
UNIVERSITÀ CA’ FOSCARI – VENEZIA
Facoltà di Scienze Matematiche, Fisiche e Naturali

Corso di Laurea Specialistica in Informatica

Tesi di Laurea

A Formal Study for Type System
for XQuery Optimization

Federico Ulliana

Relatore: Prof. Michele Bugliesi Correlatore: Dott. Dario Colazzo

Controrelatore: Prof. Renzo Orsini

Anno Accademico 2008-2009
Via Torino 155 – 30173 Mestre-Venezia

April 4 2009

2

A tutti i miei Mentore.

3

4

Contents

1 Introduction 9

1.1 Towards Projection through Types 9

1.2 Main-memory XQuery Processors 10

1.3 State of the art . 14

1.4 Thesis contribution . 15

1.5 Structure of the document . 16

2 Data and Types 17

2.1 XML and XML Documents 17

2.1.1 Textual Representation 17

2.1.2 Well-formedness . 18

2.1.3 Tree Representation 19

2.1.4 XML Data model . 20

2.2 Schema Languages and Validation 22

2.2.1 Tree grammars . 22

2.2.2 DTD and XML Schema 28

2.2.3 Validation with DTD 32

2.2.4 Validation with XML Schema 32

3 Querying XML 35

3.1 XQuery and FLWR-XQuery 35

3.1.1 FLWR-XQuery Data model 36

3.1.2 Expressions . 39

3.1.3 Path Expressions . 39

3.2 Syntax . 51

3.3 Semantic . 51

3.3.1 Preliminary Definitions 51

3.3.2 Navigational Axis . 53

3.3.3 Operational Semantic 58

5

6 CONTENTS

3.3.4 Description of rules . 59

4 Static Type Analysis 67
4.1 Type Inference . 67
4.2 Relations over Type-Names 68

4.2.1 Type-contexts . 78
4.3 Typing Rules . 79

4.3.1 Description of rules . 79
4.4 Soundness . 85
4.5 Completeness . 86

4.5.1 Completeness of Type System 88

5 Type based XML Projection 91
5.1 Type projectors . 91
5.2 Type Projection Inference . 94

5.2.1 Description of Rules 95
5.3 Soundness . 100
5.4 Precision of the type projection inference 100

6 Conclusion and Future works 103

7 Proofs 107
7.1 Soundness of axis selection . 107
7.2 Completeness of axis selection 110
7.3 Soundness of Typing Rules 119
7.4 Completeness of Typing Rules 133
7.5 Soundness of Type Projection 146

Bibliography 156

Abstract

Type based XML projection (or pruning) is an optimization technique adopted
in the context of main memory XML query engines, introduced by Benzaken,
Castagna, Colazzo and Nguyen in a recent VLDB paper.

The main idea behind XML projection is quite simple: given a query over
an XML data tree valid with respect to a DTD, all subtrees of the document
not necessary to evaluate the query are pruned out, thus obtaining a smaller
tree. The query is then executed over a smaller tree, avoiding to allocate
memory for nodes that will never be reached by navigational specifications
in the query.

What is typical of type-based projection, is that the decision whether
a subtree have to be pruned or not is based on the information related to
the type of the query and to the type of the input document. In the VLDB
paper, authors defined a type system for XPath, while XQuery queries are
dealt with by approximating them by a set of XPath expression, which
constitutes then the input for the type-projection analysis. Soundness and
completeness results were provided only for XPath queries, and no property
were proved for XQuery.

In this dissertation we provide an extension of the previous type system.
The new type system is able to directly deal with XQuery queries, without
needing path-extraction intermediate steps. This has in turn required a
formal and concise characterization of XQuery semantics, which is much
more complex than that of XPath. As a result we give and prove a soundness
theorem for type-projection for XQuery queries, and we also show that the
type system is able to infer very precise type projectors for a wide class of
cases.

7

8 CONTENTS

Chapter 1

Introduction

1.1 Towards Projection through Types

The last ten years have seen the rapidly emerging of XML query and trans-
formation languages because of the large class of applications where XML
plays a central role. Examples are Web applications, data integration, and
P2P distributed database systems. What is clear is that, when dealing with
heterogeneous data sources, it’s difficult to grant a regular structure of the
raw data such as, for instance, in the relational model. Then the needed
of semistructured data. Semistructured data means data structure highly
irregular which can change over the time. XML is a language that allows
easily to define such data. With the type languages DTD and XML Schema
it is possible to have a fine-grain control over how much variation allow in
the data: from a perfect regularity, a little or a lot of variation.

Designers of XML made as optional the presence of a schema instance to
validate a document. Despite this, document types are absolutely essential
to the development of coherent complex applications, and then to guarantee
documents to be valid wrt a schema. Moreover, they are useful to reason
about data and collections of data. As in relational system, schema allow
software to decide about possible optimizations, for instance, performing
static type checking of programs and queries.

This work is collocated in the context of optimization for Main Memory
XQuery Processors, in particular it studies the pruning technique based on
Type Projectors introduced by Benzaken et al. in [1]. This technique stands
on the fact that each node belonging to an XML tree valid wrt a schema
can be associated with the chains of types that states between the root-node
and the node-self. This means that it is possible to determine the type of

9

10 CHAPTER 1. INTRODUCTION

all the nodes in the result of a query and the type of their ancestors. Once
computed this set of useful types, it is possible to prune the document in
the parsing phase of the document avoiding to load in main memory all the
subtrees for with root node type not in the computed set, as in Figure (3.5).
This often reduces drastically the amount of the memory required for the

a) b)

Figure 1.1: a) original document, b) pruned document

execution of a query, and it becomes especially important in main memory
processors, because they are used to load all the document before executing
a query.

In this work we will cover some lacks in the VLDB paper to the aim of
manage all the type projectors technique on XQuery and give all the formal
foundations needed. We reserve a paragraph later for a detailed explanation.

1.2 Main-memory XQuery Processors

As already stated, applications that process XML documents as files suf-
fer limitations of current main-memory processors. In other words, they
cannot manage very huge documents due to the memory occupancy of the
XML data model instance. Also, little devices with small CPU and low
memory that need to process portion of XML need to save resources if pos-
sible. The interest of this work is on main-memory XQuery processor for
the query language XQuery proposed by W3C in [7]. After several years
of development by the W3C, XQuery is becoming more stable and starts
being implemented and used. Originally designed to query XML databases,
now is being considered as an alternative in the context of many other ap-
plications, such as streaming, information integration, services and full text
querying. Main memory XQuery processors are often the primary choice for
those applications that cannot afford to build secondary storage indexes or
load a database before starting query processing.

1.2. MAIN-MEMORY XQUERY PROCESSORS 11

Memory occupation by data model instances

The implementations of main memory XQuery engines load the complete
document before processing it. Moreover is need to build a data model in-
stance of the entire document in memory before query processing because, to
a large extent, of the complexity of evaluating languages such as XSLT and
XQuery. Processing XML only as a stream without building a data model
instance is an active area of research, but such approaches only consider
fragments of XPath, and cannot deal with most XQuery expressions. In-
deed, many XQuery expressions (joins, type operations such as typeswitch,
operations on document order, backward XPath axis, function calls, let
expressions, namespaces, sorting, etc.) require to materialize part(s) of the
document. This is typically done using one of the existing XML data models
which provide information necessary for query processing such as node iden-
tity, type annotations resulting from validation, namespace, nodes, pointers
to parent nodes, etc.

The complexity of XML data models accentuate the problems related to
memory management in XQuery implementations. Benchmarks show that
the size of a DOM representation in memory is typically 4-5 times larger
than the original file. Some techniques can be used to build a more compact
representation. The aim is to avoiding to build a complete data model
instance.

Processing XQuery in Main-Memory

We show how a pruning technique fits in a typical main-memory XQuery
processor. We use the Galax system as an illustration. Galax is integrated
with the pruning technique based on path analysis introduced by Marian
and Siméon in [2]. The technique is briefly described later, but it’s not
necessary to be known to understand what follows.

XQuery
Expression

XQuery
Parser

XQuery
Abstract Sintax

Tree

XQuery
Evaluation

Input XML
Document

SAX
Parser

SAX
Events

XML Data
Model Loader

Data Model
Instance

XML
Query Result

Figure 1.2: Galax XQuery processing architecture without projection paths

12 CHAPTER 1. INTRODUCTION

Architecture without pruning

Figure (1.2) shows the Galax processing architecture in the absence of pro-
jection. On the one hand, the XQuery expression is parsed to an abstract
syntax tree, on the other hand, the input document is parsed into a streamed
fashion using SAX, then loaded in memory as an XML data model instance.
In the case of a streaming processor, the document is parsed directly from
the network instead of a local file. Finally, the query is applied on the data
model instance to yield a result.

Architecture with projection

The projection technique can be integrated in a main-memory XQuery pro-
cessor with minimal effort, as showed in Figure (1.3). The figure show the
technique developed in [2], then after the query is parsed, it is analysed to
recognise projection paths. The result of this analysis is sent to the data
model loader which uses it to build a projected data model instance which
contains only the nodes specified by the projection paths. The figure explain
the mechanism, but as we will see later the technique of projection paths
suffers of overhead. Now we propose the architecture in presence of Type

XQuery
Expression

XQuery
Parser

XQuery
Abstract Sintax

Tree

XQuery
Evaluation

Input XML
Document

SAX
Parser

SAX
Events

XML Data
Model Loader

Projected
Data Model

Instance

XML
Query Result

Path
Analysis

Projection Paths

STATIC ANALYSIS

Figure 1.3: Galax XQuery processing architecture with projection paths

Projectors, the technique developed in [1]. We can see in Figure (1.4) that
the main difference wrt the projeetion paths approach is the contribute of
the schema to the type projection inference. This is what distinguished the
two techniques. The figure shows clearly that XQuery is treated with an
apart module, that is the path extraction function.
Finally, in Figure (1.5) we present the improvement that simplify the model
and that is the aim of this work: static analyse directly XQuery avoiding
the phase of path extraction.

1.2. MAIN-MEMORY XQUERY PROCESSORS 13

XQuery
Expression

XQuery
Parser

XQuery
Abstract Sintax

Tree

XQuery
Evaluation

Input XML
Document

XML
Parser

Projected
Data Model

Instance

XML
Query Result

Type Projector
Analysis

Type Projector

Document
schema-instance

Loading
Events

XML Data
Model Loader

XQuery
paths

extraction

STATIC ANALYSIS

Figure 1.4: Architecture with type projectors

XQuery
Expression

XQuery
Parser

XQuery
Abstract Sintax

Tree

XQuery
Evaluation

Input XML
Document

XML
Parser

Projected
Data Model

Instance

XML
Query Result

Type Projector
Analysis

Type Projector

Document
schema-instance

Loading
Events

XML Data
Model Loader

STATIC ANALYSIS

Figure 1.5: Architecture with type projectors simplified

14 CHAPTER 1. INTRODUCTION

1.3 State of the art

Three main pruning approaches are known: untyped query analysis, dataguide
and typed query analysis.

[1] Marian and Siméon developed the technique based on projection
paths. They propose that the part of data that is necessary to the exe-
cution of the query q is determined by statically extracting all paths in
q. These paths are then applied to the document d at load time, in the
SAX-event based fashion, in order to prune unneeded subtrees of the doc-
ument, as in Galax. This technique is powerful since it can be applied to
a set of queries over the same document and it does not require any apri-
ori knowledge of the structure of the document d because only the query
is analyzed. However, this technique suffers some limitations. First, the
document loader-pruner is not able to manage backward axes nor path ex-
pressions with predicates. Also, since no information about d is used, the
technique does not behave efficiently in terms of loading time and pruning
precision (hence, memory allocation) when ”//” occurs in paths. Indeed,
when is present in a projection path, the pruning process requires to visit all
descendants of a node in order to decide whether the node contains a useful
descendant. What is worst is that pruning time tends to be quite high and it
drastically increases (together with memory consumption) with the number
of augments in the pruning path-set. As a matter of facts, in this technique
pruning corresponds to computing a further query, whose time and memory
occupation may be comparable to those required to compute the original
query. In particular, every occurrence of ”//” may yield a full exploration
of the tree in this technique. Therefore, pruning execution overhead and
its high memory footprint may jeopardize the gains obtained by using the
pruned document. Finally, since no predicates in paths are treated, the
precision of pruning degrades for queries containing the XPath expressions
descendant :: node[cond], which are very useful and used in practice.

The second main technique by Bressan in [20] introduce a different and
quite precise XML pruning technique for a subset of XQuery FLOWR ex-
pressions. The technique is based on the apriori knowledge of a data-guide
for d. A data guide is an auxiliary data structure that aid navigation of the
data. The document d is first matched against an abstract representation of
q. Pruning is then performed at run time, it is very precise, and, thanks to
the use of some indexes over the data-guide, it ensures good improvements
in terms of query execution time. However the technique is one-query ori-
ented, in the sense that it cannot be applied to multiple queries, it does
not handle XPath predicates, and cannot handle backward axes. Also, the

1.4. THESIS CONTRIBUTION 15

approach requires the construction and management of the data-guide and
of adequate indexes.

Third approach, the one followed by this work, is by Benzaken et al. [1].
Authors present a new pruning approach which is applicable in the pres-
ence of typed XML data. Most applications require that data are valid with
respect to some external schema, DTD or XML Schema. Their technique,
that is well described in this dissertation, it’s more closed with the work of
Marian and Siméon but relaxing some limitations. First of all, unlike [2] and
[20] the approach accounts for backward axes, performs a fine-grained anal-
ysis of predicates, allows for dealing with bunches of queries. The solution
provides comparable or greater precision than the other approaches, while
it requires always negligible or no pruning overhead. One of the particular
features is that the pruning algorithm is characterized by a constant (and
low) memory consumption and by an execution time linear in the size of the
document to prune. More precisely, a pruning based on type projectors is
equivalent to a single bufferless one-pass traversal of the parsed document
that simply discards elements not generated by any of the names in the pro-
jector. So if embedded in query processors, pruning can be executed during
parsing and/or validation and brings no overhead.

1.4 Thesis contribution

In this work we aim to overcome the following limitations of [1]:

� the lack of a formal treatment of all XPath horizontal navigational
axes that are approximated as composition of other axes.

� the lack of a formal treatment of the most powerful constructs of
XQuery that because of their complexity are approximated using a
path extraction function that reduces them to a set of XPath paths.

� the availability of proofs only for XPath because XQuery is approxi-
mated to XPath.

We propose the following features:

� the formalization of the semantics of FLWR-XQuery, the language that
contains all XPath, FLWR expressions and element construction.

� a set of typing rules for FLWR-XQuery and the proof of Soundness
and Completeness for the type inference.

16 CHAPTER 1. INTRODUCTION

� a set of rules for type projection inference for FLWR-XQuery and the
proof of Soundness for the type projection inference.

What gives originality to our work is the fact that the language that we
treat formally is a relevant extension of the one proposed by the authors
in [1]. We move in two ways: first covering a lack in XPath introduc-
ing features as dynamic and static analysis for axes following–sibling,
preceding–sibling, following and preceding (that are approximated
in the original work), and second managing the most powerful constructs
of XQuery, that are, FLWR expressions and element construction. In the
original work the latter constructs were considered using a special path-
extraction function and then reducing the problem in the scope of path
navigation static analysis because the formal treatment of XQuery seemed
too hard. For the language that we consider, a subset of XQuery we dub
FLWR-XQuery1, semantics is defined in agreement with W3C specifications,
and gives both an easy understandable way for the dynamic evaluations of
the language and expressivity and flexibility in formal proof. This is far
from being obvious, especially if we compare our works to the others in lit-
erature on the same branch of research. We define a static type system to
type the result of a query, and a static type projector system to compute
type projectors, for all FLWR-XQuery. We give a measure of the precision
of our system since the soundness and the completeness of our approach for
a large class of queries and DTDs are formally proved. Then considering as
starting point the theorems that we will state a lot of new applications of
the optimization technique can be studied.

1.5 Structure of the document

The thesis is organised as follows. Chapter 3 introduces basic definitions and
notations: data model, DTD, validation. In Chapter 4 we define FLWR-
XQuery and its semantics. In Chapter 5 we present the static type system
and state its formal properties. In Chapter 6 we present projection, type
projector, type projectors inference system and state its formal properties.
In the last Chapter we proof in detail all the stated theorems.

1It’s not accident that we omit ”O” in the name of our language because we didn’t

treat order by clause.

Chapter 2

Data and Types

The purpose of this chapter is to introduce the language XML and its type
languages, in order to define formally the data model and the type lan-
guage model on which we based our work. For the typing, we focus on
the DTD language that is illustrated both from a descriptive and a formal
point of view. Moreover, from a theoretical perspective, it will be showed
that grammars generated by DTD and XML Schema schemas corresponds
to two particular subclasses of the Regular Tree Grammars (RTG).

2.1 XML and XML Documents

We start with a brief description of XML and its characteristics. XML,
Extensible Markup Language [3] is a markup language that has become the
de-facto standard for data exchange over the web. This is due to the high
flexibility of XML, that makes it able to model the various kind of data
format that are present over the web: HTML data, relational and object
database data, structured and unstructured textual data, audio and video
data, and so on as described in [13]. There is no fixed collection of markup
tags in XML that let us define our own tags and structure, tailored for
the kind of information that we wish to present. The XML specification
says nothing about the semantics of the markups tags, this is left to the
specifications of the particular XML application.

2.1.1 Textual Representation

An XML Document is written as a Unicode text with markup tags and other
meta-information representing the elements, attributes, and other nodes.

17

18 CHAPTER 2. DATA AND TYPES

Text nodes are simply written as the text they represent. This text is also
called character data. Element nodes are denoted by markup tags as in the
following example:

<book year = ‘1998’>
<title>
Types and Programming Languages

</title>
<author>
B.Pierce

</author>
<hardcover/>

</book>

Here, <title> is an element start tag with name title, and </title> is a
matching end tag. The text between, which generally may contain markup
in turn, is the content of the element. Attributes are written inside the
element start tag. In this case, the element has a single attribute named
year with value 1998. Within a start tag, the ordering of attributes and all
whitespace surrounding them are always insignificant. Attribute values are
enclosed by ‘ ’or “ ”. Elements without content are called empty, and such
elements may be written with a short-hand notation <hardcover/> as an
alternative to <hardcover></hardcover>.

2.1.2 Well-formedness

An XML document in its textual form must be well-formed. This essentially
means that it defines a tree structure, corresponding to the conceptual model
presented earlier. To be well formed tags must match and nest properly. The
following fragments are not well formed.

� <book> </title>

� <book> <title> </book> </title>

In the first, the start and the end tags do not match; in the second book

and title does not nest properly. Moreover XML is case sensitive. For
example,

<title>
Types and Programming Languages

</TiTlE>

2.1. XML AND XML DOCUMENTS 19

is not well formed. A well-formed document must have exactly one root
element. Since a non-well-formed document has no meaning, we always
implicitly mean well formed XML document when we say XML document,
unless otherwise stated.

2.1.3 Tree Representation

All the XML Data Tree are modeled with a tree structure. Conceptually, an
XML document is a hierarchical structure called XML tree, which consists of
nodes of various kind ordered and arranged as a tree, as in Figure (2.1). We

book

authortitle
hard

cover

B.

PierceTAPL

year:

1998

book.

xml

Figure 2.1: Tree representation of the document

can distinguish various kind of nodes: text nodes, element nodes, attribute
nodes, comment nodes, processing instruction nodes and root nodes. In
Figure (2.1) nodes are drawn as circles. The topmost node (marked with
double border) is called the root-node and represents the entire document.
The edges shows a parent-child relation between the nodes, for example, the
node with label title is child of the node with label book, and viceversa the
second is the parent of the first. The content of each node is the sequence
of its child nodes. Nodes with no children are called leaves such as the text
nodes or the attribute nodes (respectively on the left and on the right of the
figure). We miss processing instruction nodes.

Every element node has a name, also called label, a word that describes
the grouping and that corresponds to an element-tag. This is strictly related

20 CHAPTER 2. DATA AND TYPES

with typing which describes the element-tags that we can find as children
of each element-tag. A type is the element-tag of a node and the structure
of its content. Later in this dissertation we will refer to type meaning one
approximation of it: the element-tag and the name contained in its content
model (we will not consider completely the structure of the content model).
Element nodes are the most important to the aim of optimization because
they define the structure of the document. We know that also attribute
nodes can give optimization, based on non-structural condition, but to the
sake of simplicity of the formal data model they are not considered in this
work, as we will see later. Another thing to specify is about the root-node
of the tree. The children of the root-node consist of any number of comment
and processing instruction nodes together with exactly one element node,
which is called the root-element (a common mistake is to confuse the root
node with the root element of a document). For the sake of simplicity in
our model we will refer always to the root-element while formally treating
XML Trees. The siblings of a node are the other children of the parent of
the node. The ancestors of a node consist of its parent, the parent of the
parent, and so on, including the root node. The descendants of a node is
the set consisting of its children, the children of the children, and so on.

Among all the nodes in an XML tree there is a total ordering called doc-
ument order. Document order corresponds to the order in which the nodes
appear if in textual representation. For example, in Figure (2.1) the node
with label author appears after the node title and before the text node that
contains the string B.Pierce. There’s no order between attributes of a node.
Document order between nodes in different XML trees is implementation-
defined but must be consistent; that is, all the nodes in one tree must be
ordered either before or after all the nodes in another tree.

2.1.4 XML Data model

Now we define the XML document data model we use in this document.
The core of the formalization is once again the definition of node.

Definition 2.1 (Node) A node is a pair n = (id, X) where id is an unique
identifier and X is the type of the node.

We use nid,nX to indicate respectively the projection of the first and the
second element of the pair. In all the approaches [1] , [2] and [6] the informa-
tion about the type of the node is often demanded to an external function
that maps every node into its type and other information. In this disserta-

2.1. XML AND XML DOCUMENTS 21

tion we inglobe the type information in the datamodel instance. We refer
the reader to the suggested literature for more details.

An instance of the XML document data model can be generated by the
following grammar.

Trees t ::= ln[f] |sn

Forests f ::= t | f , f | ()

For example, for the tree in Figure (2.1) we have this production:

bookn1 [titlen2 [sn3], authorn4 [sn5], hardcovern6 [()]]

Essentially, this grammar produces an ordered sequence of labeled ordered
trees (ranged over by t), that is an ordered forest (ranged over by f) and
where () denotes the empty forest. Tree nodes are labeled by element tags
while, without loss of generality, we consider only leaves that are text nodes
(that is strings ranged over by s) or empty trees (that is, elements that label
the empty forest). As stated before, to model the content of each node we
have based our definition on the notion of forest. This is essential for the
model in order to be a good XQuery data model.

Definition 2.2 (Subtree Selection) Given a forest f and a node n be-
longing to the forest, we write f@n to denote the unique subtree of f such
that f@n = ln[f] or f@n = sn.

With abuse of notation we use n to identify the precise information given
by nid. Moreover given a forest f we can define the set of all the nodes of
the forest as

Nodes(f) = {n | f@n = ln[f] or f@n = sn}

and the set of identifiers of all the nodes of the forest

Ids(f) = {nid|n ∈ Nodes(f)}

Definition 2.3 (Good Formation) A forest f is well formed if for every
n ∈ Nodes(f) we have that the identifier nid occurs in Ids(f) almost once.

Henceforth we will consider only well-formed forests, and later we will define
also good formation wrt types. It’s also easy to see the following proposition.

Proposition 2.4 Given a well formed forest f and a tree t, if t ∈ f then t
is a well formed tree.

22 CHAPTER 2. DATA AND TYPES

We recall that the XML document data model makes a difference between
the root-node, which represents the entire document, and the root-element
(the second is the unique element node child of the first). Despite this, in
our abstract definition of data tree we define and we refer to the root of a
tree as the root-element, as follows:

Definition 2.5 (Root Node) Given a tree t, if t = sn or t = ln[f] then
rootNode(t) = n.

2.2 Schema Languages and Validation

Now we proceed defining the type language model. A schema, at the matter
of facts, is a grammar that defines the structure of valid XML documents.
From a theoretical point of view is interesting to note that grammars cor-
respondent to DTD and XML Schema are two particular subclasses of the
Regular Tree Grammars (RTG). So, we start introducing the class of tree
grammars called regular, then we proceed with two restricted classes called
local and single type that corresponds to DTD and XML Schema respec-
tively.

