
Incremental Move for Strip-Packing

Bertrand Neveu, Gilles Trombettoni
INRIA Sophia-Antipolis, University of Nice-Sophia, ENPC, Projet COPRIN, France

{neveu, trombe}@sophia.inria.fr

Ignacio Araya
Department of Computer Science, Universitad Técnica Federico Santa Maria, Valparaiso, Chile

Ignacio.Araya@sophia.inria.fr

Abstract

When handling 2D packing problems, numerous incom-
plete and complete algorithms maintain a so-called bottom-
left (BL) property: every rectangle placed in a container
is propped up bottom and left. While it is easy to make a
rectangle BL when it is is added in a container, it is more
expensive to maintain all the placed pieces BL when a rect-
angle is removed. This prevents researchers from designing
incremental moves for metaheuristics or efficient complete
optimization algorithms.

This paper investigates the possibility of violating the BL
property. Instead, we propose to maintain only the set of
“maximal holes”, which allows incremental additions and
removals of rectangles.

To validate our alternative approach, we have designed
an incremental move, maintaining maximal holes, for the
strip-packing problem, a variant of the famous 2D bin-
packing. We have also implemented a generic metaheuris-
tic using this move and standard greedy heuristics. Exper-
imental results show that the approach is competitive with
the best known incomplete algorithms, especially the other
metaheuristics (able to escape from local minima).

1 Introduction

Packing problems consist in placing pieces in contain-
ers, such that the pieces do not intersect. Specific variants
differ in the considered dimension (1D, 2D or 3D), in the
type of pieces, or in additional constraints: for cutting ap-
plications, whether the (2D) container is guillotinable or not
to extract the objects; whether the objects can rotate, and
so on. The 2D strip-packing problem studied in this paper
finds the best way for placing rectangles of given heights
and widths, without overlapping, into a strip of given width
and infinite height. The goal is to minimize the required
height.

Packing problems have numerous practical applications.
Strip-packing occurs for instance in the cutting of rolls of
paper or metal. In 3D, solving packing problems helps

transporting a volume of goods in containers. The most in-
teresting packing problems are all NP-hard, leading to the
design of complete combinatorial algorithms, incomplete
greedy heuristics, metaheuristics or genetic algorithms.

To limit the combinatorial explosion, most algorithms
maintain the Bottom-Left (BL) property, that is, a layout
where all the rectangles are propped up left and bottom.
They also maintain the BL property when a rectangle R
is removed from the container (or placed in another loca-
tion), which often implies that rectangles above R or to
the right side of R must be moved as well. First, the BL
property lowers the number of possible locations for rect-
angles. Second, it can be proven that a simple operation can
transform any solution of a 2D packing problem into a solu-
tion respecting the BL property. However, this operation is
not local to the removed rectangle and to its neighbors, but
modifies the whole layout in the worst case (e.g., when the
rectangle placed on the bottom-left corner of the container
is removed).

After a brief survey of existing algorithms in Section 2,
we present in Section 3 how to add/remove one rectan-
gle in/from a container. These operations are original in
that they incrementally maintain a set of so-called maxi-
mal holes without necessarily recovering the BL property.
These operations are generic and can be applied to any 2D
packing problem.

The second part of this paper experimentally shows that
it is possible to design algorithms that, although they do not
respect the BL property, do not “fragment” the container,
i.e., do not provide a bad layout with a lot of small holes
between rectangles. Section 4 introduces a new and incre-
mental move for 2D strip-packing that maintains maximal
holes during the addition and removal of rectangles. The
experiments presented in Section 5 show the interest of the
metaheuristic based on this move.

2 Existing algorithms for strip-packing

A lot of researchers have proposed different algorithms
to handle bin packing so that we focus on strip-packing
in this section. In the last few years, the interest in

strip-packing has increased, hence the proposal of new ap-
proaches and the improvement of existing strategies.

Exact approaches are in general limited to small in-
stances [13]. Although not competitive with incomplete
approaches, the branch and bound algorithm proposed by
Martello et al. is interesting [15] and can solve some in-
stances of up to 200 rectangles. Their algorithm computes
good bounds obtained by geometrical considerations and a
relaxation of the problem.

E. Hopper’s thesis [10] exhaustively describes existing
incomplete algorithms for strip-packing. We just provide
an overview of these heuristics ranging from simple greedy
(constructive) algorithms to complex metaheuristics or ge-
netic algorithms.

Bottom Left Fill (BLF) [9] is a generalization of the first
greedy heuristic proposed by Baker et al. [2] in 1980. BLF
handles the rectangles in a predefined order, e.g., by de-
creasing width, height or surface. A rectangle R is placed
in the first location that can contain R. The locations (i.e.,
corners or holes) are sorted according to their ordinate in the
strip as first criterion and according to their abcissa as sec-
ond criterion, so that an added rectangle is positioned on the
strip as far down and to the left as possible. That is why the
built layout always maintains the BL property. Contrarily to
the algorithm presented in this paper, many metaheuristics
consider a move that exchange two rectangles in the order
followed by BLF. This is in particular the case of the hybrid
tabu search / genetic algorithm designed by Iori et al. [12].

