
Proceedings of GOW 2014, pp. 1 – 4.

Node Selection Heuristics Using the Upper Bound
in Interval Branch and Bound∗

Bertrand Neveu,1 Gilles Trombettoni,2 and Ignacio Araya3

1LIGM, Université Paris Est, France, Bertrand.Neveu@enpc.fr

2LIRMM, Université Montpellier, France, Gilles.Trombettoni@lirmm.fr

3Pontificia Universidad Católica, Valparaiso, Chile, rilianx@gmail.com

Abstract We present in this article a new strategy for selecting the current node in an interval Branch and
Bound algorithm for constrained global optimization. The standard best-first strategy selects the
node with the lowest lower bound of the objective estimate. We propose in this article new node
selection policies where an upper bound of each node/box is also taken into account. The good
accuracy of this upper bound achieved by several operators leads to a good performance of the
criterion. These new strategies obtain better experimental results than classical best-first search on
difficult instances.

Keywords: Global Optimization, Interval Branch and Bound, Node Selection

1. Introduction

The paper deals with continuous global optimization (nonlinear programming) deterministi-
cally handled by interval branch and bound (B&B). Several works have been performed for
finding good branching heuristics [3], but very little work for the node selection itself. The
solvers generally follow a best first search strategy (BFS), with some studies for limiting its
exponential memory growth [1, 6]. Different variants of BFS have been proposed for discrete
problems, such as K-Best-First Search [4].

To our knowledge, only Casado et al. in [1] and Csendes in [2] proposed node selection
heuristics for interval B&Bs. One criterion to maximize, called C3 in [5], and suitable for
unconstrained global optimization is:

f∗ − lb
ub− lb

where [lb, ub] = [f ]N ([x]) is the interval obtained by the natural interval evaluation of the real-
valued objective function f in the current box [x]: [lb, ub] is a range interval including all real
images of any point in [x] by f . f∗ is the optimum. When f∗ is not known, f̃ , the cost of the
best feasible point found so far can be used as an approximation of f∗. This criterion favors
small boxes (i.e., a small interval width (ub − lb)) and nodes with good lb. For constrained
optimization, another criterion (to maximize) calledC5 is equal toC3×fr. It takes into account
a feasibility ratio fr computed from all the inequality constraints. The criterion C7 proposes
to minimize lb

C5
.

This paper proposes two other policies taking into account an accurate upper bound of the
optimum cost.

∗Supported by the ANR project Ficolofo



2 Bertrand Neveu, Gilles Trombettoni, and Ignacio Araya

2. Standard Interval B&B

An interval [xi] = [xi, xi] defines the set of reals xi s.t. xi ≤ xi ≤ xi. A box [x] is a Cartesian
product of intervals [x1]× ...× [xi]× ...× [xn].

The paper deals with continuous global optimization under inequality constraints defined
by: minx∈[x] f(x) subject to g(x) ≤ 0, where f : Rn → R is the real-valued objective function
and g : Rn → Rm is a vector-valued function. x = {x1, ..., xi, ...xn} is a vector of variables
varying in a domain/box [x]. x is said to be feasible if it satisfies the constraints.

A standard interval (or spatial) B&B scheme for continuous constrained global optimization
(also known as nonlinear programming) is described in algorithms below. The B&B maintains
two main types of information during search: f̃ , which is the cost of the best feasible point
found so far, and fmin the minimum value of the lower bounds lb([x]) of the boxes/nodes [x]
to explore. In other terms, in every box [x], there is a guarantee that no feasible point exists
with a cost lower than lb([x]).

Let us first ignore the bold-faced instructions corresponding to the new strategy and de-
tailed in Section 3. The algorithm is launched with the set g of constraints, the objective func-
tion f and with the initial box put into a list B of boxes to be handled. εobj is the required
precision on the objective cost and is used as stopping criterion. We add a variable xobj in the
system (the vector x of variables) corresponding to the image (cost) of the objective function,
and a constraint f(x) = xobj . The criterion generally used in existing interval B&Bs is denoted

IntervalBranch&Bound(B, g, f ) {
While (B 6= ∅ and f̃ − fmin > εobj) {

criterion := criterionChoice(LBBox, UBBox, UBProb)
[x] := bestBox (B, criterion); B := B \ [x]
([x]1, [x]2) := bisect ([x])
[x]1 := Contract&Bound([x]1, g, f )
[x]2 := Contract&Bound([x]2, g, f )
B := B ∪ {[x]1} ∪ {[x]2}
fmin := min[x]∈B lb([x])