2.2.1 Tree grammars

Tree Grammars define languages of terms representing finite labeled ordered
trees. They are used because they provide a good compromise between
abstraction, expressively and tractability for defining and reasoning about
structural constraints over XML trees.

Regular Tree Grammars and Languages

We use the definitions in [16] where RTGs describe unranked trees (any
node can have any number of children) which allows trees with infinite arity
(any node can have any number of children), and the right-hand side of a
production rule to have a regular expression over non-terminals generated
by the following grammar:

r ::= r|r | (r, r) | r∗ | r+ | r? | Y | () (2.1)

where the operators “|”and “,”are the union and the concatenation between
two regular expressions, “?”defines optionality, “∗”and “+”repetition or the
regular expression respectively at least 0 or 1 times and Y denotes a non-
terminal metavariable.

2.2. SCHEMA LANGUAGES AND VALIDATION 23

Definition 2.6 (Regular Tree Grammar) A regular tree grammar (RTG)
is a 4-uple G = (N,T, S,E) where

� N is a finite set of non-terminals

� T is a finite set of terminals

� S is a set of start symbols, where S is a subset of N

� E is a finite set of production rules of the form Y → l[r], where
Y ∈ N , l ∈ T , and r is a regular expression over N defined as in (2.1)

Y is the left-hand side, l[r] is the right-hand side and r is the content model
of this production rule.

Example 2.7 The following grammar G1 = (N,T, S,E) is a regular tree
grammar.

N = { Book, Title, Editor, Author, Name }
T = { book, title, editor, author, name, string}
S = { Book }
E = { Book → book[Title, Author, Editor],

Title → string[ε], Author → author[Name],
Editor → editor[Name], Name → string[ε] }

we represent every text value by the node string[ε] for convenience.

Without loss of generality we can assume that no two production rules
have the same non-terminal in the left-hand side and the same terminal in
the right-hand side at the same time. If a regular grammar contains such
production rules, we only have to merge them into a single production rule.
We also assume that every non-terminal is either a start symbol or occurs in
the content model of some production rule (in other words, no non-terminal
are useless).

Now we define how a regular tree grammar generates a set of trees over
terminals. Classical approaches [16], [1] and [3] defines a function from a
grammar to a tree called interpretation, that maps every node to a non-
terminal. We no need to use this approach since in our enriched data model
a node n = (id, X) is coupled both with its identifier and its type.

Definition 2.8 (Interpretability) Given a tree t and a regular tree gram-
mar G = (N,T, S, P), we say that t is interpretable wrt G if let t′ a subtree
of t the following conditions hold.

24 CHAPTER 2. DATA AND TYPES

1. if t′ = t and n = rootNode(t) then nX ∈ S.

2. if t′ = sn then there exists a production rule Y → string[ε] ∈ P and
nX = Y .

3. if t′ = ln[t1, . . . , tp] then there exists a production rule Y → l[r] ∈ P
such that l ∈ T , nX = Y and let ni = rootNode(ti) then n1

X , . . . ,np
X

is generated by r.

Example 2.9 Given the grammar G1 and the tree t as instance of the XML
data model in Figure (2.2), it’s easy to see that for example

� rootNode(t) = n1, n1X = Book and Book ∈ S.

� t = bookn1 [t1, t2, t3] and exists a production rule Book → book[r] ∈ P
that generates the string t1, t2, t3 since r = (Title, Author, Editor).

� t@n3 = sn3 and there exists a production rule Title → string[ε] ∈ P .

book

authortitle
hard

cover

TarskyTAPL

(1,Book)

(2,Title)

(3,Name)

(4,Author) (6,Hardcover)

(5,Name)

Figure 2.2: XML Data Model instance

Definition 2.10 (Generation) Given a tree grammar G = (N,T, S,E), a
tree t is generated from G if it is interpretable wrt to G.

Definition 2.11 (Regular Tree Language) A regular language is the set
of tree generated by a regular tree grammar.

2.2. SCHEMA LANGUAGES AND VALIDATION 25

A classic result in the theory of this grammars is that for each regular tree
grammars, a finite state automaton, usually called a regular tree automaton,
can be defined so that it accepts a tree if and only if the tree is generated
by the regular tree grammar, as stated in [3]. Other results says that al-
gorithms for tree validity checking can also be defined without exploiting
tree automata and just looking to regular tree grammar’s productions. In
particular, local and single-type tree grammars, that we’re going to intro-
duce, are two examples of classes of grammars for which recognizers are
deterministic and work in a time which is polynomial in the number of sub-
trees of the input tree, and in the number of productions in the grammar.
Local and single-type regular tree grammars are defined by imposing some
restrictions on productions, so to allow deterministic choice of productions
to apply when a tree is matched against a grammar during the recognition
process. These restrictions are based on the notion of competition between
non terminals.

Local Tree Grammars and Languages

We first define competition of non-terminals. Then, we have to introduce
a restricted class called local by prohibiting competition of non-terminals.
This class corresponds to DTD.

Definition 2.12 (Competing Non-Terminals) Two different non-terminals
A and B are said competing with each other if

� one production rule has A in the left-hand side

� one production rule has B in the left-hand side, and

� these two productions rules share the same terminal in the right hand
side.

Example 2.13 The following grammar G2 = (N,T, S,E) is a regular tree
grammar.

N = { Book, Author1, Author2, Name }
T = { book, author, name, string}
S = { Book}
E = { Book → book[Title, Author1, Author2],

Author1 → author[Name],
Author2 → author[Name],
Name → string[ε] }

26 CHAPTER 2. DATA AND TYPES

Author1 and Author2 compete with each other, since the production
rule for they share the same terminal author in the right-hand side. There
are no other competing non-terminal pairs in this grammar.

Definition 2.14 (Local Tree Grammar and Language) A local tree gram-
mar is a regular tree grammar without competing non-terminals. A tree
language is a local tree language if it is generated by a local tree grammar.

Example 2.15 The following grammar G3 = (N,T, S,E) is a local tree
grammar.

N = { Book, Author1, Name, String }
T = { book, author, name, pcdata }
S = { Book }
E = { Book → book[Title, Author1],

Author1 → author[Name],
Name → string[ε] }

Single-Type Tree Grammars and Languages

To be complete, we introduce a less restricted class called single type, by
prohibiting competition of non-terminals within a single content model. This
class corresponds to XML Schema.

Definition 2.16 (Single-Type Tree Grammar and Language) A single-
type tree grammar is a regular tree grammar such that

� for each production rule, non-terminals in its content model do not
compete with each other, and

� start symbols do not compete with each other.

A tree language is a single-type language if it is generated by a single-type
tree grammar.
The grammars G1 and G2 are not single type since Author and Editor

compete and they are both in the content model of Book in the first and
since Author1 and Author2 compete and they are both in the content model
of Book in the second. The grammar G3 is a single-type tree grammar since
it’s a local tree grammar.

2.2. SCHEMA LANGUAGES AND VALIDATION 27

Example 2.17 The following grammar G4 = (N,T, S,E) is a single-type
tree grammar.

N = { Book, Author, AuthorName, EditorName, Editor, Name }
T = { book, author, , editor, name, string}
S = { Book }
E = { Book → book[Author, Editor],

Author → author[AuthorName],
AuthorName → name[Name],
Editor → editor[EditorName],
EditorName → name[Name],
Name → string[ε] }

In this case AuthorName and EditorName compete, but they belongs to
different content models.

As shown in Figure (2.3) single-type tree grammars are strictly more ex-
pressive than local tree grammars. That is, some single-type tree grammars
cannot be written as local tree grammars. And this is consistent with the
fact that XML Schema are more expressive than DTDs. Moreover regular
tree grammars are more expressive than single-type tree grammars.

RTG

Single Type
Local

Figure 2.3: Geography of RTG Grammars

The choose of Regular Tree Grammars

An interesting question suggested in [16] may be why for XML documents
are not used context free (string) grammars. Context free (string) grammars

28 CHAPTER 2. DATA AND TYPES

represent sets of strings. Successful parsing of strings against such grammar
provides derivation trees. This scenario is appropriate for programming
languages and natural language, where programs and natural language text
are strings rather than trees. On the other hand, start tags and end tags
in an XML document collectively represent a tree. Since traditional context
free (string) grammars are originally designed to describe permissible strings,
they are inappropriate to describe permissible trees.

2.2.2 DTD and XML Schema

A schema is a formal definition of the syntax of an XML-based language, that
is, it defines a family of XML documents. This is why typing is important to
reason and optimize over the same family of documents. A schema language
is a formal language for expressing schemas.

A schema language must satisfy three criteria to be useful. First it must
provide sufficient expressiveness such that the most syntactic requirements
can be formalized in the language. Second it must be possible to implement
efficient schema processors, which works ideally in linear requirements both
in time and space. Third the language must be understandable by non-
experts to be used by a user different from the creator of the schema.

In this section we introduce Document Type Declaration (DTD) showing
how it is related with regular tree grammars. DTD is a good compromise
between simplicity and completeness of details to better understand the
problem of document validation.

DTD

XML has since the first working draft contained a built-in schema language:
Document Type Definition (DTD). Just as the XML notation is defined as
a subset of SGML, the DTD part of XML is designed as the DTD part of
SGML. We will refer always to the XML variant. Also, to avoid confusion,
we will use the term DTD schema for referring to a particular schema written
in the DTD language. From a language point of view we have to note that
DTD is not itself written in XML notation.

A DTD schema consist of declaration of elements, attributes, and various
other constructs. An element declaration is in the form

<!ELEMENT element–name content–model>

where element–name is an element name, such as Book in Example (2.7)
and content–models a regular expression over tags and text-symbols types

2.2. SCHEMA LANGUAGES AND VALIDATION 29

which defines the validity requirements of the contents of all elements of
the given name. Every element name that occurs in the instance document
must correspond to one element declaration in order for the document to
be valid. Moreover, the contents of the element must match the associate
content model. Content models come in four different flavours:

empty: the content model of an element is EMPTY, then the element must
be empty. As previous explained, being empty means that it has no
contents, but this says nothing about attributes.

<!ELEMENT hardcover EMPTY>

any: the content model can consist of any sequence of element and char-
acters data. The keyword ANY is often used to model open contents,
where element are not still defined. It’s rarely used in final schemas.

<!ELEMENT undefinedField ANY>

mixed content: a content model of the form

(#PCDATA | title | author)∗

where title and author are element names, means that the contents
may contain arbitrary parsable character data, interspersed with any
number of elements of the specified names.

element content: to specify constraints on the order and number of oc-
currences of child elements, a content model can be written using the
grammar defined in 2.1.

For the sake of simplicity we miss the treatment of the other characteristic
such as attribute declaration, and we refer to W3C literature since they do
not concern our work.

Three questions about DTD language

As suggested in [13] there are interesting questions about the design of the
DTD language. First either arbitrary character data is permitted in the con-
tents or no character data is permitted. Why we are not allowed to impose
constraints on character data, for example, such that only whitespace and
digits are allowed in the contents of certain elements? Second, if character
data is to be permitted in the contents, then we have no choice but using

30 CHAPTER 2. DATA AND TYPES

the mixed content model, which cannot constrain the order and number of
occurrences of the child elements. Why is not possible to use character data
together with the element content model? This question is related to a tra-
dition of roughly classifying SGML and XML languages as either document
oriented or data oriented depending on whether they use the mixed content
model or not, but such not an artificial classification not be necessary. Third
why do we need the restriction to deterministic content models? After all it
has been know for more than thirty years how to perform efficient pattern
matching on general regular expressions. Clearly, these limitations become
practical problems in the real world. The simple answer to these questions
is that a design goal was that XML (and hence also DTD) should be a sub-
set of the SGML language, which has these unfortunate properties. From
another point of view the identification of these limitations has motivated
the design of alternative schema languages.

From DTD to Local Regular Tree Grammars and back

Grammars generated as DTD schemas corresponds to local regular tree
grammars. This is, because content model declarations are tag coupled,
and this forbids the definition of different element types with same label.
In terms of regular tree grammars, this correspond to not competing non-
terminal symbols. We can build our local tree grammar G = (N,T, S, P)
starting from DTD and viceversa. We just consider the set of terminal sym-
bols T as equal to the set of tags in the DTD. Under this assumption, we
can see each declaration in the DTD having the form

<!ELEMENT l (r)>

where l ∈ T and r is a regular expression over T . Then, we can define non-
terminals N and build productions P as follows: consider a symbol Y ∈ N ,
for each l ∈ T and for each DTD declaration <!ELEMENT l (r)> provide a
production Y → l[r] where R correspond to the content model r where (i)
each type occurrence is replaced with its correspondent non-terminal in N
and (ii) EMPTY is replaced with the regular expression ε.

Example 2.18 Correspondence between DTD schema and Local RTG for
the DTD.

2.2. SCHEMA LANGUAGES AND VALIDATION 31

<!DOCTYPE book<[
<!ELEMENT book(title, (author+|editor+)+)>
<!ELEMENT title(#PCDATA)>
<!ELEMENT author(name)>
<!ELEMENT editor(name)>
<!ELEMENT name(#PCDATA)>
]>

N = {Book, Title, Editor, Author, Name}
T = {book, title, editor, author, name, string}
S = {Book }
E = { Book → book[Title, (Author+|Editor+)+],

Title → string[ε], Author → author[Name],
Editor → editor[Name], Name → string[ε] }

As synthesis of this correspondence between the two DTD schemas and
Local RTG, we can abstract and give the formal definition of DTD. The
definition recall the ones of the Local RTG but is simplified inferring the
sets N and T from E.

Definition 2.19 (DTD schema) A DTD schema is a pair (W,E) where
W is the distinguished type of the root and E is the set of productions of the
form {Y1 → R1, . . . , Yn → Rn} such that

1. the Yi’s are pairwise distinct

2. each Ri is of the form ai[ri] or String where ai is an element tag, and
each ri is a regular expression over names {Y1, . . . , Yn}

3. for each pair Yi → ai[ri] and Yj → aj[rj], i = j if and only if ai = aj

4. W ∈ {Y1, . . . , Yn}

In particular, condition 3 states that two type-names cannot share the same
non-terminal in the right-hand side of the production (this is non compe-
tition). In the following we write Names(r) for the set of all names used
in r and DN(E) for the set of all names defined in E (that is, {Y1, .., Yn}
which corresponds to the set N into a RTG). We also say that r is a regular
expression over (W,E), if r is a regular expression over names in DN(E)
and is defined as in (2.1).

32 CHAPTER 2. DATA AND TYPES

2.2.3 Validation with DTD

The process of document validation take in input an XML document d, and
a schema s, which is written in that particular schema language, and then
checks whether d is or not syntactically correct according to s. If it is the
case then we say that d is valid wrt to s. If d is invalid, then most schema
processors produce useful diagnostic error messages.

Based on what we see before for interpretability of tree wrt to Regular
Tree Grammars we can give the definition on validity for XML Documents.
If an XML Document is valid wrt a DTD-instance then it has a tree repre-
sentation which is interpretable wrt a Local RTG.

Definition 2.20 (Valid Trees) A tree t is valid wrt a DTD (W,E) if the
following conditions hold.

1. if n = rootNode(t) then nX = W

2. for each n ∈ Nodes(t) if t@n = sn and nX = Y then Y → String ∈ E

3. for each n ∈ Nodes(t), if t@n = ln[t1, . . . , tm] then ∃ Z → l[r] where
Z = nX and let ni = rootNode(ti) then (n1X , . . . ,nmX) is generated
by r .

In this case we say that t is valid wrt the DTD and we write t ∈X (W,E)
to indicate it.

2.2.4 Validation with XML Schema

While DTD comes from the document community as a language to constrain
the format of SGML documents, XML Schema is closer to the spirit of
DBMS and general programming language type systems.
Non competition between non-terminal in RTG grammars induces locality,
that is, the fact that for each document element almost one production can
generate it. This allows also a direct and efficient document validation.
For what concerns expressivity of data, locality is a limit of DTD since it
disallows modularization in type definitions: types are bounded to tag and
not to names, hence type cannot be referred in other declarations. Moreover
locality implies that element with the same tag but different content model
cannot be described. This is a problem in mapping relational data into
XML data, for instance, thinking to the fact that two distinct relations
can have the same field-name with different type. Single Type RTG allows

2.2. SCHEMA LANGUAGES AND VALIDATION 33

competition between non-terminal metavariable that does not belong to the
same content model. It’s easy to see the correspondence between Single
Type RTG and grammars generated by XML Schema. A further limitation
of DTD is the lack of a notion of type and range specifications for simple
value such as integers, real and so on. Despite all those limitations, to
exploit the problem of validation, DTDs seems a good compromise between
simplicity and completeness of details. This is, the most of the readers
know DTD rather than XML Schema. So, we do not present in detail XML
Schema and refer the reader to the suggested literature [9], [16]. Moreover,
all the results of this work holds for the entire class of RTG, and then also
for grammars generated either from DTD or XML Schema since it’s known
that they are generated by two subclasses.

34 CHAPTER 2. DATA AND TYPES

Chapter 3

Querying XML

This chapter introduces FLWR-XQuery the subset of XQuery that we con-
sider as query language, and upon which we base our work. The chapter
enucleates the constructs that compose FLWR-XQuery. We provide both
syntax and semantics of the language.

3.1 XQuery and FLWR-XQuery

XQuery is a query language defined by the XML Query Working Group in
[7]. The design of XQuery has been subject to a number of influences: from
the compatibility with existing W3C standards XML Schema, XSLT, XPath
and XML [cite], to the experiences in developing other query languages such
as Quilt, XQL, XML-QL, SQL and OQL [3].

From a language theory point of view is interesting the fact that XQuery
is a Turing complete typed functional language. This means that the eval-
uation of each expression return a value with no side effects, that a queried
data may be typed, and then a type for the query result can be inferred.

The W3C working group has published a list of requirements, a de-
scription of the datamodels that underlies the language, a formal semantics
description, a list of functions and operators, and a collection of use cases
that illustrate applications of the language in [7],[8], [10] and [11] . Despite
this rich documentation there’s a lack in formality: the semantics of the
language, although well defined, is not proposed in a concise manner, and
it’s unwieldy for proving certain properties. This is due to the large amount
of details to consider in a rich language such as XQuery. It follows, as we see
in literature [1], [3], [4], [5], [6], [20], [28] and [29] that, in order to work on
a specific topic, it’s often needed first a subset of the language that capture

35

36 CHAPTER 3. QUERYING XML

the most interesting constructs which the problem is related to, and second
a set of side assumptions to simplify the formal treatment of the problem.

That said, we propose a sublanguage of XQuery, that we dub FLWR-
XQuery, that has almost the same expressive power as XQuery, has a read-
able syntax and semantics and is flexible enough to formal proof. For what
concerns side assumptions, we choose to maintain some important charac-
teristics of the language that often are missed in other works such as ordered
result and duplicate removals. We specify FLWR-XQuery so that all syn-
tactically valid expressions also satisfy XQuery syntax, and the result of a
query evaluated using the proposed semantics will be exactly that evaluated
by XQuery.

3.1.1 FLWR-XQuery Data model

The query data model provides an abstract representation of one or more
XML documents or document fragments. The data model is based on the
notion of sequence of nodes.

Definition 3.1 (Sequence) A sequence of nodes is denoted by ~n and is a
vector of nodes (n1, . . . ,np) of length p.

Given two sequences we denote ~n, ~m for the concatenated sequence and we
define

~n, ~m = (n1, . . . ,np,m1, . . . ,mq) (3.1)

We denote with |n| the cardinality of the sequence, so in this case |n| = p.
The empty sequence is neutral wrt concatenations: ~n, () = ~n.

The equality between sequences we define is approximated. We need an
approximated definition because evaluations of a query over both a docu-
ment and the same pruned document can yield two sequences of nodes that
actually represents the same result but differs in id. This is, because a
pruned document can use a different enumeration of the ids of the nodes
wrt the original document. In order to define what stated before, we need
an approximated notion of equality between nodes. This notion is based
on the fact that equal nodes induces the same subtrees of the forest they
belong, if we do not consider ids. To do not consider the information related
to the id of a node, given a tree t we dub t for the tree t where for each node
n ∈ Nodes(t) we erase the node identifier information imposing nid = ⊥.
Then, given two nodes n, m ∈ f we have that

n ∼= m iff f@n = f@m (3.2)

3.1. XQUERY AND FLWR-XQUERY 37

At the matter of facts, we consider as equal nodes with same type that are
roots of the same subtree.
Now it’s easy to define equality between sequences of nodes:

(n1, . . . ,np) ∼= (m1, . . . ,mp) iff ∀ i = 1..p ni
∼= mi (3.3)

Finally, to assign at sequence ~m as value of the sequence ~n we write ~n← ~m.

A sequence as is an ordered collection of zero or more nodes used as persis-
tent roots of subtrees of the data. Nodes in a data model instance have a
unique identity, established when the node is created, and may have other
nodes as children, thus forming a node hierarchy reflecting XML tree struc-
ture. Nodes belonging to the same hierarchy are ordered accounting to
document order. Ordering among attributes, and among nodes belonging
to different documents is leaved as implementation defined. The only con-
straint is that has to be respected is that all the nodes of a tree must be
ordered either before or after the nodes of another tree.

Sequences never appear as an item in another sequence. All operations
that create sequences are defined to flatten their operands so that the result
of the operation is a single level sequence. There’s no distinction between
a node and a sequence of length one, in other words, a node is considered
identical to a sequence of length one. Empty sequences are allowed and are
sometimes used to represent missing on unknown information, in much the
same way that null values are used in relational systems. When a sequence
of nodes is the evaluation of a query, the contained nodes are persistent roots
of subtrees of the document, that are converted into an XML document by
a process called serialization.

38 CHAPTER 3. QUERYING XML

Example 3.2 To illustrate the query data model, and provide basis for later
examples, we consider the following DTD and XML database that contains
a bibliography document based on the Use Cases proposed by W3C in [11].

<?xmlversion = ”1.0”?>
<!DOCTYPE bib[
<!ELEMENT bib (book∗)>
<!ELEMENT book (title, (author+ |editor+), publisher, price)>
<!ELEMENT author (last, first)>
<!ELEMENT editor (last, first, affiliation)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT last (#PCDATA)>
<!ELEMENT first (#PCDATA)>
<!ELEMENT affiliation (#PCDATA)>
<!ELEMENT publisher (#PCDATA)>
<!ELEMENT price (#PCDATA)>

]>

<bib>
<book>

<title>TCP/IP Illustrated</title>
<author><last>Stevens</last><first>W.</first></author>
<publisher>Addison− Wesley</publisher>
<price>65.95</price>

</book>

<book>
<title>Advanced Programming in the Unix environment</title>
<author><last>Stevens</last><first>W.</first></author>
<publisher>Addison− Wesley</publisher>
<price>65.95</price>

</book>

<book>
<title>Data on the Web</title>
<author><last>Abiteboul</last><first>Serge</first></author>
<author><last>Buneman</last><first>Peter</first></author>
<author><last>Suciu</last><first>Dan</first></author>
<publisher>Morgan Kaufmann Publishers</publisher>
<price>39.95</price>

</book>

</bib>

3.1. XQUERY AND FLWR-XQUERY 39

3.1.2 Expressions

FLWR-XQuery as XQuery has several kinds of expressions, most of which
are composed by lower-level expressions, combined by operators or keywords.
All the expressions are fully composable, that is, where an expression is
expected any kind of expression may be used.

3.1.3 Path Expressions

Path expressions in the language we considered are based on the syntax of
XPath. A path expression consists of a series of steps, separated by the slash
character (”/”). Each Step is in the form Axis::Test, where Axis navigates
the tree to select some nodes and Test is a filtering condition on the selected
nodes. The result of each step is a set of nodes. The value of the path
expression is the node set that returns from the last step in the path.

Path = Step1/ . . . /Stepn

Each step is evaluated wrt a particular node called context node. During
path evaluation, the nodes selected by each step serve in turn as context
nodes for the following step. If a step has several context nodes, it is evalu-
ated for each of the context nodes in turn, and the resulting node sequences
are concatenated to form the result of the step. The result of a path is
always a set of nodes that must be organized as a sequence in document
order.