Hopper [11] presented an improved strategy of BLF
called BLD, where the objects are ordered using various
criteria (e.g., height, width, perimeter) and the algorithm
selects the best result obtained. Lesh et al. in [14] have
improved the BLD heuristic. Their BLD∗ strategy repeats
greedy placements with a specific randomized ordering un-
til a time limit is reached.

The Best-Fit (BF) greedy heuristic proposed by Burke
et al. in [7] adopts in a sense a dual strategy while also
respecting the Bottom[-Left] property. At each step, a most
bottom location in the partial solution is considered, and the
rectangle fitting best into it is selected, if any1. In [8], Burke
et al. improve their approach by using a metaheuristic phase
(implemented by a tabu search, a simulated annealing or a
genetic algorithm) for repairing the last part of the solution
obtained by BF.

Finally, two last approaches must be mentioned and will
constitute our main competitors. Bortfeldt [6] proposes a
very sophisticated genetic algorithm directly working with
the geometry of the layout. The best algorithm for han-
dling strip-packing with rectangles of fixed orientation is a
reactive GRASP algorithm [1] working as follows: all the
rectangles are first placed on the strip with a randomized
(and improved) BF greedy heuristic. Some rectangles on
the top of the strip are then removed and placed again with

1Three variants in fact exist where the considered hole is the most
bottom-left, the most bottom-right, or randomly chosen between both. The
whole heuristic returns the best solution obtained by these three variants.

the greedy algorithm (in a different order). Several such
steps are performed with an increasing portion of rectan-
gles, adopting a variable neighborhood search strategy.

3 Maintaining “maximal holes”

The key idea behind our approach is to incrementally
maintain a set of maximal holes when rectangles are added
and removed.
Definition 1 (Maximal hole) Let us consider a container C
partially filled with a set S of rectangles. A maximal hole
H (w.r.t. C and S) is a rectangular surface in C such that:
• H does not intersect any rectangle in S (i.e., H is a

“hole” in the container),
• H is maximal, i.e., there is no hole H ′ such that H

is included inside H ′ (notation: the inclusion of a
rectangle H inside a rectangle H ′ will be denoted by
H ⊂ H ′)2.

Fig. 1 shows three examples with resp. 2, 2 and 4 max-
imal holes (from left to right). The maximal hole in grey
corresponds to the most bottom-left one.

Figure 1. Examples of maximal holes

Most of existing algorithms can use such a set of maxi-
mal holes for implementing their atomic operations. In par-
ticular, the BLF and BF greedy heuristics introduced above
can implement the possible locations (in which the rectan-
gles are added) as the set of maximal holes.

However, the interest is even greater. We claim that it
is possible to design algorithms whose number of maxi-
mal holes remains small in practice during the search, even
though the rectangles are removed, violating the BL prop-
erty. The idea is the following. Thanks to the set of maximal
holes, when a rectangle is removed, we do not modify the
partial solution to make the rectangles BL again. Instead,
we just update the set of maximal holes. Thus, a rectan-
gle R placed in the future in the container will be propped
up bottom and left (if it exactly covers a maximal hole)3.
The main interest is to still limit the set of possible loca-
tions for the rectangles (to the maximal holes) while pre-
serving the incrementality after a rectangle removal. In a
sense, the good results obtained on strip-packing problems
by the metaheuristic proposed in this article experimentally
validate this claim.

2This property implies that H is propped up bottom and left w.r.t. the
container or rectangles in S.

3We have done simply no effort in the metaheuristic presented hereafter
to locally improve the layout when a (small) rectangle is added in a (large)
hole so that the rectangle R is not BL. We let the evaluation of the objective
function do the selection between neighbor candidates.

Atomic operations between two holes

Although other modelings are possible, a rectangle or
a rectangular hole R is represented by four coordinates:
R.xL, R.yB, R.xR, R.yT : (R.xL, R.yB) represents the
bottom-left corner of R while (R.xR, R.yT) is the top-right
corner.

The incremental additions and removals of rectangles
in/from a container are based on two operations between
rectangles and rectangular holes. The Minus(H , R) oper-
ation between a hole H and a rectangle R is used when a
rectangle is added in a container. It returns the set of maxi-
mal holes that remain when (the newly added) R intersects
H . A simple computation of the newly created maximal
holes (Holes) is performed as follows:

1. Holes← ∅
2. If R.xR < H.xR then Holes← Holes∪

{(R.xR, H.yB , H.xR, H.yT)} EndIf
3. If R.yT < H.yT then Holes← Holes ∪

{(H.xL, R.yT , H.xR, H.yT)} EndIf
4. If H.xL < R.xL then Holes← Holes ∪

{(H.xL, H.yB , R.xL, H.yT)} EndIf
5. If H.yB < R.yB then Holes← Holes ∪

{(H.xL, H.yB , H.xR, R.yB)} EndIf
Minus(H , R) may create less than four holes because

the tested conditions are generally not fulfilled simultane-
ously.