}
}

Contract&Bound([x], g, f ) {
UBBox := f̃ − εobj + 0.1εobj

g′ := g ∪ {xobj ≤ UBBox }
[x] := contraction([x], g′, f )
if ([x] 6= ∅) {

(xub, cost):= FeasibleSearch([x],g′)
if (cost < f̃ ) {
f̃ := cost
ub([x]) := f̃ − εobj

}
}

Return [x]
}

in this paper by LBBox. It consists in selecting a node/box [x] with a minimum lower bound
estimate of the objective function (lb([x])). The selected box [x] is then split into two sub-boxes
[x]1 and [x]2 along one dimension (selected by another and more studied branching heuristic).
Both sub-boxes are then handled by the Contract&Bound procedure.

A constraint xobj ≤ UBBox is first added to the system for decreasing the upperbound
of the objective function in the box. This aims at finding a solution better than the current
best feasible point. The procedure then contracts the handled box without loss of feasible
part. In other words, some infeasible parts at the bounds of the domain are discarded by
constraint programming (CP) and convexification algorithms. Since this contraction works
on the extended box including the objective variable xobj , it may improve both bounds of the
objective on the current box.

The last part of the procedure carries out upperbounding. FeasibleSearch calls one or several
heuristics searching for a feasible point that improves the best cost found so far.

Note that the search tree is traversed in best-first order so that an exponential memory may
be required to store the nodes to handle.

3. New Strategies Using Upper Bounds

In optimization, the selection of the next node to expand is crucial for obtaining a good per-
formance. The best node we can choose is such that it will improve the most the upperbound.
Indeed, the upperbound improvement reduces globally the feasible space due to the constraint:



Node Selection for Interval B&B 3

xobj ≤ f̃ . There exist two phases in a branch and bound: a phase where we try to find the
optimal solution, and a second phase where we prove that this solution is optimal, which re-
quires us expand all the remaining nodes. Therefore the node selection matters only in the
first phase.

We define new strategies aggregating two criteria for selecting the current box:

1. LBBox: The well known criterion used by BFS and minimizing lb([x]) (for all boxes [x]
in the set B). This criterion is optimistic since we hope to find a solution with cost
fmin, in which case the search would end. For each box, lb([x]) is computed by the
Contract&Bound procedure and the computed value labels the node stored into the set
B of boxes.

2. UBBox: This criterion selects the node having the smallest goal upperbound. Thus, if
a feasible point was found inside this box, it would more likely improve the best cost
found so far.

The UBBox criterion is symmetric to the LBBox one: for every box, ub([x]) is computed by
the Contract&Bound procedure and labels the node before storing it in the set B of boxes. In
particular, constraint programming techniques like 3BCID [7] can improve ub([x]) by discard-
ing small slices at the upper bound of [xobj ] (shaving process).

We think that a key of success of the UBBox criterion is that it evaluates more accurately
the objective upperbound than the natural interval evaluation would do (i.e., ub computed by
[lb, ub] := [f ]N ([x])).

We propose two main ways to aggregate these two criteria.

LB+UBBox. This strategy selects the node [x] with the lowest value of the sum lb([x]) +
ub([x]). This corresponds to minimizing both criteria with the same weight, i.e. minimizing
the middle of the interval of the objective estimate in the box.

Alternating both criteria. In this second strategy, the next box to handle is chosen using
one of the two criteria. A random choice is made by the criterionChoice function at each node
selection, with a probability UBProb of choosing UBBox. If UBBox (resp. LBBox) is chosen
and several nodes have the same cost ub([x]) (resp. lb([x])), then we use the other criterion
LBBox (resp. UBBox) to tie breaks.

Experiments showed that the performance is not sensitive to a fine tuning of the UBProb
parameter provided it remains between 0.2 and 0.8, so that the parameter has been fixed to 0.5.
The experiments in Section 5 highlight the positive impact of this criterion on performance.

These results suggest that it is important to invest both in intensification (UBBox) and di-
versification (LBBox). In other words, the use of a second criterion allows the search to avoid
the drawback of using one criterion alone, i.e. (for LBBox) choosing promising boxes with
no feasible point and (for UBBox) going deeply in the search tree where only slightly better
solutions will be found trapped inside a local minimum.