From a syntax point of vier XPath expressions may be written in either
unabbreviated syntax or in abbreviate syntax. The unabbreviated syntax
for an axis step consists of an axis and a selection criterion, separated by
two colons as in Query (3.1).

Query 3.1 List of titles of books titles

document(”bib.XML”)/child :: bib/
/child :: book/child :: title

The first step invokes the built-in document function, which returns the
document node for the document named bib.XML of Example (3.2). The
second step is an axis step that finds all the children of the document node
(child :: bib and selects a single element node named bib, that is the root-
element). The third step follows the child axis again to find all the child
elements at the next level that are named book and that in turn have nested
the element title. The final result of the path expressions is the result of

40 CHAPTER 3. QUERYING XML

the third step: a sequence of title element nodes in document order, that
after serialization appears as:

<title>TCP/IP Illustrated</title>
<title>Advanced Programming in the Unix environment</title>
<title>Data on the Web</title>

In practice, path expressions are usually written in abbreviated syntax. Sev-
eral kinds of abbreviations are provided. Perhaps the most important of
these is that the axis specifier may be omitted when the child axis is used.
Since child is the most commonly used axis, this abbreviation is helpful in
reducing the length of many path expressions. For example, Query (3.1)
may be abbreviated as:

/bib/book/title

As in the above example, and from now on, we leave as implicit the builtin
document function and assume that the root-element is the only one in
context of the root ”/”. When two steps are separated by a double slash
(”//”) rather than by a single slash, it means that the second step may
traverse multiple levels of the hierarchy, using the descendants axis rather
than the single-level child axis (a more precise semantics will be described
later), for example:

Query 3.2 List all title elements found in the document bib.XML.

//title

Query (3.2) which is equivalent to /descendant–or–self :: title searches
for description elements that are descendants of the root node of a given
document. Query (3.2) evaluates to a sequence of element nodes that could,
in principle, have been found at various levels of the node hierarchy (though,
in our sample document, all the elements are at the same level). The final
evaluation is the same as in Query (3.1).

Axes

An axis is a sequence of nodes located relative to the context node. It is
a first approximation to the sequence that we wish to obtain as the result
of a location step because often is completed by a filtering on the selected
nodes. FLWR-XQuery supports all the navigational axis of XPath, and
especially, one things that give originality to our work is the treatment of all

3.1. XQUERY AND FLWR-XQUERY 41

the horizontal axes: following–sibling, following, preceding–sibling
and preceding not directly supported in [1]2. The remaining axes are,
intuitively, called vertical axes. Follows a brief description of each kind of
axis.

� self, the context node itself.

� child, the children of the context node.

� descendant, the descendants of the context node.

� parent, the unique parent node of the context node, but empty se-
quence if the content node is the root node.

� ancestor, all the ancestors of the context node, from the parent to
the root.

� following–sibling, the right-hand siblings of the context node.

� preceding–sibling, the left-hand siblings of the context node.

� following, all nodes appearing strictly after in the document that the
context node, but excluding descendants.

� preceding, all nodes appearing strictly before the context node, but
excluding ancestors.

� descendant–or–self, the descendants of the context node and the
context node.

� ancestor–or–self, all the ancestors of the context node, from the
parent to the root, and the context node.

The main axes are illustrated in Figure(3.1). The attribute axis is
obviously missed as explained before. Each axis has a direction, which de-
termines the order in which the nodes are assigned positions in the sequence.
Another important distinction is made between forward axes and backward
axes. The forward axis are self, child, descendant, following–sibling,
following, and the backward axes are parent, ancestor, preceding–sibling
and preceding. For the sake of simplicity, during the dissertation, we omit

2As said in the introduction this axes are approximated.

42 CHAPTER 3. QUERYING XML

parent child descendant ancestor

following-sibling preceding-sibling following preceding

Figure 3.1: Navigational Axes

the treatment of descendant–or–self and ancestor–or–self axis since
they are the composition of two described axis:

descendant–or–self :: node ≈ descendant :: node , self :: node (3.4)

and

ancestor–or–self :: node ≈ ancestor :: node , self :: node (3.5)

We are interested in cover formally all XPath. Horizontal axes are powerful
since they allow to navigate the entire tree. In [12] is possible to find a
series of examples where their use is more intuitive that the use of other
axes. This is, especially if data is know as ordered with some criteria, for
example, considering the DTD in Example (3.2) where we assume exists an
alphabetical order over books title, as in the following two examples.

Query 3.3 We use axis following–sibling to select all book element that
follows the first element with title equal to ”TCP/IPillustrated”.

/bib/book[title = ”TCP/IPillustrated”]/following–sibling :: node

3.1. XQUERY AND FLWR-XQUERY 43

Which evaluates to:

<bookyear = ”1992”>
<title>Advanced Programming in the Unix environment</title>
<author><last>Stevens</last><first>W.</first></author>
<publisher>Addison− Wesley</publisher>
<price>65.95</price>

</book>

<bookyear = ”2000”>
<title>Data on the Web</title>
<author><last>Abiteboul</last><first>Serge</first></author>
<author><last>Buneman</last><first>Peter</first></author>
<author><last>Suciu</last><first>Dan</first></author>
<publisher>Morgan Kaufmann Publishers</publisher>
<price>39.95</price>

</book>

Query 3.4 We use axis preceding to select all the books before those which
author last name is ”Suciu”:

//self :: text = ”Suciu”/preceding :: node[book]

Which evaluates to:

<bookyear = ”1994”>
<title>TCP/IP Illustrated</title>
<author><last>Stevens</last><first>W.</first></author>
<publisher>Addison− Wesley</publisher>
<price>65.95</price>

</book>

<bookyear = ”1992”>
<title>Advanced Programming in the Unix environment</title>
<author><last>Stevens</last><first>W.</first></author>
<publisher>Addison− Wesley</publisher>
<price>65.95</price>

</book>

44 CHAPTER 3. QUERYING XML

Predicates

A predicate is an expression, enclosed in square brackets with the form

Step[Cond]

that use the condition Cond to filter a sequence of values, for example:

//book[child :: editor]/title

In the step book[child :: author], the phrase child :: author is a predicate
that is used to select certain book nodes and discard others (notice that the
semantics is another time the list of elements). If the predicate expres-
sion evaluates to an empty sequence, the candidate node is discarded, but
if the predicate expression evaluates to a sequence containing at least one
node (i.e. the book contains an editor element), the candidate element is
selected. This form of predicate can be used to test for the existence of a
child node that satisfies some condition.

We impose some restrictions on conditions. Predicates that use equality
such as book[author/last = ”Stevens”] are approximated by eliminating
value-based equality. Moreover, we consider only disjunction of single condi-
tions in the form Cond1 ∨ . . . ∨ Condn. So, every query that use conjunctions
of single conditions or equality on predicates such as the follows

[(//last = ”Stevens” and /publisher = ”A.W.”) or /price < ”50”]

is approximated in our system with

[//last or /publisher or /price]

It’s easy to see that all those approximations are sound. Another important
class of predicates are those who use the negation of a condition that is a
non pure structural condition. The main problem is that when we negate a
condition is difficult to achieve completeness. Then to inject a negation of
a a condition expression in our language we approximate it as follows:

¬Cond = (Cond or self::node)

so we give enough structural information to perform a sound inference since
self::node takes all the nodes at the first sublevel, but nothing can stated
about completeness.

3.1. XQUERY AND FLWR-XQUERY 45

Projection based on structural condition is enough to evaluate soundly the
semantic of a query with optimization as showed by experimental results in
[1]. The set of conditions, which are ranged over by Cond, considers: the
constants true and false, the use of a sub-query q (that doesn’t constructs
new elements) to verify the existence test for the condition, the disjunction
of two conditions Cond1 ∨ Cond2, the negation of a condition and the test
	(x) that checks if a variable is binder to an empty sequence.

FLWR expressions

Iteration is an important part of a query language. XQuery provides a way
to iterate over a sequence of values, binding a variable to each of the values
in turn and evaluating an expression for each binding of the variable. The
simplest form of iteration in XQuery consists of a for clause generated by
the following production of the grammar of the language

for x in q1 return q2

that names a variable and provides a sequence of values to iterate over,
followed by a return clause that contains the expression to be evaluated for
each variable binding. The following example illustrates iteration:

for x in (2, 3) return x + 1

The result of this simple iterative expression is the sequence (3, 4).

A for clause may specify more than one variable, with an iteration sequence
for each variable. Such a for clause produces tuples of variable bindings
that form the Cartesian product of the iteration sequences. Unless other-
wise specified, the binding tuples are generated in an order that preserves
the order of the iteration sequences, using the rightmost variable as the
outer loop and the rightmost variable as the inner loop. The following ex-
ample illustrates a for clause that contains two variables and two iteration
sequences:

for x in (2, 3)
return

for y in (5, 10)
return

<fact> x times y is x ∗ y </fact>

46 CHAPTER 3. QUERYING XML

The result of this expression is the following sequence of four elements:

<fact> 2 times 5 is 10</fact>
<fact> 2 times 10 is 20</fact>
<fact> 3 times 5 is 15</fact>
<fact> 3 times 10 is 30</fact>

Those examples has been useful to clarify the semantics of the for construct,
but they do not involve queries belonging to FLWR-XQuery because literals
(i.e. atomic values such as integers) are not treated in the language we
consider.

A variable may be bound to a value and used in an expression to repre-
sent that value. One way to bind a variable is by means of a let expression,
which binds one or more variables and then evaluates an inner expression.

let x = q return q

The value of the let expression is the result of evaluating the inner ex-
pression with the variables bound. The following example illustrates the
case.

let $x := 1, 2, 3
return 0, $x, 4

returns the sequence 0, 1, 2, 3, 4.

As already seen, the purpose of the for clause and let clause is to bind
variables. Each of these clauses contains one variable and an expression as-
sociated with each variable. The binding tuples produced by the for clauses
and let clauses in XQuery can be filtered by the optional where clause. The
where clause contains an expression that is evaluated for each binding tuple.
If the value of the where expression is the Boolean value true or a sequence
containing at least one node (an existence test), the binding tuple is re-
tained; otherwise the binding tuple is discarded. The return clauses then
executed once for each binding tuple retained by the where clause, in order.
The results of these executions are concatenated into a sequence that serves
as result.

for x in (2, 3)
return

for y in (5, 10)
where x = 3

return

<fact> x times y is x ∗ y </fact>

3.1. XQUERY AND FLWR-XQUERY 47

The result of this expression is the following sequence of two elements:

<fact> 3 times 5 is 15</fact>
<fact> 3 times 10 is 30</fact>

In our work we decided to substitute the where with the if construct as we
will see later. In what follows we give an example of how the above query
with a where clause is rewrite in a query with an if clause.

for x in (2, 3)
return

for y in (5, 10)
return

if x = 3 then

<fact> x times y is x ∗ y </fact>

Any resulting sequence can be reordered by a order by clause that con-
tains one or more ordering expressions but this is not considered in FLWR-
XQuery. The for, let, where, return and order by clause are both special
cases of a more general expression called FLOWR expression, that gives
the name to the language we consider. Since we do not semantically con-
sider only order by it’s meaningful to give the name FLWR-XQuery to the
language.

Conditional expressions

A conditional expression in FLWR-XQuery provides a way of executing one
expressions or less depending on the value of a second expression. It is
written in the following form:

if Cond then q

the construct is simplified because is missed the classical else branch. The
main construct if Cond then q1 else q2 can be soundly approximated via
¬Cond. The result of a conditional expression depends on the value of the
expression in the if clause, called the test expression. We do not deal with
primitive types such as Boolean values, then the rules are as follows: if
the value of the test expression is a sequence containing at least one node
(serving as an ”existence test”), then the clause is executed. If the value
of the test expression is an empty sequence, then nothing is executed. In
particular, later defining the semantics of the language we will bind to the
keyword true the value of the current context and with the keyword false

the empty sequence.

48 CHAPTER 3. QUERYING XML

Query 3.5 List of all title of books printed with hardcover.

for x in document(”bib.XML”)//book
return

if x/hardcover
then

x/title

The evaluation of the Query (3.5) iterates over all the elements book and
checks whether the navigation along the child axis for the hardcover at-
tribute returns an existence node. If this is true then another navigation is
performed to select the title of the node and add it to the result. We notice
that the semantics of conditional expression is the same as the semantics of
predicates.

Element constructors

Path expressions are powerful, but they have an important limitation: they
can only select existing nodes. A full query language needs a facility to con-
struct new elements and to specify their contents and relationships. This
facility is provided in XQuery by a kind of expression called element con-
structor which is presents also in FLWR-XQuery in the following form

<a>q

in FLWR-XQuery element construction is allowed only in the rightmost
part of the query, as a container for the forest selected by the rightmost
expressions as in the following example:

Query 3.6 List of all books with only the title element

for x in //book
return

<book> x/title </book>

3.1. XQUERY AND FLWR-XQUERY 49

The query evaluates to:

<book year = ”1994”>
<title>TCP/IP Illustrated</title>

</book>

<book year = ”1992”>
<title>Advanced Programming in the Unix environment</title>

</book>

<book year = ”2000”>
<title>Data on the Web</title>

</book>

The content of an element constructor is a subexpression that may generates
a sequence of nodes. The element nodes produced by a single evaluation
of element constructor is a new node with its own node identity, which
is the persistent root of the computed subexpression. If one of the newly
constructed element has child nodes that are derived from existing nodes, as
in the above example, the new child nodes and attributes are copies of the
source nodes, in particular, with new identities, the same type and label or
text. Since is difficult the typing of this structure, as solution, and without
loss of generality, we always type nodes of element construction with the
null type ⊥. In the above evaluation are created three new distinguished
instances of the datamodel, that are trees such that each root node has label
book and type ⊥. We give in Figure (3.2) the datamodel instances created
as result of the query. A query that presents element construction in a

bookbook

TCP/IP

..

book

Advance

Progr..

Data

on..(13, Title)

(12,) (14,) (16,)

(15, Title) (17, Title)

...

Datamodel instances

Figure 3.2: New builded data tree as result of Query (3.6)

non-rightmost position is called ill-formed.

50 CHAPTER 3. QUERYING XML

Query 3.7 Create a list of all author’s names from a list of authors in the
db.

<namelist>
for x in <authorslist>//author</authorslist>
return

<name> x/author/last/self :: text </name>
</namelist>

The query is ill-formed because use element construction in two non-rightmost
query positions: at the top of the query and in the computation of the iter-
ation sequence of the for construct.
This query is not allowed in FLWR-XQuery, but obviously can be evaluated
in XQuery. During the evaluation of the query first of all is created a new
instance of the data model that if would be serialized then it induces the
following list of authors:

<authorslist>
<author><last>Stevens</last><first>W.</first></author>
<author><last>Stevens</last><first>W.</first></author>
<author><last>Abiteboul</last><first>Serge</first></author>
<author><last>Buneman</last><first>Peter</first></author>
<author><last>Suciu</last><first>Dan</first></author>

</authorslist>

In the return clause the created list is navigated to compute the result as
follows.

<namelist>
<name>Stevens</name>
<name>Stevens</name>
<name>Abiteboul</name>
<name>Buneman</name>
<name>Suciu</name>

</namelist>

In this case, element construction build a new instance of the data model
and navigates over it. No type-based static optimization (and no pruning)
can or must be done in this case, because new elements are created with
production not in the scope of the DTD. Then we forbid every operation,
such as navigation, inside instances of the data-model builded at run time.

Then we need a weak notion of validity to deal with trees that created
a run time and that can have nodes with empty type.

3.2. SYNTAX 51

Definition 3.3 (Weakly valid tree) A tree t is weakly valid with respect
to a DTD (W,E) if given two node n, m such that n is the parent of m,
if nX ,mX ∈ DN(E) then exists a production Y → l[r] such that nX = Y
and mX ∈ Names(r)

A weakly valid tree is a particular data-structure that generalize the kinds of
trees processed during the query execution. A weakly valid tree is either the
input XML document that is supposed a valid tree, or a new tree builded
during the computation by element-creation construct. The latter do not
have to be pruned, because they are generated at run time. It’s easy to see
that the trees in Figure (3.2) are weakly valid trees, since the root types
does not belongs to DN(E).

Proposition 3.4 If t is a valid tree then t is also a weakly valid tree.

3.2 Syntax

We resume the syntax of FLWR-XQuery in table (3.1) as an abstract syntax,
it assumes that extra brackets and precedence rules are added for disam-
biguation. The language handle XPath navigation, FLOWR expressions
and element construction. We will range over query expressions with q. We
use 	(x) to check if the variable x is empty.

3.3 Semantic

We now proceed with the formal semantics of the language. All the expres-
sions to be queried are evaluated against an XML Store η, which contains
all the XML Data Model instances, and a dynamical environment ρ which
contains variable bindings.

3.3.1 Preliminary Definitions

Definition 3.5 (Store) We define a store η as a collection of trees.

η = {t1, . . . , tn}

The purpose of the store is to maintain the data trees that we are dealing
with during query evaluation. In particular, at the top level of the store we
have the input tree t that has to be pruned later and other trees that are
created during the evaluation by element construction. All these trees are
disjoints: if Nodes(ti) ∩Nodes(tj) 6= ∅ then i = j.

52 CHAPTER 3. QUERYING XML

Table 3.1: FLWR−XQuery Syntax

q ::= ()
q, q
<a>q
x

x/Path

for x in q return q

let x = q return q

if Cond then q

Cond ::= true

false

q

	(x)
Cond ∨ Cond

Path ::= Step

Step/Path

Step[Cond]
Step[Cond]/Path

Step ::= Axis :: Test

Axis ::= self | child
parent

descendant

ancestor

following

following–sibling
preceding

preceding–sibling

Test ::= tag

node()
text()

3.3. SEMANTIC 53

Definition 3.6 (Valid store) We say that a store η = {t1, . . . , tn} is valid
wrt a dtd (W,E) if the following conditions hold.

1. if t ∈ η is the input tree, then t is a valid tree wrt the DTD (W,E).

2. if t ∈ η is created during the computation, then t is a weakly valid tree
wrt the DTD (W,E).

The input tree is unique under our assumptions.

XQuery supports variables which can be bound using let or for expres-
sions. Once a variable is bounded, it can be used in a subexpression. For
example, consider the query:

for x in /bib/book
return x/title

During the evaluation, we use a dynamical environment to remember that
the variable x has been bound to nodes resulting from the evaluation of the
path /bib/book in order to apply further navigation steps.

Definition 3.7 (Dynamical Environment) A dynamical environment is
a set of bindings between variables and a sequences of nodes.

ρ = {x1 7→ ~n1, . . . , xn 7→ ~nn}

Every variable is bounded with a sequence of nodes. Given a variable xi we
need to access to the dynamical environment to take (if any) the sequence
bounded to a variable, and we write ρ(xi) = ~ni. Moreover we can either
define a new variable or overwrite an existing one with ρ[xj 7→ ~nj].

3.3.2 Navigational Axis

Navigational axis allows to visit the data tree. In order to define the se-
mantics of all the axes we need to define a set of relation between nodes
that belongs to the same tree. We start with the basic binary edge relation
parent-child between nodes, then we define a relation for sibling nodes and
finally a relation for following nodes.

Example 3.8 The relation ε↑t over the tree in Figure (3.3) results as fol-
lows:

ε↑t1 = { (n1,n2),
(n2,n3), (n2,n4), (n2,n7), (n2,n10), (n2,n11),
(n4,n5), (n4,n6),
(n7,n8), (n7,n9) }

54 CHAPTER 3. QUERYING XML

n1

n2

n4n3 n10n7 n11

n5 n6 n8 n9

Figure 3.3: Data Tree t1

Since the evaluation are made against a store that contains a family of trees
we need to extend the relation to ensure a correct evaluation.

Definition 3.9 (Parent Edge relation) Given a valid store η, the edge
parent relation between two nodes n,m ∈ Nodes(η) is defined as follows.

ε↑t = { (n,m) | t@n = tagn[f t f ′] and rootNode(t) = m}

We use ε↑+t , ε↑∗t to denote the transitive and the transitive and reflexive

closure of the relation ε↑t .

Closure of relations

Given a binary relation R, most of the time we need to use the transitive,
and the reflexive and transitive closure of a R, that we dub R+ and R∗

respectively. In what follows we give the schema of the inductive definitions.

Definition 3.10 (Transitive closure) Given a binary relation R, the
transitive closure, denoted as R+, is the minimum relation such that

1. if (x, y) ∈ R then x ∈ R+

2. if (x, z) ∈ R and (z, y) ∈ R+ then (x, y) ∈ R+

Definition 3.11 (reflexive and transitive closure) Given the rela-
tion R, the transitive closure, denoted as R∗, is the minimum relation such
that

3.3. SEMANTIC 55

1. if (x, y) ∈ R then x ∈ R+

2. if (x, z) ∈ R and (z, y) ∈ R+ then (x, y) ∈ R+

3. if (x, x) ∈ R∗

The semantics of an axis navigation is denoted by JAxisK〈η;~n〉, where ~n is a
sequence of nodes that belongs to some trees into the store η, and is used
as current context. The evaluation defined by using ε↑t ,ε

↑+
t and ε↑∗t always

yield a set.

JselfK〈η;~n〉 =
⋃

ni∈~n{ni}

JchildK〈η;~n〉 =
⋃

n∈~n

{m | (n,m) ∈ ε↑t , t ∈ η}

JparentK〈η;~n〉 =
⋃

n∈~n

{m | (m,n) ∈ ε↑t , t ∈ η}

JdescendantK〈η;~n〉 =
⋃

n∈~n

{m | (n,m) ∈ ε↑+t , t ∈ η}

JancestorK〈η;~n〉 =
⋃

n∈~n

{m | (m,n) ∈ ε↑+t , t ∈ η}

Example 3.12 As an example, for η = {t2} in Figure (3.3) we have that

JselfK〈η; (n1,n5)〉 = (n1,n5)

JchildK〈η; (n2)〉 = (n3,n4,n7,n10,n11)

JparentK〈η; (n1,n9)〉 = (n7)

JdescendantK〈η; (n4,n7)〉 = (n5,n6,n8,n9)

JancestorK〈η; (n8)〉 = (n7,n2,n1)

As already stated, there is no difference between evaluating a Path in FLWR-
XQuery and XQuery. In particular, we ensure two properties that are often
relaxed in literature: in the evaluations all the duplicated nodes are removed
and on path navigation the result of an axis selection is ordered wrt the
document order, we dub <t. XQuery resolves both the problem using the
auxiliary functions distinct-doc-order on path navigation [7] that remove
duplicates and order nodes to form the correct sequence. For what concerns
the removal of duplicates they arises in expressions, as in the following query
evaluation over the XML tree in Figure (3.4).

//child :: node//author

56 CHAPTER 3. QUERYING XML

Once fixed the persistent root of the document all nodes are selected with

bib

bookbook book

authortitle priceauthor hard

cover

first last first last

Figure 3.4: Data Tree t2

//child :: node and then the descendant axis path navigation selects the
author nodes. Since both the node bib and book satisfies the axis navigation
we have that the nodes with author are taken twice. The problem is solved
by using a set semantic for what concerns path navigation. If the evaluation
yields to a set then duplicated nodes are implicitly removed. Further an
external function, called docOrder() establish the document order between
the elements of the set. This technique is that of the specifications of XPath
1.0.

Extension to siblings, preceding and followings

To perform node selection on axis like following, following–sibling,
preceding–sibling, preceding we need to define some new relations be-
tween the nodes of a tree. We obtain the parent of a fixed node n using
Definition (3.9) in order to define a relation between contiguous siblings.

Definition 3.13 (Right-Contiguous Edge Relation) Given a valid store
η the right contiguous siblings edge relation between two nodes n,m ∈ Nodes(η)
is defined as follows.

ε→t = { (n,m) | ε↑t (n) = ε↑t (m) = p ∧ t@p = lp[f ′ t′ t′′ f ′′] ∧

∧ rootNode(t′) = n ∧ rootNode(t′′) = m}

p is the parent of both n and m. The nodes n and m are contiguous children
and n precede m. We will write ε→+

t for the transitive closure of the relation
that, at the matter of facts, models the relation between node siblings.