The second operation Plus(H1, H2) holds between two
rectangular maximal holes. If H1 and H2 intersect or are
contiguous, Plus returns at most the following two new
maximal holes:

• (max(H1.xL, H2.xL), min(H1.yB , H2.yB),
min(H1.xR, H2.xR), max(H1.yT , H2.yT))

• (min(H1.xL, H2.xL), max(H1.yB , H2.yB),
max(H1.xR, H2.xR), min(H1.yT , H2.yT))

Once again, a returned “degenerate” hole reduced to a
single segment will not be considered.

Addition and removal of rectangles

Based on these two operations, we present the two main
procedures used in most algorithms handling any 2D pack-
ing problem: AddRectangle and RemoveRectangle.
AddRectangle(in R, in/out C, in/out S) updates the

set S of maximal holes when the rectangle R is added to the
container (C is the set of rectangles placed in the container.
At the beginning, S is reduced to the initial empty rectangu-
lar container.) AddRectanglemainly applies the Minus
operator to R and to the holes in S that intersect R, as fol-
lows:

1. Add R in C.

2. For every hole in S intersecting R, add in a set setH
the holes returned by Minus(H , R).

3. Filter setH and preserve only the maximal holes.

Remarks:

• The case may occur that two holes H1 and H2, each
created by two different calls to Minus, verify H1 ⊂
H2. This justifies the third step.

• (Correction) A proof by contradiction helps us to
understand that a newly created hole needs not be
“merged” with a contiguous hole H ′ which does not
intersect R to (recursively) build a larger hole. Other-
wise indeed, it would mean that H ′ was not maximal.
This point has a significant and positive impact on the
efficiency of the procedure that visits only holes inter-
secting R (and not their “neighbors”).

The procedure RemoveRectangle is a bit more com-
plex. RemoveRectangle (in R, in/out C, in/out S) up-
dates the set S of maximal holes when the rectangle R is
removed from the container. It replaces R by a hole H and
applies the Plus operation on H and its contiguous holes
(if any). A fixed-point process is applied to ensure com-
pleteness. Details are given below.

Algorithm RemoveRectangle (in R, in/out C, in/out S)
Remove R from C; Add R in S
Initialize a list Holes with holes in S that are contiguous
to R
Initialize a list HolePairs with pairs (R, H) such that
H is in Holes
while HolePairs is not empty do

Select (hole1, hole2) in Holepairs
Remove (hole1, hole2) from HolePairs
newHoles← Plus (hole1, hole2) /* newHoles
contains at most 2 holes */
for every newHole in newHoles do

for every hole in Holes do
/* Ensure maximality */
if newHole⊂ hole then

delete newHole from newHoles;
break

else
if hole ⊂ newHole then

delete hole from Holes
end

end
end
if newHole ∈ newHoles then

Add newHole to Holes
else

Add to HolePairs all the pairs (newHole,
H) such that H is in Holes

end
end

end
end.

Proposition 1 (Termination and correction of
RemoveRectangle) Let R be a rectangle to be re-
moved from a container, let S be the corresponding set of
maximal holes.

A call to RemoveRectangle terminates and updates
S with the set of all the maximal holes of the container.

Proof. (sketch; the full proof requires an induction)
The termination is based on several points:

• Like for AddRectangle, this is not necessary to
visit holes that are not pushed initially in HolePairs
(i.e., the procedure visits only the neighbors of R).

• Because the Plus operation does not return more than
two holes, the number of holes in Holes never in-
creases during the execution of RemoveRectangle.

• The items above and the definition of Plus imply
that the union of all the holes created during the ex-
ecution of RemoveRectangle does not change. In
other words, the “surface” covered by all the consid-
ered holes (R and neighbor holes) is constant during
the execution of RemoveRectangle.

• The Plus(H1, H2) operation generates at most two
holes H ′

1, H ′
2 that are larger than or equal to the input

holes.

These points explain why a fixed-point is reached. The
correction is ensured by the exhaustive application of the
Plus operation to every possible pair. �

The RemoveRectangle procedure can be used by a
classical 2D packing algorithm satisfying the BL property:
when a rectangle is removed (or placed elsewhere in the
container), the rectangles already placed in the container
must be moved to recover the BL property, trying to limit
the “fragmentation” of the container. However, this article
explores the possibility of doing nothing special after a rect-
angle removal. Such an approach is described hereafter.

