introduce numerical errors
on the correction terms. Thus, all those computations have to be done using interval arithmetic. By denoting [y] the
smallest floating-point interval containing the real value y, by extension [v] the thinest floating-point interval vector
of a real vector v, [A] the thinest floating-point interval matrix containing the real matrix A, and I the lower bound of
the interval I, respectively I the upper bound of the interval I. Assume, that x̃i, xi, xi are all floating point numbers, we
have the following reliable floating-point bounds:

Corollary 1 • Box-constrained case:

f (x∗) ≥ [ f ([x̃])] + (z − [x̃])T .[∇ f ([x̃])]

= [ f ([x̃])] +

n∑
i=1

(zi − [x̃i]) ×
[
∂ f ([x̃])
∂xi

]
where zi := [xi, xi] if

[
∂ f ([x̃])
∂xi

]
≤ 0, zi := [xi, xi] if

[
∂ f ([x̃])
∂xi

]
≥ 0 and zi := [xi, xi] otherwise.

• Constrained case:

f (x∗) ≥ [ f ([x̃])] + [µ̃]T .[g(x̃)] − [λ̃]T .[b] + (z − [x̃])T .
(
[∇x f ([x̃])] + [µ̃]T .[∇xg([x̃])]

)
+ zT [λ̃]T .[A]

where zi := [xi, xi] if
[
∂L
∂xi

([x̃], [µ̃], [λ̃])
]
≤ 0, zi := [xi, xi] if

[
∂L
∂xi

([x̃], [µ̃], [λ̃])
]
≥ 0 and zi := [xi, xi] otherwise.

Proof:
The proof comes directly from the theorems by using correct rounding in the uses of the interval computations. A
particular attention must be paid on the gradient computations which have to be evaluated using interval arithmetic
and thus, this provides an interval floating-point vector which includes the real values of the partial derivatives.
Hence, the definition of zi has now three possibilities if the partial derivative is always negative, positive or if the sign
is not assigned in this step using interval computations.

�

CONCLUSION

We have presented in this paper correction theorems that make it possible to compute reliable lower bounds for
unconstrained and constrained convex optimization programs. We will validate that the computation of the correction
term is not expensive. Furthermore, if the point returned by local search will be close to the real global optimum, we
expect that the correction term will be very small and adds only a few iterations in a Branch&Bound algorithm. One of
the main purpose of our presentation is to provide first numerical results using this reliable convex relaxation method.
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