3.3. SEMANTIC 57

Example 3.14 Given the tree t1 in Figure (3.3) we have that:

ε→t = {(n3,n4), (n4,n7), (n7,n10), (n10,n11), (n5,n6), (n8,n9)}

And it’s easy to see how the relation ε→t works, for example

ε↑t (n3) = n2 = ε↑t (n4)

and
t1@n2 = ln2 [t

′, t′′, f]

where
rootNode(t′) = n3 and rootNode(t′′) = n4

Finally, we can define the relation between node followings in a store.

Definition 3.15 (Following Edge Relation) Given a valid store η the
followings edge relation between two tree nodes n,m ∈ Nodes(t) is defined
as follows.

ε�
t = {(n,m)| ∃o,p ∈ Nodes(t) . (p,n) ∈ ε↑∗t and

(p,o) ∈ ε→+
t and (o,m) ∈ ε↑∗t }

n

p o

m

Figure 3.5: Followings edge relation between nodes

Example 3.16

To clarify the last definition we use as example the set of all the nodes in
following relation with the node n4 belonging to the tree t1 of Figure (3.3).

ε�

t (n4) = {n7, n8, n9, n10, n11}

In particular

58 CHAPTER 3. QUERYING XML

� (n4, n8) ∈ ε�
t since ε↑∗t (n4, n4), ε→+

t (n4, n7) and ε↑∗t (n7, n8)

� (n4, n11) ∈ ε�
t since ε↑∗t (n4, n4), ε→+

t (n4, n11) and ε↑∗t (n11, n11)

Now we can define the evaluation of the remaining axis navigation. For a
light notations we use fs, ps, f, p to denote respectively following–sibling,
preceding–sibling, following, preceding.

JfsK〈η;~n〉 =
⋃

n∈~n

{m | (n,m) ∈ ε→+
t , t ∈ η}

JpsK〈η;~n〉 =
⋃

n∈~n

{m | (m,n) ∈ ε→+
t , t ∈ η}

JfK〈η;~n〉 =
⋃

n∈~n

{m | (n,m) ∈ ε�

t , t ∈ η}

JpK〈η;~n〉 =
⋃

n∈~n

{m | (m,n) ∈ ε�

t , t ∈ η}

Example 3.17 For the tree t1 in Figure (3.3) we give some evaluations.

JfsK〈η; (n1,n8)〉 = (n6,n9)

JpsK〈η; (n2,n6)〉 = (n5)

JfK〈η; (n1,n9)〉 = (n10,n11)

JpsK〈η; (n3,n7)〉 = (n6,n5,n4,n3)

In the end, we define the semantics for test filtering conditions.

JnodeK〈η;~n〉 =
⋃

i=1..|~n|{ni }

JtagK〈η;~n〉 = {n |n ∈ ~n and t@n = tagn[f] , t ∈ η}

JtextK〈η;~n〉 = {n |n ∈ ~n and t@n = sn , t ∈ η}

3.3.3 Operational Semantic

In what follows we give the deduction rules that are used to define the
semantics of the language. Each rule consists of a set of premises and con-
clusions composed by semantics judgments specifying that the evaluation of
an query q with respect to a store η and to a dynamical environment ρ (that

3.3. SEMANTIC 59

associate a sequence to each variable free in q) produces a sequence of nodes
~n and an updated store η′.

ρ η q Z⇒ ~n; η′

In particular the sequence ~n is a sequence of persistent roots of subtrees
belonging to the store η′. Since only element construction creates new trees
in the store, in the cases where no updates are made, we omit to write η ′

in the right part of the query and leave it as implicit. We use a variable of
the dynamical environment cd ∈ {x1, . . . , xn} to bind the evaluation of the
current context.

3.3.4 Description of rules

We describe here in detail how evaluates the single expressions.

Path Navigation

(S-Var) The evaluation of a variable bounded into the dynamical environment
is simply its bounded sequence of nodes into the dynamical environment.

(S-VarPath) A path navigation, starting from the sequence bounded to a
variable, substitutes the current context with the set of nodes bounded by
the variable and then evaluates path navigation.

(S-StepPath) A path navigation starting from the sequence evaluated as a
step, substitutes the current context with the set of nodes resulting from
the step.

(S-Cond) The evaluation of a condition is performed iterating over each sin-
gle element of the sequence bounded by the current context. As output, it
gives either a node or an empty sequence depending on whether the node
satisfies or not the condition. The results are concatenated in order to form
a sequence.

(S-Axis) The axis proposed semantics follows XPath 1.0 semantics, is a set
semantic. The set semantics implies that we loose order between elements,
but we gain the assurance that no elements are repeated. To have document

60 CHAPTER 3. QUERYING XML

cd 7→~m∈ρ JAxisK〈η; ~m〉=S ~n=docOrderη(S)

ρ η Axis::node Z⇒ ~n (S-Axis)

cd 7→ ~m∈ρ JTestK〈η; ~m〉=S ~n=docOrderη(S)

ρ η self::Test Z⇒ ~n (S-Test)

x7→~n ∈ ρ
ρ η x Z⇒ ~n (S-Var)

x 7→ ~m ∈ ρ ρ[cd 7→ ~m] η Path Z⇒ ~n

ρ η x/Path Z⇒ ~n (S-VarPath)

ρ η Step Z⇒ ~m ρ[cd 7→ ~m] η Path Z⇒ ~n

ρ η Step/Path Z⇒ ~n (S-StepPath)

ρ η Step[Cond] Z⇒ ~m ρ[cd 7→ ~m] η Path Z⇒ ~n

ρ η Step[Cond]/Path Z⇒ ~n (S-StepCondPath)

ρ[cd 7→ ~m1] η Step Z⇒ ~n1

:
cd 7→ ~m ∈ ρ ρ[cd 7→ ~mm] η Step Z⇒ ~n|~m|

ρ η Step Z⇒ (~n1,...,~n|~m|)
(S-UnfoldedPath)

ρ η Axis::node/self::Test Z⇒ ~n
ρ η Axis::Test Z⇒ ~n (S-AxisTest)

ρ[cd 7→ ~m1] η Cond Z⇒ ~n1

:
cd 7→ ~m ∈ ρ ρ[cd 7→ ~mm] η Cond Z⇒ ~n|~m|

ρ η self::node[Cond] Z⇒ (~n1,...,~n|~m|)
(S-Cond)

ρ η Step/self::node[Cond] Z⇒ ~n
ρ η Step[Cond] Z⇒ ~n (S-StepCond)

Table 3.2: semantics Rules for Path Navigation

3.3. SEMANTIC 61

ρ η () Z⇒ () (S-Empty)

ρ η q1 Z⇒ ~n1; η1 ρ η1 q1 Z⇒ ~n2; η2

ρ η q1,q2 Z⇒ ~n1,~n2; η2
(S-Concat)

na ← (freshId(η),⊥)
ρ η q Z⇒ ~m t|η|+1 ← insertInto(na, f)
f ← clone(~m, η) η′ ← η ∪ t|η|+1

ρ η <a>q Z⇒ na ; η′ (S-EltConstr)

Γ[cd 7→m1] ρ η q2 Z⇒ ~n1

:
ρ η q1 Z⇒ ~m Γ[cd 7→m|~m|] ρ η q2 Z⇒ ~n|~m|

ρ η for x in q1 return q2 Z⇒ ~n1,...,~n|~m|
(S-For)

ρ η q1 Z⇒ ~m ρ[cd 7→ ~m] η q2 Z⇒ ~n
ρ η let x = q1 return q2 Z⇒ ~n (S-Let)

ρ η Cond Z⇒ ~m ρ η q Z⇒ ~o if ~m 6∼= () then ~n← ~o else ~n← ()
ρ η if Cond then q Z⇒ ~n (S-If)

Table 3.3: semantics Rules for FLOWR Expressions and Element Construc-
tion

62 CHAPTER 3. QUERYING XML

(cd 7→~n)∈ ρ
ρ η true Z⇒ ~n (S-CondTrue)

ρ η false Z⇒ () (S-CondFalse)

ρ η q Z⇒ ~m if ~m∼=() then ~n←() else ~n←~m
ρ η q Z⇒ ~n (S-CondQry)

ρ η Cond1 Z⇒ ~n1 ρ η Cond2 Z⇒ ~n2

ρ η Cond1 ∨Cond2 Z⇒ ~n1,~n2
(S-CondDisj)

(x7→ ~m)∈ρ if ~m∼=() then ~n←~m else ~n←()
ρ η 	(x) Z⇒ ~n (S-CondIsEmptyVar)

Table 3.4: semantics Rules for Conditions

order between elements we use the function docOrder(). We are also sure
that every time we have to establish the document order between two ele-
ments, then both belong to the same tree. This is because path navigation
are done always before element construction.

(S-Test) As in the preceding rules the semantics of a test filtering is a set
that after is ordered to get a sequence.

(S-AxisTest) The evaluation of a simple step is defined unfolding it in two
steps. First the axis selection evaluates in a sequence which is filtered by
the test.

FLWR Expressions

(S-Empty) The evaluation of the empty query is the null sequence.

(S-Concat) The evaluation of a query concatenation is in turn the concatena-
tion of result sequence of the subqueries. The subexpressions can build new
elements because concatenation of element construction expressions is a pos-
sible case of query. This said, we must consider the evaluation of the second

3.3. SEMANTIC 63

query with the updated store in output from the evaluation of the first query.

(S-For) The semantics of the for construct is similar to a path navigation.
The left query is evaluated and then, once a time and in order, element in
the resulting sequence are bounded to the x variable before evaluating the
right query. The final sequence is the concatenation of the resulting partial
evaluations.

(S-Let) The semantics of the let construct first evaluate the left query and
after binds the result sequence to x before executing the right query.

(S-If) If the condition expression is not the empty set then the query is
evaluated, else the result is the null sequence.

Conditions

A condition is an expression that does not modify both the store and the
dynamical environment.
(S-CondTrue) The evaluation of the constant true returns the current dynam-
ical context.

(S-CondFalse) The evaluation of the constant false returns the empty sequence.

(S-CondQry) When a query is used as condition, by hypothesis does not mod-
ify both the store and the dynamical environment. The condition yields to
true if the query evaluation is not an empty sequence.

(S-CondDisj) The disjunction of two conditions is the concatenation of both
the result vectors.

(S-CondEmpty) The semantics of the empty variable evaluator is true when
the variable is bounded with the null sequence into the store, else is false.

64 CHAPTER 3. QUERYING XML

Element Construction

The semantics of element construction described in rule S-EltConstr is
the only one that modify the store in FLWR-XQuery.

na ← (freshId(η),⊥)
ρ η q Z⇒ ~m t|η|+1 ← insertInto(na, f)

f ← clone(~m, η) η′ ← η ∪ t|η|+1

ρ η <a>q Z⇒ na ; η′

First of all a node na with fresh id wrt the nodes inside the store, with null
type ⊥ and tag specified between the brackets (in this case tag) is created.
A fresh type (not already in DN(E)) is mandatory to do not infect the type
inference which is based only on types already defined in the DTD. Then
the subquery q is evaluated yielding the sequence ~m. Since every m ∈ ~m
belongs to a tree into the store is possible to extract the forest induced by
the nodes in ~m called f . The function clone(~m, η) make a copy of the forest
f induced by nodes in ~m, ascribing each node with a fresh id wrt the store
η, but maintaining the type of the copied node. The nodes of the f are
then ordered by the function serialize. In the end, a new tree with root the
fresh node na and children the forest f is created, and addicted in the last
position of the store.

Definition 3.18 (Document Order) Given a tree t at the top level of the
store η and set of nodes U ⊆ Nodes(t) the document order <t is a total order
relation defined as follows.

n<tm iff (n,m) ∈ ε↑+t or (n,m) ∈ ε�

t

We need a formulation to deal with a store rather than a single tree. Since
every tree into the store is enumerated during creation as in S-EltConstr,
it can be viewed as a sequence of trees {t1, . . . , tp} where t1 is the input tree.
It is possible then to order nodes that don’t belong to the same tree in base
of the order of the trees they belong into the store.

Definition 3.19 (Document Order for Store) Given a store η = {t1, . . . , tn}
and two nodes n,m ∈ Nodes(η) the document order <η for the store is a
total order relation defined as follows:

n <η m iif n<tm and n,m ∈ Nodes(ti) or
n ∈ Nodes(ti), n ∈ Nodes(tj) and i < j

3.3. SEMANTIC 65

Definition 3.20 (Serialize Function) Given a tree t and a subset of nodes
of the tree U ∈ Nodes(t) the serialize function orders the nodes following the
document order.

docOrdert(U) : Nodes× Trees→ Sequences
U, t 7→ ~n

and the following properties hold:

1. for each i = 1 . . . |U | ni ∈ ~n iff ni ∈ U

2. for each i = 1 . . . |U | − 1 ni <η ni+1

Definition 3.21 (FreshId Function) Given a store η the FreshId func-
tion gives back an identifier that is not used in the store.

freshId(η) : Stores→ Ids
η 7→ j

and for each n ∈ Nodes(η) then nid 6= j .

Definition 3.22 (Clone Function) Let ~n a sequence of nodes belonging
to a tree contained into a store η. The clone function makes a copy of the
subforest composed only by nodes in the sequence, renaming all their ids but
maintaining their types.

clone(η, ~n) : Stores× Sequences→ Forests
η, ~n 7→ f

Given a store η and a sequence of nodes ~n ∈ Nodes(η) we define [~n]η as
the subforest induct by the nodes of ~n. This forest contains only the nodes
belonging to the sequence and the edges between them.
Then for the clone function the following properties hold:

1. [~n]η = f

2. for each k = 1 . . . |~n| let mk = φ(nk) then mX = nX and {nid} ∩
Ids(f) = ∅

It’s also interesting to see the following proposition.

66 CHAPTER 3. QUERYING XML

Definition 3.23 (Insert-into Function) Given a node n and a forest f
the insert-into function creates a tree where the root is the node n with
children f .

insertInto(n, f) : Sequences× Forests→ Trees
n, f 7→ t

and the following properties hold.

1. rootNode(t) = n

2. t@n = ln[f]

Chapter 4

Static Type Analysis

In this Chapter we define deduction rules to statically infer the type of a
FLWR-XQuery expression that will be used in type projection. We define
some relations between the types of a document valid wrt a schema to write
basically the typing rules for the navigational axis, and then the rules to
type the rest of the language. We show that our analysis is sound and also
complete for a large class of documents. Soundness means that if an enriched
type is inferred for a query and the evaluation yields to a sequence of nodes,
then the enriched type contains all the type-names of the nodes in the result
of the query. Completeness means that if we take an enriched type smaller
(i.e. more selective) than the inferred one, then there exists an instance of
XML document valid wrt the DTD such that, evaluating the query on that
instance yields to elements whose types are not included in the set.

4.1 Type Inference

Definition 4.1 (Type set) Let ~n a sequence of nodes and U a set of
nodes, then we define the set of the types of the nodes contained in ~n as
follows.

χ(~n) =
⋃

i=1..|~n|

ni
X

χ(U) =
⋃

n∈U

nX

where, in this case, ni stands for the i-th element of the sequence.

The aim of type inference, given a query q and a DTD (W,E), is to find a

67

68 CHAPTER 4. STATIC TYPE ANALYSIS

subset of names of DN(E) that generates elements that can be found in the
evaluation of q over a tree valid wrt the DTD.
Formally we want to infer a set τ ⊆ DN(E) such that for all trees t valid
wrt the DTD (W,E),

if ρ η q Z⇒ ~n then χ(~n) ⊆ τ (4.1)

Moreover we aim at an analysis which is precise enough to guarantee, on a
large class of types and for a large class of queries, that whenever the query
semantics is empty over all possible instances of the input DTD, then the
inferred type τ is empty, as well:

if ρ η q Z⇒ () then τ = ∅ (4.2)

This property is crucial in order to have precise projectors. We start our
type inference for the navigational axes.

4.2 Relations over Type-Names

A DTD type the nodes of the data-model instance. Every single produc-
tion defines a type and the types in its content model. Moreover, between
the types of a content model there’s an order that must be respected by
a document in order to be valid. The main idea is that we can use these
characteristics of the schema to determine a dependency between types and
statically infer the type of an axis selection.

Considering the portion of DTD below extract from Example (3.2), we have
for example this definitions:

Example 4.2

<!ELEMENT bib (book∗)>

<!ELEMENT book (title, (author+ |editor+), publisher, price)>

which corresponds to the productions

Bib → bib[Book∗]
Book → book[Title, (Author+ | Editor+), Publisher, Price]

it’s easy to see that in a valid XML data-model instance all the nodes typed
by Title, Author, Editor, Publisher and Price have as a parent a node

4.2. RELATIONS OVER TYPE-NAMES 69

typed by Book. Moreover, it’s easy to see that a node typed with Publisher

must appear before a node typed by Price.

A possible valid data model instance wrt the DTD is the following:

Definition 4.3 (Forward) Given a DTD (W,E) and Y, Z ∈ DN(E), we
write Z⇒

E
Y iff Z → l[r] ∈ E and Y ∈ Names(r). We use ⇒+

E
and ⇒∗

E

to denote respectively the transitive closure and the transitive and reflexive
closure of ⇒

E
.

For the portion of DTD in Example (4.2) we have that:

Bib⇒
E
Book

Bib 6⇒
E
Author

Bib⇒+
E
Author

Bib⇒∗
E
Bib

Then we can state that if two nodes are in the Parent edge relation wrt a
data tree, then their type-names are in the Forward-Reachbility relation wrt
the schema.

Lemma 4.4 Given a tree t valid with respect to a DTD (W,E)and two

nodes n,m ∈ Nodes(t) such that nX ,mX ∈ DN(E). If (n,m) ∈ ε↑t then
nX⇒E

mX .

Proof.

Since nX ,mX ∈ DN(E) and following the definition of ε↑t we have that

if (n,m) ∈ ε↑t then

t@n = l[f ′ t f ′′] and rootNode(t) = m

and since t is valid we have that

∃ Y → l[r] ∈ E such that nX = Y and mX ∈ Names(r)

and by definition of ⇒
E

we have that nX⇒E
mX 2

We can extend Lemma (4.4) at both the transitive and reflexive and tran-

sitive closures of the relations ε↑t and ⇒
E
. If two nodes are in the transitive

closure of the Parent edge relation (that is, ancestor-descendant relation),
then their type-names are in the transitive closure of the Forward relation.

70 CHAPTER 4. STATIC TYPE ANALYSIS

bib

book

author

title

price
author

pubili

sher

first last lastfirst

n1

n2

n3 n4

n5 n6

n7

n8 n9

n10 n11

Figure 4.1: Graph of Nodes in ε↑t Relation for document in Example (3.2)

Bib

Book

AuthorTitle Price

First Last

Publi

sher

Figure 4.2: Graph of Type dependency in⇒
E

Relation for DTD in Example
(3.2)

4.2. RELATIONS OVER TYPE-NAMES 71

Lemma 4.5 Given a tree t valid with respect to a DTD (W,E)and two

nodes n,m ∈ Nodes(t) such that nX ,mX ∈ DN(E). If (n,m) ∈ ε↑+t then
nX⇒

+
E

mX .

Proof.

Since nX ,mX ∈ DN(E) and following the inductive definition of ε↑+t there
are two cases.

1. (n,m) ∈ ε↑t then by Lemma (4.4) holds Forward relation between
node types nX⇒E

mX , and then by definition of transitive closure
nX⇒

+
E

mX .

2. ∃ o such that (n,o) ∈ ε↑+t and (o,m) ∈ ε↑+t . By inductive hypothesis
nX⇒

+
E

oX and oX⇒
+
E

mX . Finally, by definition of transitive closure
nX⇒

+
E

mX 2

If two nodes are in the reflexive and transitive closure of the Parent edge
relation (that is, ancestor-descendant relation), then their type-names are
in the reflexive and transitive closure of the Forward relation.

Lemma 4.6 Given a tree t valid with respect to a DTD (W,E)and two

nodes n,m ∈ Nodes(t) such that nX ,mX ∈ DN(E). If (n,m) ∈ ε↑∗t then
nX⇒

∗
E

mX .

Proof.

Since nX ,mX ∈ DN(E) and following the inductive definition of ε↑+t there
are three cases.

1. (n,m) ∈ ε↑t then by Lemma (4.4) holds Forward relation between
node types nX⇒E

mX , and then by definition of transitive closure
nX⇒

∗
E

mX .

2. (n,m) ∈ ε↑+t by Lemma (4.5) we have that nX⇒
+
E

mX and then
nX⇒

∗
E

mX .

3. (n,n) ∈ ε↑t and by definition nX⇒
∗
E

nX 2.

To define a relation between types that appear contiguously in the data-
model of a production we need a more fine formalism. This because the
irregularity of semistructured data allowed by ”?”, ”∗”, ”+” and ”|” implies

72 CHAPTER 4. STATIC TYPE ANALYSIS

bib

book

author

title

price
author

publi

sher

first last lastfirst

n1

n2

n3 n4

n5 n6

n7

n8 n9

n10 n11

Figure 4.3: Graph of Nodes in ε↑+t Relation for the node n1 for document
in Example (3.2)

Bib

Book

AuthorTitle
PricePubli

sher

First Last

Figure 4.4: Graph of Type dependency in⇒+
E

Relation for DTD in Example
(3.2)

4.2. RELATIONS OVER TYPE-NAMES 73

that a type can be followed by a set of types rather than a single one. We
recall the previous example:

Bib → bib[Book∗]
Book → book[Title, (Author+ | Editor+), Publisher, Price]

in this case, for example, we have that either Author or Editor can be con-
tiguous to Title or Publisher, respectively as preceding or following.

Then, given a type-name Y and a regular expression r , we define three
functions that capture the set of all the types that can follow contiguously
Y . These functions are: first(r), the set of types that match the first symbol
of some word in the language generated by r ; last(r) the dual set for last
position and symbols, and follow(r , Y) that capture the set of all types S
that can follow a specific type Y in the regular expression r .

For simplicity we modify the grammar that generates regular expression:

r ::= r|r | (r, r) | r+ | Y | ε

of course in the following we will consider r+ = (r, r∗) and r? = r | ε.

Definition 4.7 (Language Generated by a Regular Expression) A reg-
ular language L(r) is the set of words generated by the regular expression
r.

Then SGML standard rules over the kind of regular expression that can
be used to define content model of types. Since XML is defined on SGML
the rules are the same. In particular, only regular expressions called one-
unambiguous can be used to define a content model of a type. The pecu-
liarity of those regular expression, as suggested in [19], [17] and [18], is that
is possible to build an automaton to check if w ∈ L(r) in a time which
is quadratic respect to the size of the one-unambiguous regular expression.
Validation does not concerns our study, so we refer the reader to the sug-
gested literature for details on this topic.

Definition 4.8 (First and Last Functions) We can define first and last
inductively.

first(ε) = last(ε) = ∅ first(A) = last(A) = {A}

first(r1|r2) = first(r1) ∪ first(r2)

74 CHAPTER 4. STATIC TYPE ANALYSIS

last(r1|r2) = last(r1) ∪ last(r2)

first(r1 , r2) =

{

first(r1) ∪ first(r2) if ε ∈ r1

first(r1) otherwise

last(r1 , r2) =

{

last(r1) ∪ last(r2) if ε ∈ r2

last(r1) otherwise

first(r+
1) = first(r1)

last(r+
1) = last(r1)

It is possible to check if ε belongs to a regular expression r in a time linear
to the length of r by operating a postorder traversal of the syntax tree of r .

Definition 4.9 (Follow function) The function follow(r,Y) maps a name
in r to subset of names belonging to r. Each element in the resulting set
can follow contiguously Y in a word generated by r.

follow(ε, Y) = ∅ follow(Z, Y) = ∅

follow(r1|r2 , Y) = follow(r1, Y) ∪ follow(r2, Y)

follow(r1, r2 , Y1) =

follow(r1, Y) ∪ follow(r2, Y) if Y /∈ last(r1)

follow(r1, Y) ∪ follow(r2, Y) if Y ∈ last(r1)
∪ first(r2)

follow(r+
1 , Y1) = follow((r1, r1) , Y1)

The inductive definition suggests a computation of first, last, and follow that
is cubic in the size of r . We discovered later that the same formalization we
defined were used in the context of document validation in and originally
formulate in [18].
Now we test our definition with some examples.