4 An incremental move for strip-packing

The strip-packing is a variant of the 2D bin packing prob-
lem. A set of rectangles must be positioned in one container,
called strip, which is a rectangular area. The strip has a
fixed width dimension and a variable height. The goal is
to place all the rectangles on the strip with no overlapping,
using a minimum height of the container.

As said in the introduction, once we work in more than
one dimension, the objects placed in the container are very
dependent each other and it is very difficult to incremen-
tally repair the current solution. This explains why existing
metaheuristics or genetic algorithms, allowing the search to
escape from local minima, are not really incremental. Most
of the approaches are based on a classical greedy heuristic,
e.g., BLF or BF, and a widespread move consists, for in-
stance, in exchanging two rectangles in the order in which
the greedy heuristic will handle the rectangles. We under-
stand that exchanging two rectangles i and j in the order

implies, in the worst case, to position again all the rectan-
gles after i in the order.

In this paper, we propose a generic metaheuristic based
on a more incremental move. This incomplete algorithm
uses any metaheuristic M (such as tabu search or simulated
annealing) and any greedy algorithm G. It also uses a move
based on the “geometry” of the rectangles on the strip. In-
formally, any move (or any evaluated candidate neighbor)
is performed by taking a rectangle R on the top of the strip
and putting it in the middle of the strip. More precisely, a
move is implemented as follows:

1. Take one rectangle R the top side of which is the high-
est on the strip (the case may occur that several rectan-
gles are candidates).

2. Select R′, which is one rectangle on the strip or one
maximal hole, such that when R is placed in the
bottom-left corner of R′ then :

• R remains inside the strip,
• the new position of R is strictly lower than its

previous position.

3. With RemoveRectangle, remove the set S of rect-
angles that would intersect R in its new position, in-
cluding R′ if it is a rectangle (the rectangles in S must
be placed elsewhere).

4. Place R in the new position selected at step 2.

5. Place again the rectangles in S with the greedy heuris-
tic G.

Figure 2. One complete move

The steps 1 and 2 above pursue better solutions in an
aggressive way (intensification). A very similar move has
been mentioned in [1] while it has not been used in their
finally designed heuristic.

The evaluation of the objective function (to be mini-
mized) could be the (one-dimensional) ordinate of the high-
est side of a rectangle on the strip. However, we have se-
lected a finer two-dimensional objective function equal to
w × h + n, where w is the width of the strip, h is the ordi-
nate of the top side of a highest rectangle on the strip minus
one, and n is the number of units filled by rectangles on the
highest line of the strip.

A move in the 2D strip-packing variant where rectangles
can rotate with an angle of 90 degrees is modified as fol-
lows. The step 1 above must also select an orientation for
the rectangle R, with a probability 0.5 for both possibilities.

We report in Table 1 some statistics from the experiments
with the Hopper and Turton instances (5) that show that the
number of possible locations for a rectangle (maximal holes
+ placed rectangles) grows in a linear way w.r.t the number
of rectangles, and that the number of displaced rectangles
in one move remains always very small in average.

Class N maxpl rectmax rectav
C1 16–17 33 8 1.9
C2 25 44 10 1.6
C3 28–29 55 11 2.0
C4 49 94 16 2.5
C5 73 128 18 2.4
C6 97 175 19 2.6
C7 196–197 342 25 2.8

Table 1. Statistics from H-T instances. N:
number of rectangles, maxpl: maximum
number of possible locations, rectmax (rec-
tav): maximum (average) number of dis-
placed rectangles during one move.

Selected metaheuristic and greedy heuristics

We wanted to propose a generic metaheuristic able to
be specialized with number of metaheuristics and greedy
heuristics. We have tried the main metaheuristics available
in the INCOP C++ library [17] developed by the first au-
thor: tabu search, simulated annealing (and a Metropolis
variant), and ID(best) [18] which is a simple variant of
ID Walk with only one parameter4. The simulated an-
nealing has been discarded because it yields the worst per-
formance. Tabu search, ID Walk with two parameters and
ID(best) gave a good performance, and we have chosen
ID(best) for its simplicity. In particular, the automatic
tuning procedure provided by INCOP [18] is more robust
when it tunes only one parameter.
ID(best) is a candidate list strategy that uses one pa-

rameter MaxNeighbors to perform one move from a con-
figuration x to a configuration x′ as follows:

1. ID(best) picks randomly neighbor candidates one
by one and evaluates them. The first neighbor x′ with
a cost better than or equal to the cost of x is accepted.

2. If MaxNeighbors neighbors have been rejected,
then the best neighbor among them (with a cost strictly
worse than the cost of x) is selected.

ID(best) has a common behavior with a variant of
tabu search once all the candidates have been rejected (item
2 above). However, the differences are the absence of tabu
list and another policy for selecting a neighbor x′ (step 1
above): with tabu search (when only a portion of the neigh-
bors is visited), all the MaxNeighbors candidates are
necessarily visited and the best among them (and not the
first one) is returned.