3.1 Details on the criterion UBBox
All candidate boxes in the set B, have a UB label depending on the best cost found so far (f̃ )
when the boxes were handled by Contract&Bound. All labels fall in four main cost ranges cat-
egories given by f̃ and explaining with which priority the boxes are chosen using the UBBox
criterion. The label is:

1. lower than f̃ − εobj if the contraction procedure reduced the maximum estimate of the
objective in the box,

2. equal to f̃ − εobj , if the box is a descendant of the box containing the current best feasible
point f̃ ,

3. equal to f̃ − 0.9 εobj if the box was handled after the last update of best cost,

4. greater than f̃ − 0.9 εobj in the remaining case.



4 Bertrand Neveu, Gilles Trombettoni, and Ignacio Araya

As shown in the Contract&Bound pseudocode, the additional term 0.1 εobj allows penal-
izing the boxes that are not issued by a bisection from boxes where the current best feasible
point was found.

4. Implementation of the Set B of Boxes
The set B was initially implemented by a heap structure ordered on the LBBox criterion. The
implementation s1-05 keeps this unique data structure for taking into account the two criteria
in the randomized strategy, but the node selection using UBBox comes at a linear cost in the
number N of nodes. In practice, this takes about 10% of the total cost when N exceeds 50,000.
We have then built a variant s1-05-01 changing dynamically the probability UBProb in the
following way: UBProb = 0.5 if N ≤ 50, 000 and UBProb = 0.1 if N > 50, 000.

Finally, we tried a cleaner implementation, s2-nodiv, with two heaps, one for each crite-
rion. All the operations are then in log2(N), except for the heap filtering process launched
occasionnally during search. (This “garbage collector” is performed in all our implementa-
tions and removes from B all the nodes with lb([x]) > f̃ .)

The s2-nodiv implementation brings less diversification than the first one which recon-
structs the heap at each criterion change. Indeed, there often exist several nodes with the same
UBBox and LBBox values, so it is useful to periodically rebuild the data structures randomly
for breaking the ties. So we propose variants that use a second parameter corresponding to
a diversification period. We obtained good results by fixing it to 50 in the s2-50 variant or
100 in the s2-100 variant, the first parameter UBProb being still fixed to 0.5. To be fair, we
also applied the first strategy with the minUB+LB aggregative criterion running heap filtering
every 100 nodes (s0-100).

5. Experiments
We have run experiments on 82 problems, issued from the series 1 and 2 of the Coconut bench-
mark. The best strategies s2-50 and s2-100 obtain a gain of about 40% w.r.t. the total time
and 23% on average, meaning that greater gains are obtained on difficult problems.

6. Summary
The node selection policy is a promising line of research to improve performance of interval
B&B. We have obtained good results by taking into account for each node a lower bound but
also an upper bound, provided that this upper bound is made accurate by box contraction op-
erations, by a random selection between both criteria and by a work on heap data structures.
In a short term, we are going to investigate how relevant components of criteria proposed by
Markot and al. in [5] can improve the current policies, especially the feasibility ratio.

References

[1] L.G. Casado, J.A. Martinez, and I. Garcia. Experiments with a New Selection Criterion in a Fast Interval
Optimization Algorithm. Journal of Global Optimization, 19:247–264, 2001.

[2] T. Csendes. New Subinterval Selection Criteria for Interval Global Optimization. Journal of Global Optimization,
19:307–327, 2001.

[3] T. Csendes and D. Ratz. Subdivision Direction Selection in Interval Methods for Global Optimization. SIAM
Journal on Numerical Analysis, 34(3), 1997.

[4] A. Felner, S. Kraus, and R. E. Korf. KBFS: K-Best-First Search. Annals of Mathematics and Artificial Intelligence,
39, 2003.

[5] M.C. Markot, J. Fernandez, L.G. Casado, and T. Csendes. New Interval Methods for Constrained Global
Optimization. Mathematical Programming, 106:287–318, 2006.

[6] J. Ninin and F. Messine. A Metaheuristic Methodology Based on the Limitation of the Memory of Interval
Branch and Bound Algorithms. Journal of Global Optimization, 50:629–644, 2011.

[7] G. Trombettoni and G. Chabert. Constructive Interval Disjunction. In Proc. CP, volume 4741 of LNCS, pages
635–650. Springer, 2007.