4.2. RELATIONS OVER TYPE-NAMES 75

Example 4.10 Let r = (Title, (Author|Editor)) we have that

follow(Title, r) = follow(Title, Title) ∪ first(Author+|Editor+)
= ∅ ∪ first(Author+) ∪ first(Editor+)
= first(Author, Author) ∪ first(Editor, Editor)
= first(Author) ∪ first(Editor)
= {Author, Editor}

Example 4.11 Let r = (Title, Hardcover?, Price) we want to compute
the follows of Title

follow(Title, r) = follow(Title, Title) ∪ first(Hardcover?, Price)
= ∅ ∪ first((Hardcover|ε) , Price)
= first(Hardcover|ε) ∪ first(Price)
= first(Hardcover) ∪ first(ε) ∪ first(Price)
= {Hardcover, Price}

Example 4.12 Let r = (Title∗, (Author|Editor)∗, Hardcover?) we have:

last(r) = last((Title+|ε), ((Author|Editor)+|ε), (Hardcover|ε))
= last((Title|ε), ((Author|Editor)|ε), (Hardcover|ε)
= last(Title|ε) ∪ first((Author|Editor) |ε), (Hardcover|ε))
= last(Title) ∪ last(ε) ∪ last((Author|Editor) |ε))
∪ first(Hardcover|ε)

= last(Title) ∪ last(Author|Editor) ∪ last(ε)
∪ first(Hardcover|ε)

= last(Title) ∪ last(Author) ∪ last(Editor)
∪ last(Hardcover) ∪ last(ε)

= {Title, Author, Editor, Hardcover}

Definition 4.13 (Right-Contiguous Reachbility) Given a DTD (X,E),
and two names Y1,Y2 ∈ DN(E), we say that Y2 follow contiguously Y2, and
write Y1 >E Y2, if and only if exist a production Z → l[r] ∈ E such that Y2

∈ follow(r, Y1). We denote with >+
E, >∗E respectively the transitive and the

reflexive and transitive closure of the relation.

Considering the portion of DTD defined in Example (4.2) we have that:

Title>E Editor

Editor>E Publisher

Editor 6>E Author

Title>+
E Price

Author >∗E Author

76 CHAPTER 4. STATIC TYPE ANALYSIS

Lemma 4.14 (Contiguity) Given two words u,w generated by r and two
positions Y,Z generated by r. If uY Zw is generated by r then Z ∈ follow(r, Y).

Lemma 4.15 Given a tree t valid with respect to a DTD (W,E)and two
nodes n,m ∈ Nodes(t) such that nX ,mX ∈ DN(E). If (n,m) ∈ ε→t then
nX >E mX

Proof.

Since nX ,mX ∈ DN(E) and following the definition we have that if (n,m) ∈
ε→t then

ε↑t (n) = ε↑t (m) = p , t@p = lp[f ′ t t′ f ′′]

rootNode(t) = n and rootNode(t′) = m

Moreover by definition of ε↑t and since a DTD is a local tree grammar we
have that the type of the nodes, with the same parent, must be in the same
regular expression and then

∃ Z → l[r] ∈ E and nX ,mX ∈ r

Finally, since lp[f ′ t t′ f ′′] is a production then anX mX b (where a and b are
words) is in the language generated by the regular expression r , by Lemma
(4.14) then mX ∈ follow(r,nX) and by definition nX >E mX .

The lemma can be extended, stating that if two nodes are in the Right-
Contiguous edge relation, they their type are in transitive closure of the
Right-Contiguous reachbility relation.

Lemma 4.16 Given a tree t valid with respect to a DTD (W,E)and two
nodes n,m ∈ Nodes(t) such that nX ,mX ∈ DN(E). If (n,m) ∈ ε→+

t then
nX >+

E mX

Proof.

Since nX ,mX ∈ DN(E) and by the inductive definition of ε→+
t there are

two cases.

1. If (n,m) ∈ ε→t then holds right-contiguous reachbility between node
types by Lemma (4.15) nX >E mX , and then by definition of transitive
closure nX >+

E mX .

4.2. RELATIONS OVER TYPE-NAMES 77

2. By induction if ∃ o such that (n,o) ∈ ε→+
t and (o,m) ∈ ε→+

t and
nX >+

E oX and oX >+
E mX and then by definition of transitive closure

nX >+
E mX .

Finally, we define a relation between two names that can appear one-right-
wrt-the-other in the language of a regular expression.

Definition 4.17 (Right Reachbility) Given a well formed DTD (X,E),
and two names Y1, Y2 ∈ DN(E), we say that Y2 is right reachable from Y1,
and write Y1�Y2, iff exists Z,X, Y1, Y2 ∈ DN(E) such that Z ⇒∗

E
Y1 and

Z>+X and X ⇒∗
E

Y2.

And, as before, a lemma states that if two nodes are in the Following
edge relation, then their name-types are in the Right-Reachbility Relation.

Lemma 4.18 Given a tree t valid wrt a dtd (W,E), and two nodes n,m ∈
nodes(t), if (n,m) ∈ ε�

t then nX �mX

Proof.

If nX /∈ DN(E) or mX /∈ DN(E) then the thesis follows.

Else nX ,mX ∈ DN(E) and if (nX ,mX) ∈ ε�
t then there exists o,p ∈

Nodes(t) such that (p,n) ∈ ε↑∗t , (p,o) ∈ ε→+
t and (o,m) ∈ ε↑∗t . By

Lemmas (4.6) and (4.16) and Definition (4.17) of Right-Reachbility follows
immediately that (n,m) ∈ ε�

t 2

At this point, we can define static type inference for a Step navigation.
We recall that a Step is composed by axis navigation and test filtering and
it’s presented in the form Axis::Test.

Definition 4.19 (Axis Typing) Let (W,E) be a DTD, and a type τ ⊆
DN(E).

AE(τ , self) = τ
AE(τ , child) =

⋃

Y ∈τ{Z | Y ⇒E
Z}

AE(τ , descendant) =
⋃

Y ∈τ{Z | Y ⇒
+
E

Z}
AE(τ , parent) =

⋃

Y ∈τ{Z | Y ⇒E
Z}

AE(τ , ancestor) =
⋃

Y ∈τ{Z | Y ⇒
+
E

Z}
AE(τ , following–sibling) =

⋃

Y ∈τ{Z | Y >+ Z}
AE(τ , preceding–sibling) =

⋃

Y ∈τ{Y | Z >+ Y }
AE(τ , following) =

⋃

Y ∈τ{Z | Y � Z}
AE(τ , preceding) =

⋃

Y ∈τ{Y | Z � Y }

78 CHAPTER 4. STATIC TYPE ANALYSIS

Definition 4.20 (Test Filtering Typing) Let (W,E) be a DTD, and a
type τ ⊆ DN(E).

TE(τ, node) = τ
TE(τ, tag) = { Y | Y ∈ τ , Y → tag[r] ∈ E}

TE(τ, text) = { Y | Y ∈ τ , Y → pcdata[] ∈ E}

4.2.1 Type-contexts

The presence of upward axes such as parent and ancestor makes the typ-
ing of composed paths difficult because in DTDs an element can appear in
the context of two different elements. The naive solution consisting of infer-
ring a type for composed path by composing the typing we just defined for
single steps, works only in absence of upward axes. For example, given the
simplified DTD rooted at W

Book → book[Title(Author|Editor)]
Title → title[String]
Author → author[Name]
Editor → editor[Name]
Name → String

which generates a book with either the author or the editor information.
We put the name-type Name in two different content models. If we consider
the path

/book/author/name/parent :: node

then the precise type that we should have is {Author}, but repeatly us-
ing definition (4.19) and (4.20) we end up with {Author, Editor}. This
is because the reachbility relation ⇒

E
holds both for (Author, Name) and

(Editor, Name).

To resolve this problem we need to introduce particular types called
context types, to be updated at each step of the type process and containing
names already encountered in previous steps. Then we use them to refine
type inference for upward axes. In the previous example, when typing the
second step we build a context type {Book, Author, Name} indicating that for
the moment the three names are the only ones visited by the traversal. Then
we use definition (4.19) to type parent thus obtaining {Author, Editor} but
we intersect it with the type-context obtaining the correct type {Author}.
So, using contexts and intersection we have the possibility to refine inferred
types for backward axes.

4.3. TYPING RULES 79

We denote a type-context with κ. And for the soundness of our analysis
we need that for all trees t valid wrt the DTD (W,E), if

if ρ η q Z⇒ ~n then χ(JancestorK〈η;~n〉) ⊆ κ (4.3)

this means that all the type of the ancestor of the nodes in the evaluation
of a query must be in κ.
The pair Σ = (τ, κ) composed by a type and an context type is called
enriched type. An enriched type is well formed with respect to a DTD
(W,E) when τ ⊆ DN(E) and κ ⊆ AE(τ, ancestor), that is, if the type-
context contains only names that occurs in chains ending with names in
τ .

4.3 Typing Rules

Typing rules infers an enriched type Σ for the query q.

Γ `E q : Σ

As for the semantics of the language we need an environment Γ which is
a static environment that binds variables and the current context to the
proper enriched type.

Γ = {x1 7→ Σ1, . . . , xn 7→ Σn}

We use distinguished a variable of the static environment cs ∈ {x1, . . . , xn}
to bind the enriched type of the current context. Given a variable xi we
need to access to the static environment to take (if any) the enriched type
bounded to a variable, and we write Γ(xi) = Σi. Moreover we can both
define a new one or overwrite an existing binding with Γ[xj 7→ Σj].

Definition 4.21 (Union of enriched types) Given two enriched types
Σ1 = (τ1, κ1) and Σ2 = (τ2, κ2) their union is a new enriched type defined
as follows:

Σ1 ∪ Σ2 = (τ1 ∪ τ2 , κ1 ∪ κ2)

4.3.1 Description of rules

(T-AxisTest) This rule unfold the axis and test selection typing in two sepa-
rated steps.

80 CHAPTER 4. STATIC TYPE ANALYSIS

Γ `E Axis::node/self::Test : Σ
Γ `E Axis::Test : Σ (T-AxisTest)

Γ `E Step/self::node[Cond] : Σ
Γ `E Step[Cond] : Σ (T-StepCond)

cs 7→(τ,κ) ∈Γ Axis∈{ self, child, descendant }
Γ `E Axis::node : (AE(τ,Axis) , κ∪AE(τ,Axis)) (T-ForwAx)

cs 7→(τ,κ) ∈Γ Axis∈{ parent, ancestor }
Γ `E Axis::node : (κ∩AE(τ,Axis), κ∩AE(τ , Axis)) (T-PareAnceAxis)

cs 7→(τ,κ) ∈Γ Axis∈{following–sibling, preceding–sibling }
Γ `E Axis::node : (AE(τ,Axis) , (κ\τ)∪AE(τ,Axis)) (T-FolPreSib)

cs 7→(τ,κ) ∈Γ Axis∈{ following, preceding }
Γ `E Axis::node : (AE(τ,Axis),AE(τ,Axis)∪ (AE(AE(τ,Axis),ancestor)∩κ)) (T-FolPreAxis)

cs 7→(τ,κ) ∈Γ Test∈{ tag, node, text }
Γ `E self::Test : (TE(τ,Test) , (κ∩AE(AE(τ ′,Test),ancestor))∪TE(τ,Test)) (T-Test)

(x:Σ)∈Γ
Γ `E x : Σ (T-Var)

Γ `E x : Σ′ Γ[cs 7→Σ′] `E Path : Σ
Γ `E x/Path : Σ (T-VarPath)

Γ `E Step : Σ′ Γ[cs 7→Σ′] `E Path : Σ
Γ `E Step/Path : Σ (T-StepPath)

Γ `E Step[Cond] : Σ′ Γ[cs 7→Σ′] `E Path : Σ
Γ `E Step[Cond]/Path : Σ (T-StepCondPath)

Γ[cs 7→ ({Y1}, κ′
1)] Γ `E Path : Σ1

cs 7→ ({Y1, . . . , Yn}, κ) ∈ Γ :
κ′

i = κ ∩AE(Yi, ance–or–self) Γ[cs 7→ ({Yn}, κ′
n)] Γ `E Path : Σn

Γ `E Path :
⋃

Σi
τ 6=∅

Σi (T-UnfoldedPath)

Γ[cs 7→ ({Y1}, κ′
1)] Γ `E Cond : Σ1

cs 7→ ({Y1, . . . , Yn}, κ) ∈ Γ :
κ′

i = κ ∩AE(Yi, ance–or–self) Γ[cs 7→ ({Yn}, κ′
n)] Γ `E Cond : Σn

Γ `E self::node[Cond] :
⋃

Σi
τ 6=∅

Σi (T-Cond)

Table 4.1: Typing Rules for Path Navigation

4.3. TYPING RULES 81

Γ `E () : (∅,∅) (T-Empty)

Γ `E q1 : Σ1 Γ `E q2 : Σ2

Γ `E q1,q2 : Σ1∪Σ2
(T-Concat)

Γ `E q : Σ
Γ `E <a>q : Σ (T-EltConstr)

Γ[x 7→ ({Y1}, κ′
1)] Γ `E q2 : Σ1

Γ `E q1 : ({Y1 , . . . , Yn}, κ) :
κ′

i = κ ∩AE(Yi, ance–or–self) Γ[x 7→ ({Yn}, κ′
n)] Γ `E q2 : Σn

Γ `E for x in q1 return q2 :
⋃

Σi
τ 6=∅

Σi (T-For)

Γ `E q1 : Σ′ Γ[x7→Σ′] `E q2 : Σ
Γ `E let x = q1 return q2 : Σ (T-Let)

Γ[cs 7→ ({Y1}, κ′
1)] `E Cond : Σ1

cs 7→ ({Y1, . . . , Yn}, κ) ∈ Γ :
κ′

i = κ ∩AE(Yi, ance–or–self) Γ[cs 7→ ({Yn}, κ′
n)] `E Cond : Σn

τ ′ = {Yi | Σi
τ 6= ∅} if τ ′ 6= ∅ then Γ `E q : Σ else Σ = (∅, ∅)

Γ `E if Cond then q2 : Σ (T-If)

Table 4.2: Typing for FLWR Expressions

(cs:Σ)∈Γ
Γ `E true : Σ (T-CondTrue)

Γ `E false : (∅,∅) (T-CondFalse)

Γ `E Cond1 : Σ1 Γ `E Cond2 : Σ2

Γ `E Cond1∨Cond2 : Σ1∪Σ2 (T-CondDisj)

Γ `E q : (τ,κ) if τ 6=∅ then Σ=(τ,κ) else Σ=false

Γ `E q : Σ (T-CondQry)

Γ(x)=(τ,κ) if τ=∅ then Σ=true else Σ=(∅,∅)
Γ `E 	(x) : Σ (T-CondIsEmptyVar)

Table 4.3: Typing Rules for Conditions

82 CHAPTER 4. STATIC TYPE ANALYSIS

(T-StepCond) This rule unfold a step typing with filtering predicate in two
separated steps.

Below follows the rules for the axis selection that are the core of the type
system and are dived between forward and backward axes.

(T-ForwAx) considers Axis ∈ {self, child, descendant, following–sibling,
preceding–sibling}. The type of the selected nodes is given by the axis
selection names function AE(,). The type-context has to contain also the
ancestor type-names.

(T-PareAnceAx) with Axis ∈ {parent, ancestor} then the type of the se-
lect nodes is given by the axis selection names function. The type-context
has to maintain the type-names ancestors only of the nodes that satisfies
the selection, this is ensured by: κ ∩AE(τ,Axis)

(T-FolPre) with Axis = {following, preceding} the context type is com-
puted considering that the following and preceding selection selects type-
name and all the name-types of their ancestor except for the root name of
the document because it’s an ancestor of any name in the current static-
context.

(T-FolPreSib) with Axis = {following–sibling, preceding–sibling} the
context type is computed considering that the following and preceding se-
lection selects type-name and all the name-types of their ancestor except for
the root name of the document because it’s an ancestor of any name in the
current static-context.

(T-Test) with Test = {tag, node, text} are discarded from the type-context
the ancestors of the nodes that do not satisfies the Test.

(T-Var) The enriched type of a variable bounded states into the static envi-
ronment.

(T-VarPath) The type of a path navigation starting from a variable bounded
is inferred replacing the enriched type of the current static-context with the
enriched type of the variable, and the typing the path navigation.

(T-StepPath) The type of a path navigation starting from a step is inferred
replacing the enriched type of the current static-context with the enriched

4.3. TYPING RULES 83

type of the step, and the typing the path navigation.

(T-StepCondPath) The type of a path navigation starting from a step is inferred
replacing the enriched type of the current static-context with the enriched
type of the step filtered by the condition, and the typing the path navigation.

(T-UnfoldedPath) This rule allows to work on a single type at time.

Γ[cs 7→ ({Y1}, κ
′
1)] Γ `E Path : Σ1

cs 7→ ({Y1, . . . , Yn}, κ) ∈ Γ :
κ′i = κ ∩AE(Yi, ance–or–self) Γ[cs 7→ ({Yn}, κ

′
n)] Γ `E Path : Σn

Γ `E Path :
⋃

Σi
τ 6=∅

Σi

To better understand the rule we study a case based on the DTD in Example
(3.2). We want to type the result of the query child :: Bib with respect to
the following static-context:

cs 7→ ({Bib, Book}, {Bib, Book}) ∈ Γ

The first thing to note is that we need to restrict the type-context of the
static-context in each partial typing with κ′i = κ ∩ AE({Yi}, ance–or–self)
because otherwise, giving directly κ in input and using rule T-ForwAx we
would have undesired types in the resulting type-context as follows:

Γ[cs 7→ ({Bib}, {Bib, Book})] `E child :: bib : ({Bib}, {Bib, Book})

Then using the restricted type-context κ′i the typing is precise:

Γ[cs 7→ ({Bib}, {Bib})] `E child :: bib : ({Bib}, {Bib})

Moreover, computing the final type of the query we need to discard the type-
context associated with empty types in the partial inferences. For example,
let us consider the second partial typing where we apply rule T-ForwAx:

Γ[cs 7→ ({Book}, {Bib, Book})] `E child :: bib : (∅, {Bib, Book})

The type-context {Bib, Book} must be discarded. In order to do that in the
conclusion of the rule we have a filtered union of enriched type, that ensure
precision:

⋃

Σi
τ 6=∅

Σi = ({Bib}, {Bib})

84 CHAPTER 4. STATIC TYPE ANALYSIS

Remark 4.22 (A mistake in the original work) We want to underline
that in the original article, while writing with rules that allow to work on a
single type at time, the authors didn’t consider the problem due to the non
restriction of the type-context in each partial evaluation. This means that
for the system they proposed does not hold completeness.

(T-Cond) The rule allows to type a condition working on a single type at a
time. The structure of the rule is similar to (T-UnfoldedPath).

Example 4.23 Considering the DTD proposed in Example (3.2), we want
to type the result of the expression following :: node[book] with hypothesis
cs 7→ ({Author}, {Bib, Book, Author}) ∈ Γ.

cs 7→({Author},{Bib,Book,Author})∈Γ
Γ `E following::node : (τ ′,κ′)

:
Γ[cs 7→(τ ′,κ′)] `E self::node[book] : (τ,κ)

Γ `E following::node/self::node[book] : (τ,κ)
Γ `E following::node[book] : (τ,κ)

We unfolded the typing derivation, and now we focus on the axis selection
with predicate typing.

τ ′ = AE(Author, following)

κ′ = AE(Author, following) ∪
(AE(AE(Author, following), ancestor) ∩ κ)

= {Publisher, Price, Bib, Book, Author, Title, Edithor, Last,
First, Affiliation} ∪
({Bib, Book, Author, Edithor} ∩ {Bib, Book, Author})

= {Publisher, Price, Bib, Book, Author, Title, Edithor, Last,
First, Affiliation} ∪ {Bib, Book, Author}

= {Publisher, Price, Bib, Book, Author, Title, Edithor, Last,
First, Affiliation}

At this point, for each name Y ∈ τ ′ the restricted type-context κ′i is com-
puted (as in the example for the rule T-UnfoldedPath) and the existen-
tial test on tag book is performed. Finally we have that the type and the
type-context of the result of the query are:

τ = {Book}

κ = {Bib, Book}

4.4. SOUNDNESS 85

(T-Empty) The empty query is typed to empty type and empty type-context.

(T-Concat) The typing of a query concatenation is obtained as the union
of the enriched types of the subqueries .

(T-EltCreation) The element creation does not add new names to the type of
a query because element created are typed with ⊥.

(T-For) The rule allows to type iteration working on a single type at a time.
The structure of the rule is similar to (T-UnfoldedPath).

(T-Let) The type projector of a let clause its the type projector of the second
query inferred with the fresh variable x bounded to the type projector of
the first query.

(T-If) The rule allows to type a condition working on a single type at a
time. The structure of the rule is similar to (T-UnfoldedPath), with the dif-
ference that the types of the conditions are used to perform an existence
test.

4.4 Soundness

A set of typing rules is sound if preserve all the types of the nodes in the
query evaluation.

Definition 4.24 (Consistent static and dynamical environments) Given
a dynamic environment ρ = {x1 7→ ~n1, . . . , xn 7→ ~nn} and a static environ-
ment Γ = {x1 7→ Σ1, . . . , xn 7→ Σn} we say that ρ is consistent with respect
to Γ if for each variable xi ∈ ρ let Σi = Γ(xi) and ~ni = ρ(xi) then

1. χ(~ni) ⊆ Σi
τ

2. χ(JancestorK〈η;~ni〉) ⊆ Σi
τ .

Definition 4.25 (Consistent store and dynamical environment) A dy-
namical environment ρ is consistent wrt a store η iff for each bind xj 7→ ~nj ∈
ρ there exists a tree t ∈ η such that Nodes(~nj) ⊆ Nodes(t)

86 CHAPTER 4. STATIC TYPE ANALYSIS

Definition 4.26 (Evaluation) An evaluation wrt a DTD (W,E) is a triple
A = (η, ρ,Γ) composed by a store η valid wrt the DTD (W,E), a dynamical
environment ρ consistent wrt η, and a static environment Γ consistent wrt
the dynamical environment.

Lemma 4.27 (Axis selection soundness) Let A = (η, ρ,Γ) an evalua-
tion wrt a DTD (W,E) where cd 7→ ~n ∈ ρ, cs 7→ (τ, κ) ∈ Γ and τ ⊇ χ(~n)
then

χ(JAxisK〈η;~n〉) ⊆ AE(τ,Axis)

Lemma 4.28 (Test filtering soundness) Let A = (η, ρ,Γ) an evalua-
tion wrt a DTD (W,E) where cd 7→ ~n ∈ ρ, cs 7→ (τ, κ) ∈ Γ and τ ⊇ χ(~n)
then

χ(JTestK〈η,cd〉) ⊆ TE(τ,Test)

Theorem 4.29 (Soundness of type system) Let A = (η, ρ,Γ) an eval-
uation wrt a DTD (W,E) where cd 7→ ~m ∈ ρ, cs 7→ (τ ′, κ′) ∈ Γ and
τ ′ ⊇ χ(~m). If Γ `E q : (τ, κ) and ρ η q Z⇒ ~n then

1. χ(~n) ⊆ τ

2. χ(JancestorK〈η;~n〉) ⊆ κ

Corollary 4.30 (Empty type implies empty sequence) Let A = (η, ρ,Γ)
an evaluation wrt a DTD (W,E), if Γ `E q : (∅, κ) and q doesn’t con-
struct new elements then ρ η q Z⇒ ()

Proof.
If τ = ∅ then by Theorem (4.29) of Soundness of Type System we have that
if χ(~n) ⊆ ∅ then ~n = () and χ(()) ⊆ ∅ 2

4.5 Completeness

It turns out that the type system is complete for DTDs that are *–guarded,
non-recursive, and parent-unambiguous. Intuitively, a DTD is *–guarded
when every union occurring in its productions is guarded by * (or by +), it
is non recursive if the maximal depth of all documents validating it is upper
bounded, while it is parent-unambiguous if no name types both the parent
and a strict ancestor of the parent of another name. Formally, we have the
following definition

Definition 4.31 Let (W,E) be a DTD

4.5. COMPLETENESS 87

1. E is *–guarded if for each Y → l[r] ∈ E, whenever the regular ex-
pression contains an union then the union is in the scope of a ∗ or a
+.