4ID Walk with two parameters has an additional parameter
SpareNeighbor that can take any value between 1 (fixed in ID(any))
and MaxNeighbors (fixed in ID(best)).

Our algorithm works with any of the standard greedy
heuristics: BF or BLF, considering one among the three
possible orders among rectangles: largest Width first (w),
largest Height first (h), largest Surface first (s), providing
six possible combinations: BFw, BFh, BFs, BLFw, BLFh,
BLFs. Overall, the proposed metaheuristic works as fol-
lows:

1. the greedy heuristic first places all the rectangles on
the strip,

2. ID(best), driven by the the automatic tuning proce-
dure, repairs the first solution.

A promising variant of this metaheuristic has been de-
signed for which the choice of heuristic is directly incor-
porated into the neighborhood: in addition to the choice of
rectangle R to be placed elsewhere (picked on the top of
the layout) and to the location in which the rectangle R will
be moved, one adds a choice among the greedy heuristics.
In other words, every trial starts with a randomly chosen
heuristic for providing the first layout; then, for every vis-
ited neighbor, one uses a randomly chosen greedy heuristic
to place again on the strip the removed rectangles.

This variant presents two advantages. First, it avoids the
user to choose among the (six) available greedy heuristics.
More precisely, used with ID(best) and its automatically
tuned parameter, this paper proposes a metaheuristic with
no parameter. Second, the variant seems rather efficient be-
cause, in our understanding, some biases are avoided. For
instance, it is well-known that, when handling 2D packing
with allowed rotation of rectangles, a bias introduced by the
(bottom-left) BF greedy heuristic is to place a lot of rectan-
gles “vertically” on the right side of the strip...

A description of the automatic tuning procedure can be
found in [18]. Every trial is independent from the others
and is interrupted when a maximal amount of CPU time
is exceeded. A trial is a succession of one automatic tun-
ing step, where the parameter MaxNeighbors is tuned in
a dichotomic way on short walks, and one exploring step
where the parameter is kept fixed during a long walk. After
one tuning step and one exploring step, the trial is continued
with a larger number of moves.

The same policy has been followed for all the tested
strip-packing benchmarks. In a same trial, the first tuning
step runs 24 walks (with different values for the parameter)
of 200 moves each; the first exploring step is a walk made
of 10000 moves; the second tuning step runs 24 walks of
800 moves each; the second exploring step is a walk made
of 40000 moves, and so on. It turns out that the tuning time
represents about 30% of the global time.

The initial value of MaxNeighbors has been arbitrar-
ily set to the half of the number of rectangles to be posi-
tioned. For the strip-packing variant allowing the rotation
of rectangles, the value is equal to the number of rectan-
gles. Although simple, this procedure is robust (i.e., the
tuned value converges and produces a good configuration)
in a majority of trials.

Class Width N Opt. IDW-1000 IDW-2*1000 IDW-100 Iori Lesh Burke Bortfeldt GRASP
C1 20 16–17 20 0.00 0.00 0.00 1.59 – 0.00 1.59 0.00
C2 40 25 15 0.00 0.00 0.00 2.08 – 6.25 2.08 0.00
C3 60 28–29 30 1.08 1.08 2.15 2.15 – 3.23 3.23 1.08
C4 60 49 60 1.64 1.64 1.64 4.75 – 1.64 2.70 1.64
C5 60 73 90 1.10 1.46 1.81 3.92 2.17 1.46 1.46 1.10
C6 80 97 120 1.37 1.37 1.37 4.00 1.64 1.37 1.64 0.83
C7 160 196.3 240 1.64 1.90 1.77 – – 1.77 1.23 1.23

optimal solutions 8/21 8/21 7/21 5/18 0/6 3/21 4/21 8/21

Table 2. Comparison on Hopper and Turton instances.

5 Experiments
We have performed experiments on five series enclosing

547 benchmarks. The 21 zero-waste instances by Hopper
and Turton [11] are classified into 7 classes of increasing
strip width. The corresponding results are reported in Ta-
ble 2. Table 3 shows the results obtained on the 13 gcut
instances by Beasley [3], the 3 cgcut instances, and the 10
beng instances by Bengtsson [4]. The results obtained on
the 12 ngcut instances also proposed by Beasley are not re-
ported because they are all optimaly solved by our meta-
heuristic (in less than 3 seconds) and by competitors. Note
that the gcut instances have a reasonable number of rectan-
gles but have a wide strip ranging from 250 to 3000 units.

Table 4 includes the results obtained on the 500 instances
proposed by Martello and Vigo [16], Berkey and Wang [5].
This huge number of instances are classified into 10 classes,
themselves subdivided into 5 series of 10 instances each.
The classes define different strip widths ranging from 10 to
300. The 5 series define instances with resp. 20, 40, 60, 80
or 100 rectangles. Finally, Table 5 reports the results ob-
tained on the Hopper and Turton instances [11] for a variant
of strip-packing where rectangles can rotate with an angle
of 90 degrees.

Competitors
Not all the presented competitors have tested the five pre-

sented benchmark series. Also, they have adopted slightly
different experimental conditions.

The hybrid tabu/genetic algorithm is run by Iori during
300 seconds on a Pentium III at 800 Mhz [12]. The BLD∗
algorithm is run by Lesh et al on a Pentium at 2 Ghz [14].
The two presented results correspond to time limits of re-
spectively 60 seconds and 3600 seconds.

The results presented for Burke et al. correspond to their
BF heuristic enhanced with tabu search, simulated anneal-
ing or a genetic algorithm. They run their heuristic 10 times
with a time limit of 60 seconds per run on a Pentium IV at 2
Ghz. Bortfeldt’s genetic algorithm is run 10 times on every
instance with an average time per run of 160 seconds on a
Pentium at 2 Ghz. The GRASP algorithm [1] is also run 10
times on every instance with a time limit of 60 seconds on
Pentium IV Mobile at 2 Ghz.

Experimental conditions
For a given category of benchmarks, our metaheuris-

tic follows one or both of the following policies. A first

approach runs ID(best) with the two most promising
greedy heuristic, 10 runs for both (the two selected heuris-
tics are specified in tables): an instance is thus solved 20
times, with an average time per run of 100 (sometimes
1000) seconds on a Pentium IV at 2.66 Ghz. A second
approach runs the variant of our metaheuristic with no pa-
rameter: an instance is solved only 10 times in the same
conditions. Thus, we allow a total time of 2000 or 1000
(sometimes 20000 or 10000) seconds depending on the se-
lected protocol.

For all the heuristics, we report the best bound obtained.
The average bounds are not reported because they are not
always available in the literature and are indeed sometimes
meaningless for certain algorithms (including our meta-
heuristic with two different greedy heuristics). However,
the comparison based on the average time leads to similar
conclusions.

Table 2

Every class contains 3 zero-waste instances with a given
width (column Width), a given number of rectangles (N),
and a given optimum - the ordinate of the top side of a high-
est rectangle in the strip - obtained by construction (Opt.).
The cells report the average percentage deviation from op-
timum. The reported results for Burke’s algorithm is their
best tested metaheuristic: BF + simulated annealing. The
reported results for Lesh et al’s algorithm were obtained in
3600 seconds. The columns IDW-1000 and IDW-2*1000
report the results of our metaheuristic in resp. 1000 sec-
onds per run (10 runs using the variant with variable greedy
heuristic) and 2000 seconds per run (10 runs with BFs and
10 runs with BLFw). The third column includes the results
obtained by the automatic ID Walk variant in only 100 sec-
onds per run. Note that a manual tuning of ID Walk in
1000 seconds per run allows us to reach an average percent-
age deviation from optimum of 1.37 for the class 7.

GRASP outperforms the other algorithms, especially on
the largest classes 6 and 7. ID Walk is generally bet-
ter than other competitors (except GRASP). Bortfeldt’s ap-
proach behaves well on class 7.

Table 3

The column LB yields Lower Bound computations of
the optimums (which are not necessarily reached). The cells
include the bound of the best solution computed by the cor-

Instance Width N LB IDWalk Variant Iori Lesh 60 Lesh 3600 GRASP
beng01 25 20 30 30 30 31 – – 30
beng02 25 40 57 57 57 58 – – 57
beng03 25 60 84 84 84 86 – – 84
beng04 25 80 107 108 108 110 – – 107
beng05 25 100 134 134 134 136 – – 134
beng06 40 40 36 36 36 37 – – 36
beng07 40 80 67 68 68 69 – – 67
beng08 40 120 101 101 101 – – – 101
beng09 40 160 126 126 126 – – – 126
beng10 40 200 156 156 156 – – – 156
cgcut01 10 16 23 23 23 23 – – 23
cgcut02 70 23 63 65 65 65 – – 65
cgcut03 70 62 636 669 669 676 – – 661
gcut01 250 10 1016 1016 1016 1016 1016 1016 1016
gcut02 250 20 1133 1204 1205 1207 1211 1195 1191
gcut03 250 30 1803 1803 1803 1803 1803 1803 1803
gcut04 250 50 2934 3066 3022 3130 3072 3054 3002
gcut05 500 10 1172 1273 1273 1273 1273 1273 1273
gcut06 500 20 2514 2656 2665 2675 2682 2656 2627
gcut07 500 30 4641 4694 4694 4758 4795 4754 4693
gcut08 500 50 5703 6192 6191 6240 6181 6081 5908
gcut09 1000 10 2022 2317 2317 – – – 2256
gcut10 1000 20 5356 5973 5979 – – – 6393
gcut11 1000 30 6537 7037 6997 – – – 7736
gcut12 1000 50 12522 14690 14690 – – – 13172
gcut13 3000 32 4772 4962 4995 – – – 5009