2. E is non-recursive if it is never the case that Y ⇒+
E

Y , for any name
Y ∈ DN(E)

3. E is parent-unambiguous if is never the case that there exists two dis-
tinct type-names Y,Z such that Y ⇒

E
X and Z⇒

E
X.

Non-recursively and *–guardedness are properties enjoyed by a large num-
ber of commonly used DTD s. As stated in [1] they involves a lot of XML
Query Use Cases [11]: among the ten DTDs defined in the Use Cases, seven
are both non-recursive and *–guarded, one is only *–guarded, one is only
non-recursive, and just one does not satisfy either property. Concerning the
parent-unambiguous property, although DTDs satisfying this property are
less frequent (five on the ten DTDs in [11]), its absence is in practice not
very problematic since, as we will see, only the presence of the parent axis
may hinder completeness.

To see why completeness does not hold in general consider the following
DTD rooted at W and which is recursive and not *–guarded

Book → book[Name(Author|Editor), Dummy]
Author → author[Name]
Editor → editor[Name]
Name → name[pcdata]
Dummy → dummy[Dummy, String]

and the following two queries

q1 = book[author]/editor
q2 = book/author/name/parent :: node
q3 = book/dummy/parent :: node

The type inferred for the first query contains both Author and Editor.
These are useless since the query is always empty. This is due to the non
*–guarded union (Author|Editor): if we had (Author|Author)∗ instead,
then the query might yield a non-empty result, therefore Author and Editor

must correctly (and completely) be in the query type.
The second query shows the reason why completeness does not hold in

presence of parent unambiguous DTD. The precise type of this query should

88 CHAPTER 4. STATIC TYPE ANALYSIS

be Author. However, the inferred type is {Book, Author}. This is because
the last step parent :: node is typed with the context Book, Author, Name
and this contains AE(Name, parent) = {Book, Author}. Here {Name} is
the type for the {author} node selected by child :: author and the AE(,)
operator assigns it {Book, Author} as parent type, even if the real parent
type for {Name} in this case should be {Author} . Hence, the intersections
operated by the type rule for parent are not powerful enough to guarantee
precision for cases like this one.

The third query shows the reason why completeness does not hold in
presence of recursion and backward axes (recursion with only forward axes
does not pose any problem for completeness). The type of the third query
should be Book, but instead the type Book, Dummy is inferred. This is due to
the recursion Dummy → dummy[Dummy, String] since Dummy⇒

E
Dummy, once

Dummy is reached it is kept in the inferred type for every backward step.
As stated in [1] the second and third cases suggests that to be extremely

precise, instead of sets of names, contexts should rather be sets of chains of
names, computed and opportunely managed by the type analysis. However
(i) managing sets of chains instead of simple sets of names dramatically
complicates the treatment, due to recursive axes like descendant, (ii) the
problem may arise only for queries that use parent axis and the concomitance
of parent ambiguity make the event rare in practice, and (iii) the loss of
precision looks in most cases negligible. Therefore we considered that such
a small gain did not justify the increase in complexity needed to handle this
case.

4.5.1 Completeness of Type System

Theorem 4.32 (Axis Selection Completeness) Let A = (η, ρ,Γ) an eval-
uation wrt a DTD (W,E) (a) *–guarded, (b) non-recursive, and (c) parent-
unambiguous where cd 7→ ~n ∈ ρ, cs 7→ (τ, κ) ∈ Γ and τ = χ(~n) then

χ(JAxisK〈η;~n〉) = AE(τ,Axis)

An improvement in the state of the art is that now holds completeness on
type system also for horizontal axes. In the original work [1] horizontal axes
work were approximated by a non complete formulation.

Theorem 4.33 (Test Filtering Completeness) Let A = (η, ρ,Γ) an eval-
uation wrt a DTD (W,E) (a) *–guarded, (b) non-recursive, and (c) parent-
unambiguous where cd 7→ ~n ∈ ρ, cs 7→ (τ, κ) ∈ Γ and τ = χ(~n) then

χ(JTestK〈η;~n〉) = TE(τ,Test)

4.5. COMPLETENESS 89

Theorem 4.34 (Completeness of Type System) Let A = (η, ρ,Γ) an
evaluation wrt a DTD (W,E) (a) *–guarded, (b) non-recursive, and (c)
parent-unambiguous, if Γ `E q : (τ, κ) and ρ η q Z⇒ ~n, If Γ `E q :
(τ, κ) and ρ η q Z⇒ ~n then

1. χ(~n) = τ

2. χ(Jance–or–selfK〈η;~n〉) = κ

A relevant improvement in the state of the art is that now exists a proof
of completeness of the type system for a language that considers XQuery
constructs. We recall another time that the use of the path extraction
function implied a lack in formal proofs in the original work [1].

90 CHAPTER 4. STATIC TYPE ANALYSIS

Chapter 5

Type based XML Projection

In this section we use enriched type obtained by the static type system of
the previous section to infer type-projectors.
We give an example of projection using Type Projectors. We want to query
the XML data tree valid wrt the DTD proposed in Example (3.2) and repre-
sented in Figure (5.1a) selecting all the title elements with the expression

/descendant–or–self :: title

The semantics of the query yields to all the nodes of type Title that stands
in the input document. Despite the fact that the query explicit only the
title tag, thanks to the availability of types, we are able to recognize the
chain of names from the root of the document to the Title type and then
prune the document in the parsing phase. We want to stress that the pruning
based on projection paths [2] does not consider types. In this case pruning
would be performed traversing all the document and buffering each path
of the tree which would be discarded once arrived on a leaf without find a
title element.

5.1 Type projectors

As in [1], in order to formalize Type Projectors we need to define particular
strings of names called chains and ranged over by c.

Definition 5.1 (Chains of Names) Given a DTD (W,E) and a name Y
we define the chains of names rooted in Y as follows

Chains(W,E)(Y) = {Y Z1 . . . Zn |Y ⇒E
Z1⇒E

. . . ⇒
E

Zn, n ≥ 0}

91

92 CHAPTER 5. TYPE BASED XML PROJECTION

bib.

xml

book

authortitle publi

sher

bib

last first

price

book

authortitle publi

sher

last first

price

book

authortitle publi

sher

last first

price

last firstlast first

bib.

xml

book

title

bib

book

title

book

title

a)

b)

Figure 5.1: a) original document, b) pruned document

5.1. TYPE PROJECTORS 93

And we use Names(c) to denote the set of all names occurring in a chain c.

Definition 5.2 (Type Projectors) Given a DTD (W,E), a (possibly empty)
set of names π ⊆ DN(E) is a type projector for (W,E) if and only if there
exists C ⊆ Chains(W,E)(W) such that

π =
⋃

c∈C

Names(c)

A type projector is thus a set of names generated (i.e. reached) by a suite
of productions starting from the root of the DTD. For example, it turns out
that the type projector for the query /descendant–or–self :: title over
the DTD proposed in Example (3.2) is

π = {Bib, Book, Title}

A type projector can be used to pruned a valid tree as follows:

Definition 5.3 (Type Driven Projectors) Let π be a type projector for
(W,E) and t valid wrt the DTD (W,E). The π−projection of t, noted as
t\π is defined as follows:

ln[f] \ π = ln[f \ π] nX ∈ π
ln[f] \ π = () nX /∈ π
sn \ π = sn nX ∈ π
sn \ π = () nX /∈ π
(f, f ′) \ π = (f \ π, f ′ \ π)

Given a tree t valid with respect to a DTD (W,E), we use subsets of DN(E)
to project that tree. Only nodes that are associated with names in π are
kept in the projection. Of course not every subset of names can be used
to project a tree, since we want to delete whole subtrees (not nodes in the
middle of a tree), and this is the reason why projection is defined in terms
of chains as in Definition (5.2).

Definition 5.4 (Projection(�)) Given two forests f and f ′ we say that
f ′ is a projection of f , noted as f ′ � f , if f ′ is obtained by replacing some
subforests of f by the empty forest.

Proposition 5.5 Given a tree t valid wrt the DTD (W,E), if π is a type
projector for t then t \ π is a projection of t.

94 CHAPTER 5. TYPE BASED XML PROJECTION

5.2 Type Projection Inference

Once more naive solution does not work. For instance, for simple paths
Step1/ . . . /Stepn, we may consider as type projector with respect to (W,E)
the set

⋃

i=1...n τi ∪ {W} where for i = 1...n:

({W}, {W}) `E Step1/ . . . /Stepn : (τi,−)

(we use ”-” as a placeholder for uninteresting parameters). This definition
is sound but not precise at all, as can be seen by considering the expression
descendant :: node/Path the use of the above union yields a set containing
τ1 defined as

({W}, {W}) `E descendant :: node : (τ1,−)

that is, all descendants of the root W (no pruning is performed). Instead,
we would like to discard, at least, all names that are descendants of W
but that are not ancestors of a node matching Path. These are the names
Y ∈ TE(AE(W, descendant), node) such that

({W}, κ) `E descendant :: node/Path : (∅,−)

for some appropriate context κ. A similar reasoning applies to ancestor.

Furthermore we have to consider if a subexpression is useful or not for
final evaluation of the query. This is important in computing type pro-
jectors, because implies to consider or not descendant of inferred types in
type-projectors. As in [1] we use a flag m that indicates whether q is a query
that serves to materialize a partial or final result (and we set m = 1), or
that just selects a set of nodes whose descendants are not needed (m = 0).
As example let us consider a bounded variable x and the following query:

for y in x//author
return <authorelement> y </authorelement>

In one hand the expression x//author is used only to iterate, it does not con-
tribute to the final result of the query and then the types of the descendant
of nodes typed as Author are not useful. In the other hand, the rightmost
expression <authorelement> y </authorelement> is used as result of
the query and then types of the descendant of nodes typed as Author are
needed to do not prune the subtrees they are contained. Moreover we no-
tice that since element construction is allowed only in the leftmost part of

5.2. TYPE PROJECTION INFERENCE 95

the query then its content is always useful for the final evaluation, in other
words, it’s always marked with 1.

Finally, wherever is possible in the type projection rules, we optimize apply-
ing Corollary (4.30). We recall that it states that if the type of an expression
is empty, and the expression does not construct new elements, than the ex-
pression evaluate to the empty sequence. This allow us to discard names
from the type projector in soundness.

5.2.1 Description of Rules

In what follows we give a brief description of the type-projection inference
rules.

(P-AxTe) The rule unfold the type projection inference for an Axis::Test step
in two consecutive steps. Whatever the expression is useful for the final
result of the query is decided by the parameter m that is share between the
premise and conclusion judgments.

(P-AxTeCond) The rule unfold the type projection inference for Axis::Test[Cond],
a step with predicate as filtering condition, in two consecutive steps. What-
ever the expression is useful for the final result of the query is decided by the
parameter m that is share between the premise and conclusion judgments.

(P-AxNo1) The rule infers type projector for an axis selection in the case
that the expression is not useful for the final result of the query. Indeed, as
explained before, no descendants of types in τ are taken into the final type
projector.

(P-AxNo2) The rule infers type projector for an axis selection in the case
that the expression is not useful for the final result of the query. Indeed,
as explained before, descendants of types in τ are taken into the final type
projector.

(P-SeTe1) The rule infers type projector for a step filtering in the case that
the expression is not useful for the final result of the query. Indeed, as ex-
plained before, no descendants of types in τ are taken into the final type
projector.

(P-Sete2) The rule infers type projector for a step filtering in the case that the

96 CHAPTER 5. TYPE BASED XML PROJECTION

Γ �
[m]
E Axis::node/self::Test : π

Γ �
[m]
E

Axis::Test : π
(P-AxTe)

Γ �
[m]
E Axis::Test/self::node[Cond] : π

Γ �
[m]
E

Axis::Test[Cond] : π
(P-AxTeCond)

Γ `E Axis::node : (τ,κ) Axis∈{child, des, parent, ancestor}

Γ �
[0]
E

Axis::node : τ ∪κ
(P-VAx1)

Γ `E Axis::node : (τ,κ) Axis∈{child, des, parent, ancestor}

Γ �
[1]
E Axis::node : AE(τ,descendant–or–self)∪κ

(P-VAx2)

cs 7→(τ ′, κ′)∈Γ Γ `E Axis::node : (τ,κ) Axis∈{fs, ps, following, preceding}

Γ �
[0]
E Axis::node : τ ′ ∪κ′ ∪ τ ∪κ

(P-HAx1)

cs 7→(τ ′, κ′)∈Γ Γ `E Axis::node : (τ,κ) Axis∈{fs, ps, following, preceding}

Γ �
[1]
E Axis::node : τ ′ ∪κ′ ∪AE(τ,descendant–or–self)∪κ

(P-HAx2)

Γ `E self::Test : (τ,κ)

Γ �
[0]
E self::Test : τ ∪κ

(P-SeTe1)

Γ `E self::Test : (τ,κ)

Γ �
[1]
E self::Test : AE(τ,descendant–or–self)∪κ

(P-SeTe2)

Γ `E self::node[Cond] : (τ,κ)

Γ �
[0]
E self::node[Cond] : τ ∪κ

(P-SeNoCond1)

Γ `E self::node[Cond] : (τ,κ)

Γ �
[1]
E self::node[Cond] : AE(τ,descendant–or–self)∪κ

(P-SeNoCond2)

Γ `E x : ({Y1, . . . , Yn}, κ) τ = {Yi|Σ
6
τ = ∅}

κ′
i = κ ∩ AE({Yi}, ance–or–self) κ′ = κ ∩ AE(τ, ance–or–self)

Γ[cs 7→ ({Yi}, κ
′
i)] `E Path : Σi Γ[cs 7→ (τ, κ′)] �

[m]
E Path : π

Γ �
[m]
E x/Path : π

(P-VarPath)

Γ `E Step : ({Y1 , . . . , Yn}, κ) τ = {Yi|Σ
i
τ 6= ∅}

κ′
i = κ ∩ AE({Yi}, ance–or–self) κ′ = κ ∩ AE(τ, ance–or–self)

Γ[cs 7→ ({Yi}, κ
′
i)] `E Path : Σi Γ[cs 7→ (τ, κ′)] �

[m]
E Path : π

Γ �
[m]
E Step/Path : π

(P-StepPath)

Γ `E Step[Cond] : ({Y1, . . . , Yn}, κ) τ = {Yi|Σi
τ 6= ∅}

κ′
i = κ ∩ AE({Yi}, ance–or–self) κ′ = κ ∩ AE(τ, ance–or–self)

Γ[cs 7→ ({Yi}, κ)] `E Path : Σi Γ[cs 7→ (τ, κ′)] �
[m]
E Path : π

Γ �
[m]
E Step[Cond]/Path : π

(P-StepCond)

Γ[cs 7→ ({Y1}, κ′
1)] �

[m]
E Path : π1

cs 7→ ({Y1 , . . . , Yn}, κ) ∈ Γ :

κ′
i = κ ∩ AE({Yi}, ance–or–self) Γ[cs 7→ ({Yn}, κ′

n)] �
[m]
E Path : πn

Γ �
[m]
E Path :

⋃

i=1..n πi

(P-Path)

Table 5.1: Type Projection Rules for Path Navigation

5.2. TYPE PROJECTION INFERENCE 97

Γ �
[m]
E () : ∅

(P-Empty)

Γ `E x : (τ,κ)

Γ �
[0]
E x : τ ∪κ

(P-Var1)
Γ `E x : (τ,κ)

Γ �
[1]
E x : AE(τ,descendant–or–self)∪κ

(P-Var2)

Γ �
[m]
E q1 : π1 Γ �

[m]
E q2 : π2

Γ �
[m]
E q1,q2 : π1∪π2

(P-Concat)
Γ �

[1]
E q : π

Γ �
[1]
E <a>q : π

(P-EltConstr)

Γ �
[0]
E q1 : π′

Γ `E q1 : ({Y1 , . . . , Yn}, κ) τ = {Yi|Στ 6= ∅}
κ′

i = κ ∩ AE({Yi}, ance–or–self) κ′ = κ ∩ AE(τ, ance–or–self)

Γ[x : (Yi, κ′
i)] `E q2 : Σi Γ[x : (τ, κ′)] �

[m]
E q2 : π

Γ �
[m]
E for x in q1 return q2 : π′ ∪π

(P-For)

Γ �
[0]
E q1 : π′ Γ `E q1 : Σ Γ[x:Σ] �

[m]
E q2 : π

Γ �
[m]
E let x = q1 return q2 : π′ ∪π

(P-Let)

Γ �
[0]
E self::node[Cond] : π′ if π′ 6= ∅ then Γ �

[m]
E q : π else π = ∅

Γ �
[m]
E if Cond then q : π∪π′

(P-If)

Table 5.2: Type Projection Rules for FLOWR Expressions

98 CHAPTER 5. TYPE BASED XML PROJECTION

expression is not useful for the final result of the query. Indeed, as explained
before, descendants of types in τ are taken into the final type projector.

(P-SeNoCond1) The rule infers type projector for a predicate filtering in the
case that the expression is not useful for the final result of the query. Indeed,
as explained before, no descendants of types in τ are taken into the final
type projector.

(P-SeNoCond2) The rule infers type projector for a predicate filtering in the
case that the expression is not useful for the final result of the query. Indeed,
as explained before, descendants of types in τ are taken into the final type
projector.

(P-VarPath) The rule infers type projector for a path navigation starting
from a variable bounded. The main idea is to use the enriched type of the
bounded variable as enriched type for the static context. The rule use Corol-
lary (4.30) to discard types that does not satisfies the Path navigation. Once
discarded all unuseful types the enriched type of the static context is fixed
and the type projector is inferenced for the path. Whether the expression
is useful for the final result of the query is decided by the parameter m that
is share between the premise and conclusion judgments on type projector.

(P-StepPath) The rule infers type projector for a path navigation starting
from a step. The main idea is to use the enriched type of the result of the
step as enriched type for the static context. The rule use Corollary (4.30)
to discard types that does not satisfies the Path navigation. Once discarded
all unuseful types the enriched type of the static context is fixed and the
type projector is inferenced for the path. Whether the expression is useful
for the final result of the query is decided by the parameter m that is share
between the premise and conclusion judgments on type projector.

(P-StepCond) The rule infers type projector for a path navigation starting
from a step with predicate filtering. The main idea is to use the enriched
type of the result of the step as enriched type for the static context. The
rule use Corollary (4.30) to discard types that does not satisfies the Path

navigation. Once discarded all unuseful types the enriched type of the static
context is fixed and the type projector is inferenced for the path. Whether
the expression is useful for the final result of the query is decided by the
parameter m that is share between the premise and conclusion judgments
on type projector.

5.2. TYPE PROJECTION INFERENCE 99

(P-Path) The rule allows to work with a single type in the current context
at a time. We notice that the restriction made on each type context κ′j is
in agree with the type inference rules of Chapter 5, and as explained are
needed to achieve precision and do not hinder completeness.

(P-Empty) The type projector for the empty query is always an empty set.

(P-Var1) The type projector for a bounded variable is contained into the
store. The rule infers type projector for an axis selection in the case that
the expression is not useful for the final result of the query. Indeed, as ex-
plained before, no descendants of types in τ are taken into the final type
projector.

(P-Var2) The type projector for a bounded variable is contained into the
store. The rule infers type projector for an axis selection in the case that
the expression is not useful for the final result of the query. Indeed, as
explained before, descendants of types in τ are taken into the final type
projector.

(P-Concat) The rule infers the type projector for a concatenation of queries
as union of the type projectors inferred for each subexpression inductively.
Whether the expression is useful for the final result of the query is decided
by the parameter m that is share between the premise and conclusion judg-
ments on type projector.

(P-EltConstr) The type projection for an element construction is the type
projector of the query nested into the construction. This because no types
are associated with constructed elements. Moreover, standing on the fact
that element construction is allowed only in the rightmost part of the query
then it is always useful to the final result of the query and then m = 1.

(P-For) The rule infers type projector for iteration construct. The main
idea is to use the enriched type of the evaluation of the first query bounded
to variable. The rule works on a single type at time and use Corollary (4.30)
to discard all types that raise an empty typing when bounded to the vari-
able in the second query. Once discarded all unuseful types the enriched
type of the static context is fixed and the type projector is inferenced for
the second query. Whether the expression is useful for the final result of the
query is decided by the parameter m that is share between the premise and

100 CHAPTER 5. TYPE BASED XML PROJECTION

conclusion judgments on type projector.

(P-Let) The type projector for the let expression is inferred as the union
of the type projector for the first and the second query. The second query
is typed updating the static environment with the enriched type of the first
query bounded to a variable. We notice that the first query is always not
useful to the final result of the let construct while the second query may be
depending on the value of m.

(P-If) The rule infers type projector for the if construct. The final type
projector is obtained as union of the type projector of both the expressions
at the top level of the construct. Since the typing of a condition discards
all the type context associated with empty types, and the fact that type
projectors are obtained as union of type and relative typecontext, we have
that if the type of the query is empty then projector of the query is empty.
Then we can use type projector for the existence test and then to decide to
type the second query or to return the empty set.

5.3 Soundness

Theorem 5.6 (Soundness of type projection inference) Given an eval-

uation A = (η, ρ,Γ) wrt a DTD (W,E). If Γ �
[m]
E q : π then the following

propositions hold.

1. π is a type projector for (W,E)

2. If ρ η q Z⇒ ~n; η′ then ρ η\π
q Z⇒ ~m; η′′ and ~n ∼= ~m

The above theorem states that executing the query q on a tree t returns
the same set of nodes as executing it on t \ π the tree t pruned by the
inferred projector. From a practical perspective it is important to notice
that according to standard XQuery semantics, the semantics of a query
contains only the nodes of the result of the query not their sub-trees. The
latter may thus be pruned by the inferred projector. Therefore, if we want
to materialize the result of a query we must not cut these nodes, and rather
use a projector that takes all the descendants of the selected names.

5.4 Precision of the type projection inference

The precision of the type projection inference depends directly from the pre-
cision of the type system. We proved that the type system as complete, but

5.4. PRECISION OF THE TYPE PROJECTION INFERENCE 101

despite this there are some cases where is really difficult to ensure precision
of the type projection inference. Following [1], we know that completeness
requires also the following conditions on queries:

Definition 5.7 A query q is strongly-specified if

i) its predicates do not use backward axes,

ii) along q and along each path in the predicates of q there are no two
consecutive (possibly conditional) steps whose Test part is node, and

iii) each predicate in q contains at most one path and this does not
terminate by a step whose Test is node

As suggested in the original work, these specification of query reflect a very
common class of queries. Indeed almost all the path present in XMark
benchmarks are strong specified.

Example 5.8 Considering the following portion of DTD:

<!ELEMENT bib (book∗)>
<!ELEMENT book (title, (author+ | editor+), publisher, price)>

we give some example of both strongly-specified

(1) /descendant :: author/child :: first/ancestor :: node
(2) /descendant :: node/author[child :: first]/

/self :: author/ancestor :: node

and not strongly-specified

(3) /bib[descendant :: node/ancestor :: bib]
(4) /descendant :: author[child :: node]
(5) /descendant :: author[child :: first or child :: last]

Conjecture 5.1 (Completeness of type projection inference) Given
an evaluation A = (η, ρ,Γ) with respect to a DTD (W,E) *–guarded, non-

recursive and parent unambiguous, and a query q strong specified. If Γ �
[m]
E

q : π then there exists a tree valid wrt (W,E) such that for each {Y } ∈ π
let π′ = π \AE({Y }, dos) we have that

if Γ η q Z⇒ ~n; η′ then Γ η\π′ q Z⇒ ~m; η′ and ~n¬ ∼= ~m

102 CHAPTER 5. TYPE BASED XML PROJECTION

Because of lack of time we didn’t report the proof of the theorem. Despite
this, let us see why completeness does not hold for non strong-specified query
considering the DTD in Example (3.2). For example, query (4) does not
respect condition ii) since it use node test twice consecutive. The semantic
of the query yields to the set of nodes of type Author which has at least
one child node. Then the minimal type projector must take Author, all
the ancestors of nodes typed as Author and the types of the children of
nodes typed as Author. Looking at the DTD, if the document is valid then
every node of this kind has at least two nodes that are typed as First

and Last. It’s not needed to take both the names, we need only one to
be sure that the predicate is satisfied. Despite this the proposed rules of
type inference includes both First and Last thus breaking completeness.
Query (3) does not satisfies condition i), it’s easy to see that another time
the minimal type projector for the query is π = {Bib, Book} since we need
only one node to satisfy the existence test into the predicate. The projection
inference conclude with all the types in DN(E) because all of they have bib
as ancestor. Finally in query (5), that does not satisfies condition iii), it’s
easy to see that we presence of a disjunction of conditions takes another
time type inference to a non minimal set.