Table 3. Comparison on beng, cgcut and gcut instances.

responding algorithm. We report the bound of the best so-
lution obtained by Lesh et al’s algorithm in resp. 60 and
3600 seconds. Two columns correspond to the results of
IDWalk. The first one (IDWalk) corresponds to 10 runs
of 100 s each with BLFw plus 10 runs of 100 s each with
BFw (i.e., a total amount of 2000 seconds). The second
column (Variant) corresponds to the variant with variable
greedy heuristic in 1000 seconds (10 runs of 100 seconds
each). On the three presented categories, we can also note
that GRASP is better than ID Walk which is itself better
than Iori’s algorithm. Note however that ID Walk outper-
forms GRASP on three gcut instances with a wide strip (in
bold). ID Walk (even in 1000 seconds) gives similar re-
sults as Lesh’s approach in 3600 seconds. ID Walk finds
the optimal solution of beng instances, except for beng04
and beng07.

Table 4

The cells include the average percentage deviation from
the (not necessarily reached) lower bound. ID Walk is run
20 times per instance, with both greedy heuristics (10+10)
specified in the column Greedy. This means that one per-
centage in a cell comes from 1000 trials (20 trials on 50
instances in the class). One trial has a time limit of 100 sec-
onds. From best to worst, the order between competitors
is GRASP, ID Walk, Bortfeldt’s algorithm, Lesh’s algo-
rithm, Iori’s algorithm.

Table 5

IDW-1000 and IDW-100 correspond to the automatic
variant of ID Walk in resp. 1000 seconds and 100 sec-
onds per run. IDW-2*1000 is launched with BLFw and BFs

(1000 seconds per run). Note that a ID Walk can find the
3 optimums of the class 3 (i.e., an average deviation of 0.00)
and one optimum of the class 5 (0.74) in 1000 seconds per
run when it is manually tuned with the BFs greedy heuris-
tic. The first results were reported by Hopper and Turton
themselves [10, 11] in 2000.

On the strip-packing variant with non-fixed orientation
of rectangles, Bortfeldt’s algorithm behaves very well, ex-
cept on small instances5. The approach by Hopper and Tur-
ton is not competitive with our metaheuristic.

Synthesis

Lesh’s algorithm behaves well but does not improve its so-
lution a lot when spending more time (e.g., from 60 s to
3600 s). This highlights the interest of a metaheuristic,
based on the geometry of the layout, for escaping from local
minima.

The automatic variant of ID Walk behaves well. In-
deed, it is generally better than the basic algorithm (requir-
ing the user to select one or two given greedy heuristics) in
the half laps of time. (The comparison is not easy on gcut
instances.)

Overall, on strip-packing with rectangles of fixed ori-
entation, ID Walk is worse than GRASP, but generally
outperforms the others (including Bortfeldt’s algorithm).
On the variant with non-fixed orientation of rectangles, ID
Walk behaves well while outperformed by Bortfeldt’s al-
gorithm on large instances.

5In our understanding, it may be due to its last postprocessing per-
formed when handling non guillotine instances...

Class Width IDWalk Greedy Iori Lesh 60 Lesh 3600 Bortfeldt GRASP
01 10 0.67 BFw+BLFw 0.64 0.81 0.68 0.75 0.63
02 30 0.58 BFw+BFh 1.78 1.12 0.42 0.88 0.10
03 40 2.16 BFw+BLFw 3.05 2.71 2.23 2.52 1.73
04 100 3.47 BFw+BFh 5.08 4.41 3.54 3.19 2.02
05 100 2.20 BFw+BLFw 3.15 2.85 2.43 2.59 2.05
06 300 4.86 BFw+BFh 5.99 6.45 5.13 4.96 3.08
07 100 1.12 BFw+BLFw 1.16 1.17 1.12 1.19 1.10
08 100 4.19 BFw+BLFw 6.16 5.99 4.93 3.85 3.57
09 100 0.07 BFw+BLFw 0.07 0.07 0.07 0.07 0.07
10 100 3.12 BFw+BLFw 4.67 4.11 3.48 3.05 2.93

Overall 2.24% 3.17% 2.97% 2.40% 2.31% 1.73%

Table 4. Comparison on the 500 instances proposed by Martello, Vigo, Berkey, Wang [16, 5].

Class Wid. N Opt. IDW H Bortf.
1000 2000 100

C1 20 16–17 20 0.00 0.00 0.00 4 1.70
C2 40 25 15 0.00 0.00 0.00 6 0.00
C3 60 28–29 30 2.22 2.22 3.33 5 2.22
C4 60 49 60 1.67 1.67 1.67 3 0.00
C5 60 73 90 1.11 1.11 1.11 3 0.00
C6 80 97 120 1.11 1.11 1.67 3 0.33
C7 160 196.3 240 1.25 1.53 1.67 4 0.33

optimal solutions 7(10)/21 7/21 6/21 0/21 15/21

Table 5. Comparison on Hopper and Turton
instances with non-fixed orientation of rect-
angles [11].

6 Discussion

The contribution described in this paper is twofold. First,
we have proposed incremental operators to maintain a set
of maximal holes during the addition and removal of rect-
angles on a container for any 2D packing problem. We
have suggested to relax the BL property which is respected
by most of complete and incomplete algorithms. Second,
we have designed a metaheuristic for handling 2D strip-
packing, endowed with an incremental move based on the
geometry of the layout, and maintaining the set of maxi-
mal holes. In particular, we have proposed a variant with
no parameter to be (manually) tuned and with no greedy
heuristic to be specified. This variant behaves well on the
tested benchmarks.

The good performance obtained by GRASP, by Bort-
feldt’s algorithm and by our metaheuristic yield an exper-
imental evidence that the best methods for handling strip-
packing exploit the geometry of the layout.

However, we have not yet demonstrated that it is really
interesting in practice to propose incremental moves allow-
ing the violation of the BL property. These doubts are based
on the rather good results obtained by Lesh [14], and on
the excellent results obtained by the GRASP approach (for
the moment limited in its implementation to rectangles with
fixed orientation). These approaches are not really incre-
mental but redo all the job (or at least a large part of it)
when they perform rectangle removals.

Thus, could our metaheuristic be improved by using a
more sophisticated greedy heuristic, such as the BF-like one
used by the GRASP heuristic?

References

[1] R. Alvarez-Valdes, F. Parreño, and J. Tamarit. Reactive grasp
for the strip packing problem. In Proceedings Metaheuristic
Conference MIC, 2005.

[2] B. Baker, E. Coffman, and R. Rivest. Orthogonal packings
in 2D. SIAM Journal on Computing, 9:846–855, 1980.

[3] J. Beasley. Algorithms for unconstrained two-dimensional
guillotine cutting. J. of the operational research society,
33:49–64, 1985.

[4] B. Bengtsson. Packing rectangular pieces – a heuristic ap-
proach. The computer journal, 25:353–357, 1982.

[5] J. Berkey and P. Wang. Two-dimensional finite bin packing
algorithms. J. of the oper. resear. society, 38:423–429, 1987.

[6] A. Bortfeldt. A genetic algorithm for the two-dimensional
strip packing problem with rectangular pieces. European
Journal of Operational Research, 172:814–837, 2006.

[7] E. Burke, G. Kendall, and G. Whitwell. A new placement
heuristic for the orthogonal stock cutting problem. Opera-
tions Research, 52:697–707, 2004.

[8] E. Burke, G. Kendall, and G. Whitwell. Metaheuristic en-
hancements of the best-fit heuristic for the orthogonal stock
cutting problem. submitted in INFORMS, : , 2006.

[9] B. Chazelle. The bottom left bin packing heuristic: an ef-
ficient implementation. IEEE Transactions on Computers,
32:697–707, 1983.

[10] E. Hopper. Two-Dimensional Packing Utilising Evolutionary
Algorithms and other Meta-Heuristic Methods. PhD. Thesis
Cardiff University, 2000.

[11] E. Hopper and B. Turton. An empirical investigation on
metaheuristic and heuristic algorithms for a 2d packing prob-
lem. European J. of Operational Research, 128:34–57, 2001.

[12] M. Iori, S. Martello, and M. Monaci. Metaheuristic algo-
rithms for the strip packing problem, pages 159–179. Kluwer
Academic Publishers, 2003.

[13] N. Lesh, J. Marks, A. M. Mahon, and M. Mitzenmacher. Ex-
haustive approaches to 2D rectangular perfect packings. In-
formation Processing Letters, 90:7–14, 2004.

[14] N. Lesh, J. Marks, A. M. Mahon, and M. Mitzenmacher.
New heuristic and interactive approaches to 2D strip pack-
ing. ACM J. of Experimental Algorithmics, 10:1–18, 2005.

[15] S. Martello, M. Monaci, and D. Vigo. An exact approach to
the strip-packing problem. INFORMS Journal of Computing,
15:310–319, 2003.

[16] S. Martello and D. Vigo. Exact solution of the two-
dimensional finite bin packing problem. Management sci-
ence, 15:310–319, 1998.

[17] B. Neveu and G. Trombettoni. INCOP: An Open Library
for INcomplete Combinatorial OPtimization. In Proc. Con-
straint Programming, LNCS 2833, pages 909–913, 2003.

[18] B. Neveu, G. Trombettoni, and F. Glover. ID Walk: A Can-
didate List Strategy with a Simple Diversification Device. In
Proc. Constraint Prog., LNCS 3258, pages 423–437, 2004.