Chapter 6

Conclusion and Future works

The main aspect of our work is the formal foundation it provides wrt the
state of the art. In the original article the authors didn’t treat directly
XQuery language because of its complexity, and decided to reduce the prob-
lem to XPath optimization using the path extraction function as already
explained. With this choose authors loose every chance to have formal
proofs of Soundness and Completeness over XQuery of their type system,
and in the end they provide only proofs for XPath. In this dissertation we
gave a formal foundation of a relevant subset of XQuery with a easy under-
standable semantics and flexibility to formal proofs. Further, a set of rules
for static type inference and type projection inference are provided and for-
mally proved. The theorems of Soundness and Completeness we stated are
now a new starting point to develop a series of application of type projectors
on the language FLWR-XQuery. In what follows we discuss three possible
applications.

� Subquery execution optimization. When dealing with bunches of queries
over the same document type projection inference could yield to huge
type projectors that do not perform a relevant pruning while loading
the document in main memory. Moreover, in this fashion during the
execution of a query, and especially in presence of expression that use
descendant–or–self axis entire not-useful subtrees are visited. To
overcome this problem it is possible to develop a static type projec-
tion inference system that associate every subexpression with all the
types that are touched by the query execution: its proper type projec-
tor. This in the query execution phase avoid unuseful reads and also
save memory because no unuseful data is loaded in each partial com-
putation. Once computed, type-projectors for subquery can perform

103

104 CHAPTER 6. CONCLUSION AND FUTURE WORKS

the suggested optimization in two ways. One approach consider the
redefinition of the XQuery access plan strategies. Otherwise, it is pos-
sible to rewrite the query and explicitly impose a controlled navigation
of the document.

� Security access control. An access-control mechanism for XML doc-
uments aim to support efficient and secure query access, without re-
vealing sensitive information to unauthorised users. Specifically, for an
XML document there may be multiple user groups who want to query
the same document. For these use groups different access policies may
be imposed, specifying what elements of the document the users are
granted to access to. When data are typed by a DTD it is possible
to use type projectors to enforce these access policies. Given a query
submitted by an user we have, in one hand, thanks to type projectors,
the types useful for the query execution, and in the other hand, the
rights of the user for access certain data. At this point become easily
to ensure that the evaluation of the query overt the document returns
only information in that the user is allowed to access. This also a
various level of granularity (e.g., restricting access to entire subtrees
or specific elements in the document tree based on their content or
location).

� Update optimization. Another open issue in this branch of research is
the optimization of XML update operations expressed by XQuery. The
XQuery Update Facility specification states what kind of updates can
be applied to XML documents by taking into account only the effects
on the data present in main memory. Issues related to the problem of
making updates persistent and efficiently executed are not dealt with,
and left to the implementation. Addressing these issues are impor-
tant especially when the size of XML document to update can become
quite large, and update operations can be quite complex. When deal-
ing with typed data, it is possible to use type projectors in order to
optimise memory management for XQuery update operations in order
to minimise the amount of data to be processed during updates. To
this end it is possible to reuse all the static analysis techniques devel-
oped in this dissertation to determine, before update processing, what
are the piece of data strictly necessary for the update. In this way
we avoid managing regions of the input XML documents that are not
affected/touched by the updates.

105

Some works remains open for this document. They are almost related to the
approximation of expression that hinder completeness in typing or in type
projection inference. We did not prove formally that the approximation of
predicates we give in Chapter 3 is sound, despite the fact it seems trivially
sound. The most relevant open issue is the proof of completeness of the
type projection inference. Another point that we did not treat is the one
related to the use of external function that we aspect to work basing on the
approximation given in the original article, but the relevance is secondary.
Moreover the static analysis proposed must be implemented and tested in
order to obtain an important feedback of the work done.

106 CHAPTER 6. CONCLUSION AND FUTURE WORKS

Chapter 7

Proofs

7.1 Soundness of axis selection

Lemma(4.27) (Axis Selection Soundness)
Let A = (η, ρ,Γ) an evaluation wrt a DTD (W,E) where cd 7→ ~n ∈ ρ,
cs 7→ (τ, κ) ∈ Γ and τ ⊇ χ(~n) then

χ(JAxisK〈η;~n〉) ⊆ AE(τ,Axis)

Proof by case analysis of Axis.

[Axis = self]
By of axis selection we have that

χ(JselfK〈η;~n〉) = χ(~n) = τ = AE(τ, self)

[Axis = child]

By definition of axis selection JchildK〈η;~n〉 =
⋃

n∈~n {m | (n,m) ∈ ε↑t } and

since if (n,m) ∈ ε↑t implies nX⇒E
mX by Lemma (4.4) we have that

χ(JchildK〈η;~n〉) ⊆
⋃

nX∈χ(~n)

{mX | nX⇒E
mX}

(and by hyp) ⊆
⋃

nX∈τ

{mX | nX⇒E
mX }

= AE(τ, child)

107

108 CHAPTER 7. PROOFS

[Axis = parent]

By definition of axis seletion JparentK〈η;~n〉 =
⋃

n∈~n {m | (m,n) ∈ ε↑t } and

since if (n,m) ∈ ε↑t implies nX⇒E
mX by Lemma (4.4) we have that

χ(JparentK〈η;~n〉) ⊆
⋃

nX∈χ(~n)

{mX |mX⇒E
nX}

and by hypothesis ⊆
⋃

nX∈τ

{mX |mX⇒E
nX }

= AE(τ, parent)

[Axis = descendant]

By definition of axis seletion JdescendantK〈η;~n〉 =
⋃

n∈~n {m | (n,m) ∈ ε↑+t }

and since if (n,m) ∈ ε↑+t implies nX⇒
+
E

mX by Lemma (4.5)

χ(JdescendantK〈η;~n〉) ⊆
⋃

nX∈χ(~n)

{mX | nX⇒
+
E

mX}

and by hypothesis ⊆
⋃

nX∈τ

{mX | nX⇒
+
E

mX }

= AE(τ, descendant)

[Axis = ancestor]

By definition of axis seletion JancestorK〈η;~n〉 =
⋃

n∈~n {m | (m,n) ∈ ε↑+t }

and since if (n,m) ∈ ε↑+t implies nX⇒
+
E

mX by Lemma (4.5) we have that

χ(JancestorK〈η;~n〉) ⊆
⋃

nX∈χ(~n)

{mX |mX⇒
+
E

nX}

and by hypothesis ⊆
⋃

nX∈τ

{mX |mX⇒
+
E

nX }

= AE(τ, ancestor)

[Axis = following–sibling]
By definition of axis seletion JfsK〈η;~n〉 =

⋃

n∈~n {m | (n,m) ∈ ε→+
t } and

since if (n,m) ∈ ε→+
t implies nX >+

E mX by Lemma (4.16) we have that

χ(JfsK〈η;~n〉) ⊆
⋃

nX∈χ(~n)

{mX | nX >+
E mX}

and by hypothesis ⊆
⋃

nX∈τ

{mX | nX >+
E mX }

= AE(τ, following–sibling)

7.1. SOUNDNESS OF AXIS SELECTION 109

[Axis = preceding–sibling]
By definition of axis seletion JpsK〈η;~n〉 =

⋃

n∈~n {m | (m,n) ∈ ε→+
t } and

since if (n,m) ∈ ε→+
t implies nX >+

E mX by Lemma (4.16) we have that

χ(JpsK〈η;~n〉) ⊆
⋃

nX∈χ(~n)

{mX |mX >+
E nX}

and by hypothesis ⊆
⋃

nX∈τ

{mX |mX >+
E nX }

= AE(τ, preceding–sibling)

[Axis = following]
By definition of axis seletion JfK〈η;~n〉 =

⋃

n∈~n {m | (n,m) ∈ ε�

t } and since
if (n,m) ∈ ε�

t implies nX �mX by Lemma (4.18) we have that

χ(JfK〈η,c〉) ⊆
⋃

nX∈χ(~n)

{mX | nX �mX}

and by hypothesis ⊆
⋃

nX∈τ

{mX | nX �mX }

= AE(τ, f)

[Axis = preceding]
By definition of axis seletion JpK〈η;~n〉 =

⋃

n∈~n {m | (m,n) ∈ ε�
t } and since

if (n,m) ∈ ε�
t implies nX �mX by Lemma (4.18) we have that

χ(JpK〈η,c〉) ⊆
⋃

nX∈χ(~n)

{mX |mX � nX}

and by hypotesis ⊆
⋃

nX∈τ

{mX |mX � nX }

= AE(τ, preceding) 2

110 CHAPTER 7. PROOFS

7.2 Completeness of axis selection

The main problem related proving completeness is related to the irregularity
of the data. For example, given the production

Y → a[(Z|X|V)]

we have that a possible datamodel instance is the one that contains a node
labeled as a and typed as Z, X or V in an exclusive way. Our analysis
always infers {Z,X, V } when encounter the above content model. Then we
need a *—guarded DTD such as

Y → a[(Z|X|V)∗]

because for each content model (i.e. regular expression over types in DN(E))
we want to be possible to build a completion of the tree that justifies the
inference of {Z,X, V } as complete type.
As little note, for the above content model holds the following relation be-
tween each pair of distinguished elements.

Lemma 7.1 (Complete Selection) Given a DTD (W,E) (a) *–guarded,
(b) non-recursive, and (c) parent-unambiguous, there exists a tree t such
that for all sequence ~n of nodes belonging to t

1.
⋃

n∈~n

{mX | (nX ,mX) ∈ ε↑t } =
⋃

Y ∈χ(~n)

{mX | nX⇒E
mX}

2.
⋃

n∈~n

{mX | (mX ,nX) ∈ ε↑t } =
⋃

Y ∈χ(~n)

{mX |mX⇒E
nX}

3.
⋃

n∈~n

{mX | (nX ,mX) ∈ ε↑+t } =
⋃

Y ∈χ(~n)

{mX | nX⇒
+
E

mX}

4.
⋃

n∈~n

{mX | (mX ,nX) ∈ ε↑+t } =
⋃

Y ∈χ(~n)

{mX |mX⇒
+
E

nX}

5.
⋃

n∈~n

{mX | (nX ,mX) ∈ ε↑∗t } =
⋃

Y ∈χ(~n)

{mX | nX⇒
∗
E

mX}

6.
⋃

n∈~n

{mX | (mX ,nX) ∈ ε↑∗t } =
⋃

Y ∈χ(~n)

{mX |mX⇒
∗
E

nX}

7.2. COMPLETENESS OF AXIS SELECTION 111

7.
⋃

n∈~n

{mX | (nX ,mX) ∈ ε→t } =
⋃

Y ∈χ(~n)

{mX |mX >E nX}

8.
⋃

n∈~n

{mX | (nX ,mX) ∈ ε→+
t } =

⋃

Y ∈χ(~n)

{mX | nX >+
E mX}

9.
⋃

n∈~n

{mX | (mX ,nX) ∈ ε�

t } =
⋃

Y ∈χ(~n)

{mX |mX � nX}

Proof 1) By hypothesis (a) the DTD is *-–guarded, every union is in the
scope of a * or a +. This implies that when two types are in relation Y ⇒

E
Z

then not only there exists a tree t valid wrt (W,E) such that n,m ∈ Nodes(t)

such that (n,m) ∈ ε↑t , nX = Y and mX = Z, but for each tree t valid wrt

(W,E) there can exists two distinct nodes n,m such that (n,m) ∈ ε↑t ,
nX = Y and mX = Z. This means that from a completeness point of view,
given n ∈ ~n we must take all the types Z ∈ DN(E) such that nX⇒E

Z and
then

⋃

n∈~n

{mX | (nX ,mX) ∈ ε↑t } =
⋃

n∈~n

{mX | nX⇒E
mX}

and since nodes with common types yields the set to the same types

=
⋃

Y ∈χ(~n)

{mX | Y ⇒E
mX}

Proof 2) Since t is valid wrt (W,E) we have that for each node n ∈ ~n

exists at most one node m ∈ Nodes(t) such that (m,n) ∈ ε↑t (since it can
be the root). Let us consider two distinct nodes n1,n2 ∈ Nodes(t) with
the same type. Then there exists at most two nodes m1,m2 such that
(m1,n1) ∈ ε↑t and (m2,n2) ∈ ε↑t . Moreover since by hypothesis (c) the dtd
is non-recursive for each Y ∈ DN(E) Y 6⇒

E
Y . Then we have that m1 6= n1

and m2 6= n2. For hypothesis (b) the DTD is also parent-unambiguous: for
each Y ∈ DN(E) there exists at most one Z ∈ DN(E) such that Y ⇒

E
Z.

This means that since n1X = n2X we have that m1X = m2X . We notice
that we don’t know if m1 = m2 because they ids can be either different or
equal, in every case they have the same type and then

⋃

n∈~n

{mX | (mX ,nX) ∈ ε↑t } =
⋃

n∈~n

{mX |mX⇒E
Y }

and since nodes with common types yields the set to the same types

=
⋃

Y ∈χ(~n)

{mX |mX⇒E
nX}

112 CHAPTER 7. PROOFS

Proof 3) This proof is by induction on the definition of the relation ε↑+t . For

each pair of nodes n,m ∈ Nodes(t), n ∈ ~n such that (n,m) ∈ ε↑+t there
are two main cases:

� (n,m) ∈ ε↑t and then by the point 1) of the lemma the thesis follows
immediately.

� there exists a node o such that (n,o) ∈ ε↑+t and (o,m) ∈ ε↑t . By

inductive hypothesis on the definition of ε↑+t we have that

{ oX | (n,o) ∈ ε↑+t } = { oX | nX⇒
+
E

oX}

moreover by point 1)

{mX | (o,m) ∈ ε↑t } = {mX | oX⇒E
mX}

and then follows

{mX | (n,m) ∈ ε↑+t } = {mX | nX⇒
+
E

mX}

Moreover we remember that this holds for every n ∈ ~n and that nodes
with common types yields the set to the same types, thus obtaining

⋃

n∈~n

{mX | (nX ,mX) ∈ ε↑+t } =
⋃

Y ∈χ(~n)

{mX | nX⇒
+
E

mX}

Proof 4) This proof is by induction on the definition of the relation ε↑+t .

For each pair of nodes n,m ∈ Nodes(t), n ∈ ~n such that (m,n) ∈ ε↑+t

there are two main cases:

� (m,n) ∈ ε↑t and then by the point 1) of the lemma the thesis follows
immediately.

� there exists a node o such that (m,o) ∈ ε↑+t and (o,n) ∈ ε↑t . By

inductive hypothesis on the definition of ε↑+t we have that

{ oX | (m,o) ∈ ε↑+t } = { oX |mX⇒
+
E

oX}

moreover by point 1)

{mX | (o,n) ∈ ε↑t } = {mX | oX⇒E
nX}

7.2. COMPLETENESS OF AXIS SELECTION 113

and then follows

{mX | (m,n) ∈ ε↑+t } = {mX |mX⇒
+
E

nX}

Moreover we remember that this holds for every n ∈ ~n and that nodes
with common types yields the set to the same types, thus obtaining

⋃

n∈~n

{mX | (mX ,nX) ∈ ε↑+t } =
⋃

Y ∈χ(~n)

{mX |mX⇒
+
E

nX}

Proof 5) This proof is by induction on the definition of the relation ε↑∗t .

For each pair of nodes n,m ∈ Nodes(t), n ∈ ~n such that (n,m) ∈ ε↑∗t there
are three main cases:

� (n,m) ∈ ε↑t and then by the point 1) of the lemma the thesis follows
immediately.

� (n,m) ∈ ε↑+t and then by the point 3) of the lemma the thesis follows
immediately.

� (n,n) ∈ ε↑∗t and then the thesis follows immediately since

⋃

n∈~n{ nX | (n,n) ∈ ε↑∗t } = χ(~n) =
⋃

n∈~n{ nX | n⇒
∗
E

n}

Proof 6) This proof is by induction on the definition of the relation ε↑∗t .

For each pair of nodes n,m ∈ Nodes(t), n ∈ ~n such that (m,n) ∈ ε↑∗t there
are three main cases:

� (m,n) ∈ ε↑t and then by the point 2) of the lemma the thesis follows
immediately.

� (m,n) ∈ ε↑+t and then by the point 4) of the lemma the thesis follows
immediately.

� (n,n) ∈ ε↑∗t and then the thesis follows immediately since

⋃

n∈~n{ nX | (n,n) ∈ ε↑∗t } = χ(~n) =
⋃

n∈~n{ nX | n⇒
∗
E

n}

Proof 7) By hypothesis (a) the DTD is *-–guarded, by hypothesis (b)
is parent–unambiguous and by hypothesi (c) is non recursive. This implies
that when two types are in relation Y >E Z then there for each tree t valid
wrt (W,E) there can exists two distinct nodes n,m such that (n,m) ∈ ε→t ,

114 CHAPTER 7. PROOFS

nX = Y and mX = Z. This is because ε→t is builded upon ε↑t and the
hypothesis (a-c) are needed to be complete as shown in 1) and 2). This
means that for a completeness point of view, given n ∈ ~n we satisfies the
equivalence if we take all the types Z ∈ DN(E) such that nX >E Z and
then

⋃

n∈~n

{mX | (nX ,mX) ∈ ε→t } =
⋃

n∈~n

{mX | nX >E mX}

and since nodes with common types yields the set to the same types

=
⋃

Y ∈χ(~n)

{mX | nX >E mX}

Proof 8) This proof is by induction on the definition of the relation ε→+
t .

For each pair of nodes n,m ∈ Nodes(t), n ∈ ~n such that (m,n) ∈ ε→+
t

there are two main cases:

� (m,n) ∈ ε→t and then by the point 7) of the lemma the thesis follows
immediately.

� there exists a node o such that (m,o) ∈ ε→+
t and (o,n) ∈ ε→t . By

inductive hypothesis on the definition of ε→+
t we have that

{ oX | (m,o) ∈ ε→+
t } = { oX |mX >+

E oX}

moreover by point 1)

{mX | (o,n) ∈ ε→t } = {mX | oX >E nX}

and then follows

{mX | (m,n) ∈ ε→+
t } = {mX |mX >E nX}

Moreover we remember that this holds for every n ∈ ~n and that nodes
with common types yields the set to the same types, thus obtaining

⋃

n∈~n

{mX | (mX ,nX) ∈ ε→+
t } =

⋃

Y ∈χ(~n)

{mX |mX >+
E nX}

Proof 9) We recall the definition of the relation

ε�
t = {(n,m)| ∃m,o . (m,n) ∈ ε↑∗t and

(m,o) ∈ ε→+
t and (m,o) ∈ ε↑∗t }

7.2. COMPLETENESS OF AXIS SELECTION 115

and then by the point 5), 6) and 8) of the lemma it follows that

⋃

n∈~n

{mX | (m,o) ∈ ε↑∗t and (o,m) ∈ ε→+
t and (m,o) ∈ ε↑∗t }

=
⋃

n∈~n

{mX |m⇒
∗
E

o and o>+
E m and m⇒∗

E
o}

and since nodes with common types yields the set to the same types

=
⋃

Y ∈χ(~n)

{mX |m⇒
∗
E

o and o>+
E m and m⇒∗

E
o}

2

Theorem(4.32) (Axis Selection Completeness)
Let A = (η, ρ,Γ) an evaluation wrt a DTD (W,E) (a) *–guarded, (b) non-
recursive, and (c) parent-unambiguous where cd 7→ ~n ∈ ρ, cs 7→ (τ, κ) ∈ Γ
and τ = χ(~n) then

χ(JAxisK〈η;~n〉) = AE(τ,Axis)

Proof by case analysis of Axis.
[Axis = self]
By definition of axis selection we have that

χ(JselfK〈η;~n〉) = χ(~n) = τ = AE(τ, self)

[Axis = child]

By definition of axis selection χ(JchildK〈η;~n〉) =
⋃

n∈~n {mX | (n,m) ∈ ε↑t }
by hypothesis (a-c) holds Lemma (7.1) Complete Selection and then we have
that

⋃

n∈~n {mX | (n,m) ∈ ε↑t } =
⋃

nX∈χ(~n) {mX | nX⇒E
mX}

= AE(τ, child)

[Axis = parent]

By definition of axis selection χ(JparentK〈η;~n〉) =
⋃

n∈~n {mX | (m,n) ∈ ε↑t }
by hypothesis (a-c) holds Lemma (7.1) Complete Selection and then we have
that

⋃

n∈~n {mX | (m,n) ∈ ε↑t } =
⋃

nX∈χ(~n) {mX |mX⇒E
nX}

= AE(τ, parent)

116 CHAPTER 7. PROOFS

[Axis = descendant]
By definition of axis selection χ(JdescendantK〈η;~n〉) =

⋃

n∈~n {mX | (n,m) ∈

ε↑+t } by hypothesis (a-c) holds Lemma (7.1) Complete Selection and then
we have that

⋃

n∈~n {mX | (n,m) ∈ ε↑+t } =
⋃

nX∈χ(~n) {mX | nX⇒
+
E

mX}

= AE(τ, descendant)

[Axis = ancestor]
By definition of axis selection χ(JdescendantK〈η;~n〉) =

⋃

n∈~n {mX | (m,n) ∈

ε↑+t } by hypothesis (a-c) holds Lemma (7.1) Complete Selection and then
we have that

⋃

n∈~n {mX | (m,n) ∈ ε↑+t } =
⋃

nX∈χ(~n) {mX |mX⇒
+
E

nX}

= AE(τ, ancestor)

[Axis = following–sibling]
By definition of axis selection χ(Jfollowing–siblingK〈η;~n〉) =

⋃

n∈~n {mX | (n,m) ∈

ε→+
t } by hypothesis (a-c) holds Lemma (7.1) Complete Selection and then

we have that

⋃

n∈~n {mX | (n,m) ∈ ε→+
t } =

⋃

nX∈χ(~n) {mX | nX >+
E mX}

= AE(τ, following–sibling)

[Axis = preceding–sibling]
By definition of axis selection χ(Jpreceding–siblingK〈η;~n〉) =

⋃

n∈~n {mX | (m,n) ∈

ε→+
t } by hypothesis (a-c) holds Lemma (7.1) Complete Selection and then

we have that

⋃

n∈~n {mX | (m,n) ∈ ε→+
t } =

⋃

nX∈χ(~n) {mX |mX >+
E nX}

= AE(τ, preceding–sibling)

[Axis = following]
By definition of axis selection χ(JfollowingK〈η;~n〉) =

⋃

n∈~n {mX | (n,m) ∈

7.2. COMPLETENESS OF AXIS SELECTION 117

ε�
t } by hypothesis (a-c) holds Lemma (7.1) Complete Selection and then we

have that

⋃

n∈~n {mX | (n,m) ∈ ε�
t } =

⋃

nX∈χ(~n) {mX | nX �mX}

= AE(τ, following)

[Axis = preceding]
By definition of axis selection χ(JprecedingK〈η;~n〉) =

⋃

n∈~n {mX | (m,n) ∈
ε�
t } by hypothesis (a-c) holds Lemma (7.1) Complete Selection and then we

have that

⋃

n∈~n {mX | (m,n) ∈ ε�
t } =

⋃

nX∈χ(~n) {mX |mX � nX}

= AE(τ, preceding)

Lemma(4.33) (Test Filtering Completeness) Let A = (η, ρ,Γ) an
evaluation wrt a DTD (W,E) where cd 7→ ~n ∈ ρ, cs 7→ (τ, κ) ∈ Γ and
τ ⊇ χ(~n) then

χ(JTestK〈η,cd〉) ⊆ TE(τ,Test)

Proof by case analysis of Test.
[Test = node]
By evaluation of test filtering, test filter selection and hypothesis we have
that

χ(JnodeK〈η;~n〉) = χ(~n) = τ = TE(τ, node)

118 CHAPTER 7. PROOFS

[Test = tag] By semantics of test filtering

JtagK〈η;~n〉 =
⋃

n∈~n

{nX | t@m = labelm[f], t ∈ η}

(t is valid) =
⋃

n∈~n

{nX | ∃ Y → label[r] ∈ E, and nX = Y }

=
⋃

Y ∈χ(~n)

{nX | ∃ Y → label[r] ∈ E}

=
⋃

Y ∈τ

{nX | ∃ Y → label[r] ∈ E}

= TE(τ, tag)

[Test = text] By semantics of test filtering

JtextK〈η;~n〉 =
⋃

n∈~n

{nX | t@m = sm, t ∈ η}

(t is valid) =
⋃

n∈~n

{nX | ∃ Y → string[ε] ∈ E, and nX = Y }

=
⋃

Y ∈χ(~n)

{nX | ∃ Y → string[ε] ∈ E}

=
⋃

Y ∈τ

{nX | ∃ Y → string[ε] ∈ E}

= TE(τ, text)

7.3. SOUNDNESS OF TYPING RULES 119

7.3 Soundness of Typing Rules

Lemma 7.2 (Containment) Let A = (η, ρ,Γ) be an evaluation wrt a
DTD (W,E). If Γ `E q : (τ, κ) then τ ⊆ κ.

Proof follows checking the typing rules.

Remark 7.3 (Parent Ambiguous and Recursive DTD) Following the
definition of DTD it can happens that two different productions use the same
type-name in their content model or introduce a recursive definition. This
generates some problems in defining the set of type-names of the parent of a
node. Because a type can be reachable from different names or by the name-
self. We suppose two distinct nodes that have the same type oX = mX but
are generated from different productions of the DTD. We suppose also that
only m belongs to the current dynamical context. Backward type axes selec-
tion selects types of ancestors of both the nodes because they have the same
type. This result is sound but not highly precise because types of ancestors
of oX are not needed since the node is not in the current environment.

Lemma 7.4 (Soundness of Axis Typing) Let A = (η, ρ,Γ) be an eval-
uation wrt a DTD (W,E) where cd 7→ ~m ∈ ρ, cs 7→ (τ ′, κ′) ∈ Γ and
χ(~m) ⊆ τ ′. If Γ `E Axis::node : (τ, κ) and ρ η Axis::node Z⇒ ~n
then

1. χ(~n) ⊆ τ

2. χ(JancestorK〈η;~n〉) ⊆ κ

We prove conditions (1) and (2) at the same time by induction on the deriva-
tion tree and by case distinction on the last applied rules.

Proof 1)
[T-Forwards, T-FolPreAxis] In this case we have τ = AE(τ ′,Axis) and
the following hypothesis:

cd 7→ ~m ∈ ρ (a)
~n = docOrderη(JAxisK〈η; ~m〉) (b)

and by inductive hypothesis

χ(~m) ⊆ τ ′ (c)

120 CHAPTER 7. PROOFS

Since serialize simply orders the elements of a set of nodes, we have that

χ(docOrderη(JAxisK〈η; ~m〉)) = χ(JAxisK〈η; ~m〉)

Finally, using Theorem (4.27) Axis Selection Soundness and hypothesis (b)
we have that

χ(~n) ⊆ τ

[T-PareAnce] In this case we have that τ = κ′ ∩ AE(τ ′,Axis) and the
following hypothesis:

cd 7→ ~m ∈ ρ (a)
~n = docOrderη(JAxisK〈η; ~m〉) (b)

and by inductive hypothesis

χ(~m) ⊆ τ ′ (c)

By Theorem (4.27) Axis Selection Soundness we have that

χ(docOrderη(~n)) ⊆ AE(τ ′,Axis)

Then by Remark (7.3) and by hypothesis that all the types of the ancestors
of nodes in ~m are both in κ′ and in τ .

χ(docOrderη(~n)) ⊆ κ′ ∩ AE(τ ′,Axis)

Proof 2)
For all the cases we have the following hypothesis:

cs 7→ (τ ′, κ′) ∈ Γ (a)
cd 7→ ~m ∈ ρ (b)
~n = docOrderη(JAxisK〈η; ~m〉) (c)

and by inductive hypothesis

χ(~m) ⊆ τ ′ (d)
χ(JancestorK〈η; ~m〉) ⊆ κ′ (e)

Then we have some cases depending on the last rule applied and the partic-
ular Axis.

7.3. SOUNDNESS OF TYPING RULES 121

[T-Forwards and Axis = self]
then following the definitions

~n = docOrderη(JselfK〈η; ~m〉) = docOrderη(~m)

and then ~n = ~m. By typing rule κ = AE(τ ′, self)∪κ′, but AE(τ ′, self) =
τ ′ and τ ′ is contained in κ by Lemma of Containment (7.2) then κ = κ′. By
hypothesis (e) we have that χ(JancestorK〈η; ~m〉) ⊆ κ′, and the thesis follows
immediately for ~n.

[T-Forwards and Axis = child]
In this case ~n = docOrderη(JchildK〈η; ~m〉) and by hypothesis:

JchildK〈η; ~m〉 =
⋃

m∈ ~m{n|(m,n) ∈ ε↑t } (f)

κ = AE(τ ′, child) ∪ κ′ (g)

and all the types of ancestors of nodes n are in κ′. This is, because for
each node n ∈ ~n we have by definition of child axis selection that its parent
is a node m ∈ ~m, and by hypothesis (d) the type of the parent node mX

belongs to τ ′, that in turn belongs to κ′ by Lemma of Containment (7.2).
Moreover by hypothesis (e) all the types of ancestors of nodes in ~m are in κ′

and, since there are no nodes between a node n and its parent m, as stated
in (f), then by transitivity all the types of ancestors of nodes in ~n are in
κ′ ∪AE(τ ′, self), then by (g)

χ(JancestorK〈η;~n〉) ⊆ κ

[T-ForwAxis and Axis = descendant]
In this case we have that ~n = docOrderη(JdescendantK〈η; ~m〉) and by hy-
pothesis

JdescendantK〈η; ~m〉 =
⋃

m∈ ~m{n|(m,n) ∈ ε↑+t } (f)

κ = AE(τ ′, descendant) ∪ κ′ (g)

and types of the ancestors of the nodes in ~n can belong both to AE(τ ′, descendant)
and to κ′. This is, because for each node n ∈ ~n by definition of descendant
axis selection (f) we know only that one of its ancestors, always exists, and it

122 CHAPTER 7. PROOFS

is a node m ∈ ~m. We also know that the type of that node mX and the types
of all its ancestors are in κ′ by Lemma of Containment (7.2) and hypothesis

(e) respectively. If (n,m) ∈ ε↑t then the proof follows as in the child case.

If (n,m) /∈ ε↑t then there exists some nodes m such that (m,m) ∈ ε↑+t and

(m,n) ∈ ε↑+t . Each of this nodes m it is a descendant of m and then its
type n′X is contained in AE(τ ′, descendant) by Theorem of Axis Selection
Soundness (4.27) and hypothesis (d). Then by (g)

χ(JancestorK〈η;~n〉) ⊆ κ

[T-PareAnceAxis and Axis = parent]
In this case we have that ~n = docOrderη(JparentK〈η; ~m〉) and by hypothesis

κ = κ′ ∩ AE(τ ′, ancestor) (f)

JparentK〈η;~n〉 =
⋃

n∈~n

{p|(p,n) ∈ ε↑t } (g)

and we rewrite the last term

AE(τ ′, ancestor) = AE(AE(τ ′, parent), ancestor) ∪ AE(τ ′, parent)

By Theorem of Axis Selection Soundness (4.27) and hypothesis (d) we have
that

χ(JancestorK〈η;~n〉) ⊆ AE(AE(τ ′, parent), ancestor)

Then by Remark (7.3), by Lemma of Containment (7.2) and hypothesis (e)
we have that all the types of the ancestors of nodes in ~m are both in κ′ and
in τ . Moreover by hypothesis (g) and definition of ancestor axis selection

JancestorK〈η;~n〉 =
⋃

n∈~n

{p|(p,n) ∈ ε↑+t }

⊆
⋃

m∈ ~m

{p|(p,m) ∈ ε↑+t }

= JancestorK〈η; ~m〉

because by definition of parent backward axes selection for each n ∈ ~n always
exists m ∈ ~m such that (m,n) ∈ ε↑t , and by hypothesis (e) we have that
χ(JancestorK〈η; ~m〉) ⊆ κ′. This means that all the types of the ancestors of a
node in ~n are yet in κ′. We have found two supersets of χ(JancestorK〈η;~n〉)
then

χ(JancestorK〈η;~n〉) ⊆ κ

7.3. SOUNDNESS OF TYPING RULES 123

[T-PareAnceAxis and Axis = ancestor]
In this case we have that ~n = docOrderη(JancestorK〈η; ~m〉) and

κ = κ′ ∩ AE(τ ′, ancestor) (f)

JancestorK〈η;~n〉 =
⋃

n∈~n

{p|(p,n) ∈ ε↑+t } (g)

and we rewrite the last term

AE(τ ′, ancestor) = AE(AE(τ ′, ancestor), ancestor) ∪ AE(τ ′, ancestor)

and by Theorem of Axis Selection Soundness (4.27) and hypothesis (d) we
have that

χ(JancestorK〈η;~n〉) ⊆ AE(AE(τ ′, ancestor), ancestor)

Then by Remark (7.3), by Lemma of Containment (7.2) and hypothesis (e)
we have that all the types of the ancestors of nodes in ~m are both in κ′ and
in τ . By definition

JancestorK〈η;~n〉 =
⋃

n∈~n

{p|(p,n) ∈ ε↑+t }

⊆
⋃

m∈ ~m

{p|(p,m) ∈ ε↑+t }

= JancestorK〈η; ~m〉

because by definition of backward axes selection for each n ∈ ~n always exists
m ∈ ~m such that (m,n) ∈ ε↑+t , and by hypothesis (e) we have that

χ(JancestorK〈η; ~m〉) ⊆ κ′

This means that all the types of the ancestors of a node in ~n are yet in κ′.
We have found two supersets of χ(JancestorK〈η;~n〉) then

χ(JancestorK〈η;~n〉) ⊆ κ

[T-ForwAxis and Axis = following–sibling] In this case we have that
~n = docOrderη(JAxisK〈η; ~m〉) and by hypothesis

κ = κ′ ∪ AE(τ ′,Axis) (f)
Jfollowing–siblingK〈η; ~m〉 =

⋃

m∈ ~m{n | (m,n) ∈ ε→+
t } (g)

124 CHAPTER 7. PROOFS

By hypothesis (e) we have that all the types of the nodes ancestors of nodes
in the current dynamic context are in κ′. Moreover by (g) and by the relation

ε→+
t we have that ε↑+t (n) = ε↑+t (m) and this implies that

JancestorK〈η;~n〉 = JancestorK〈η; ~m〉

and then by (f)

χ(JancestorK〈η;~n〉) = κ

[T-ForwAxis and Axis = preceding–sibling] In this case we have that
~n = docOrderη(JAxisK〈η; ~m〉) and by hypothesis

κ = κ′ ∪ AE(τ ′,Axis) (f)
Jpreceding–siblingK〈η; ~m〉 =

⋃

m∈ ~m{n | (n,m) ∈ ε→+
t } (g)

By hypothesis (e) we have that all the types of the nodes ancestors of nodes
in the current dynamic context are in κ′. Moreover by (g) and by the relation

ε→+
t we have that ε↑+t (n) = ε↑+t (m) and this implies that

JancestorK〈η;~n〉 = JancestorK〈η; ~m〉

and then by (f)

χ(JancestorK〈η;~n〉) = κ

[T-FolPreAxis and Axis = {following, preceding}] In this case we have
that ~n = docOrderη(JfollowingK〈η; ~m〉) and

κ = AE(τ,Axis) ∪ (AE(AE(τ,Axis), ancestor) ∩ κ) (f)

We have to show that

χ(JancestorK ⊆ (AE(AE(τ,Axis), ancestor) ∩ κ))

We have that all the ancestors of types of nodes selected by following axis
selection, except the root node of the DTD are in τ = AE(τ,Axis). The
ancestor axis selection wrt to τ selects all the type of the ancestor-nodes,
this means that it takes also the type of the root node and other not-useful

7.3. SOUNDNESS OF TYPING RULES 125

types as stated in Remarks (7.3), but the intersection τ ∩ κ′ gives only the
type of the root node of the DTD. In this way we have all the type ancestors
of the selected nodes and then

χ(JancestorK〈η;~n〉) = κ

Lemma 7.5 (Soundness of test filtering typing) Let an evaluation wrt
a DTD (W,E) A = (η, ρ,Γ) if Γ `E self::Test : (τ, κ) and ρ η self::Test Z⇒
~n then

1. χ(~n) ⊆ τ

2. χ(JancestorK〈η;~n〉) ⊆ κ

Proof. 1)

[T-Test and Test ∈ {node, tag, text}] In this case we have that τ =
TE(τ ′,Test) and by hypothesis

Γ(cs) = (τ ′, κ′) (a)
τ = TE(τ ′,Test) (b)
~n = docOrderη(JTestK〈η;~n〉) (c)

and since serialize simply orders elements χ(docOrderη(JTestK〈η;~n〉)) = χ(JTestK〈η;~n〉).
Then by Theorem of Test Filtering Soundness (4.28) follows

χ(docOrderη(JTestK〈η;~n〉)) ⊆ τ

Proof. 2) By hypothesis Γ(cs) = (τ ′, κ′) and ρ(cd) = ~m and we have that

χ(~m) ⊆ τ ′ (a)
χ(JancestorK〈η; ~m〉) ⊆ κ′ (b)

In this case we have that ~n = docOrderη(JTestK〈η; ~m〉) and

κ = (κ′ ∩AE(AE(τ ′,Test), ancestor)) ∪ TE(τ,Test) (c)

By Theorem of Axis Selection Soundness (4.27) and Theorem of Test Selec-
tion Soundness 4.33 and hypothesis (a) we have that

χ(JancestorK〈η;~n〉) ⊆ AE(TE(τ ′,Test), ancestor)

126 CHAPTER 7. PROOFS

Then by Remark (7.3), by Lemma of Containment (7.2) and hypothesis (b)
we have that all the types of the ancestors of nodes in ~m are in κ′ then

χ(JancestorK〈η;~n〉) ⊆ κ′ ∩AE(AE(τ ′,Test), ancestor))

and then by hypothesis (c)

χ(JancestorK〈η;~n〉) ⊆ κ 2

Lemma 7.6 (Soundness of condition typing) Let an evaluation wrt a
DTD (W,E) A = (η, ρ,Γ) if Γ `E Cond : (τ, κ) and ρ η Cond Z⇒ ~n
then

1. χ(~n) ⊆ τ

2. χ(JancestorK〈η;~n〉) ⊆ κ

We prove 1) and 2) on the derivation tree and case distinction on the last
applied rule.

[T-CondTrue] We have that ρ(cd) = ~m and Γ(cs) = (τ ′, κ′) and by hy-
pothesis the environments are consistent. By semantics rule S-CondTrue
and T-CondTrue follows that χ(~n) ⊆ Στ .

[T-CondFalse] By definition χ(()) ⊆ ∅.

[T-CondDisj] By inductive hypothesis on rules S-CondDisj and T-
CondDisj χ(~n1) ⊆ Στ1 and χ(~n2) ⊆ Στ2 , then χ(~n1, ~n2) ⊆ Στ1 ∪ Στ2

[T-CondQry] By inductive hypothesis on rules S-CondQry and T-
CondQry.

[T-CondIsEmptyVar] By consistency of Γ and ρ and inductive hypothesis
on rules S-CondIsEmpty and T-CondIsEmpty.

Proof 2)

[T-CondTrue] By hypothesis ρ(cd) = ~m and Γ(cs) = (τ ′, κ′) and the
environments are consistent. By semantics rule S-CondTrue and T-
CondTrue follows that χ(JancestorK〈η;~n〉) ⊆ κ.

[T-CondFalse] By definition χ(JancestorK〈η; () 〉) ⊆ ∅.

7.3. SOUNDNESS OF TYPING RULES 127

[T-CondDisj] By inductive hypothesis on rules S-CondDisj and T-
CondDisj we have that

χ(JancestorK〈η; ~n1〉) ⊆ Στ1 and χ(JancestorK〈η; ~n2〉) ⊆ Στ2

then
χ(JancestorK〈η; ~n1,~n2〉 ⊆ Στ1 ∪ Στ2)

[T-CondQry] By inductive hypothesis on rules S-CondQry and T-
CondQry.

[T-CondIsEmptyVar] By consistency of Γ and ρ and inductive hypothesis
on rules S-CondIsEmpty and T-CondIsEmpty.

Lemma 7.7 (Soundness of path typing) Let an evaluation wrt a DTD
(W,E) A = (η, ρ,Γ) if Γ `E Path : (τ, κ) and ρ η Path Z⇒ ~n then

1. χ(~n) ⊆ τ

2. χ(JancestorK〈η;~n〉) ⊆ κ

We prove both the condition by induction on the derivation tree and
case distinction on last applied rule.

[T-AxisTest] In this case we have that Γ `E Axis::Test : (τ, κ) and
by inductive hypothesis we have that

Γ `E Axis::node/self::Test : (τ, κ) (a)
ρ η Axis::node/self::Test Z⇒ ~n (b)
χ(~n) ⊆ τ (c)
χ(JancestorK〈η;~n〉) ⊆ κ (d)

Since Axis::node/self::Test is equivalent to Axis::Test we have that ρ η

Axis::Test Z⇒ ~n′ and ~n = ~n′. By all hypothesis (a-d) both statements (1)
and (2) holds.

[T-UnfoldedPath]
In this case we have that when cs 7→ ({Y1, . . . , Yn}, κ

′) ∈ Γ then

Γ `E Path : (τ, κ)

128 CHAPTER 7. PROOFS

and by inductive hypothesis we have that

ρ(cd) = ~m (a)
Γ(cs) = (τ ′, κ′) (b)
for all i = 1..n cs 7→ ({Y1}, κ

′) ∈ Γ and Γ `E Path : (τi, κi) (c)
for all i = 1..n cd 7→mi ∈ ρ and ρ η Path Z⇒ ~ni (d)
for all i = 1..n χ(~ni) ⊆ τi (e)
for all i = 1..n χ(JancestorK〈η; ~ni〉) ⊆ κi (f)

moreover by the typing rule T-UnfoldedPath

τ =
⋃

i=1..n, τi 6=∅
τi (g)

κ =
⋃

i=1..n, τi 6=∅
κi (h)

and when cd 7→m ∈ ρ the evaluation of the query is

ρ η Path Z⇒ ~n

where ~n = (~n1, . . . , ~nn) and then by hypothesis (a-e,g) follows immediately

χ(~n) ⊆ τ

and by hypothesis (a-d,f,h) and the fact that if τi = ∅ then there are no
ancestors also

JancestorK〈η;~n〉 ⊆ κ

[T-Cond]
In this case we have that when cs 7→ ({Y1, . . . , Yn}, κ

′) ∈ Γ then

Γ `E Cond : (τ, κ)

and by inductive hypothesis we have that

ρ(cd) = ~m (a)
Γ(cs) = (τ ′, κ′) (b)
for all i = 1..n cs 7→ ({Yi}, κ

′) ∈ Γ and Γ `E Cond : (τi, κi) (c)
for all i = 1..n cd 7→mi ∈ ρ and ρ η Cond Z⇒ ~ni (d)
for all i = 1..n χ(~ni) ⊆ τi (e)
for all i = 1..n χ(JancestorK〈η; ~ni〉) ⊆ κi (f)

7.3. SOUNDNESS OF TYPING RULES 129

moreover by the typing rule T-Cond

τ =
⋃

i=1..n, τi 6=∅
τi (g)

κ =
⋃

i=1..n, τi 6=∅
κi (h)

and when cd 7→m ∈ ρ the evaluation of the query is

ρ η Path Z⇒ ~n

where ~n = (~n1, . . . , ~nn) and then by hypothesis (a-e,g) follows immediately

χ(~n) ⊆ τ

and by hypothesis (a-d,f,h) and the fact that if τi = ∅ then there are no
ancestors also

JancestorK〈η;~n〉 ⊆ κ

[T-StepCond] In this case we have that Γ `E Step[Cond] : (τ, κ) and by
inductive hypothesis we have that

Γ `E Step/self::node[Cond] : (τ, κ) (a)
ρ η Step/self::node[Cond] Z⇒ ~n (b)
χ(~n) ⊆ τ (c)
χ(JancestorK〈η;~n〉) ⊆ κ (d)

Since Step/self::node[Cond] is equivalent to Step[Cond] we have that ρ η

Step[Cond] Z⇒ ~n′ and ~n = ~n′. By all hypothesis (a-d) both statements (1)
and (2) holds.

[T-StepPath]
By inductive hypothesis on T-StepPath and S-StepPath we have that

Γ `E Step : (τ ′, κ′) (a)
ρ η Step Z⇒ ~m (b)
χ(~m) ⊆ τ ′ (c)
χ(JancestorK〈η; ~m〉) ⊆ κ′ (d)

Γ[cs 7→ Σ′] `E Path : (τ, κ) (e)
ρ[cd 7→ ~m] η Path Z⇒ ~n (f)
χ(~n) ⊆ Στ (g)
χ(JancestorK〈η;~n〉 ⊆ κ′ (h)

130 CHAPTER 7. PROOFS

and since Γ `E Step/Path : (τ, κ) and ρ η Step/Path Z⇒ ~n by
hypothesis (a-h) both condition (1) and (2) holds.

[T-StepCondPath]
By inductive hypothesis on T-StepCondPath and S-StepCondPath
we have that

Γ `E Step[Cond] : (τ ′, κ′) (a)
ρ η Step[Cond] Z⇒ ~m (b)
χ(~m) ⊆ τ ′ (c)
χ(JancestorK〈η; ~m〉) ⊆ κ′ (d)

Γ[cs 7→ Σ′] `E Path : (τ, κ) (e)
ρ[cd 7→ ~m] η Path Z⇒ ~n (f)
χ(~n) ⊆ Στ (g)
χ(JancestorK〈η;~n〉 ⊆ κ′ (h)

and since Γ `E Step[Cond]/Path : (τ, κ) and ρ η Step[Cond]/Path Z⇒ ~n
by hypothesis (a-h) both condition (1) and (2) holds.

Theorem(4.29) (Soundness of Type System) Let an evaluation wrt a
DTD (W,E) A = (η, ρ,Γ) if Γ `E q : (τ, κ) and ρ η q Z⇒ ~n then

1. χ(~n) ⊆ τ

2. χ(JancestorK〈η;~n〉) ⊆ κ

Proof 1) by induction on the derivation tree and case distinction on the
last applied rule.

[T-Empty]
By rules T-Empty and S-Empty we have that

Γ `E () : (∅, ∅) (a)
ρ η () Z⇒ () (b)

and since χ(()) ⊆ ∅ follows immediately both conditions (1) and (2).

[T-Concat]
In this case we have that the enriched type is computed as union of the two
enriched types of the sub-expressions Σ = Σ1∪ Σ2. By inductive hypothesis

7.3. SOUNDNESS OF TYPING RULES 131

we have that

Γ `E q1 : Σ1 and ρ η q1 Z⇒ ~n1 (a)
Γ `E q2 : Σ2 and ρ η q2 Z⇒ ~n2 (b)
χ(~n1) ⊆ Σ1

τ (c)
χ(~n2) ⊆ Σ2

τ (d)
χ(JancestorK〈η, ~n1〉) ⊆ Σ1

κ (e)

χ(JancestorK〈η, ~n1〉) ⊆ Σ2
κ (f)

then by hypothesis (a-f), rule T-Concat and S-Concat follows immedi-
ately both conditions (1) and (2).

[T-EltConstruction]
By rule (S-EltConstr) ρ η <a>q Z⇒ na where naX = ⊥ because
element construction assigned it null type, and it has no ancestors since it’s
done in the rightmost part of the query both conditions (1) and (2) follows
immediately.

[T-Var]
By hypothesis on the evaluation A the variable x is bounded to an enriched
type that satisfies both conditions (1) and (2).

[T-VarPath]
By inductive hypothesis on T-VarPath and S-VarPath we have that

Γ `E x : (τ ′, κ′) (a)
ρ η x Z⇒ ~m (b)
χ(~m) ⊆ τ ′ (c)
χ(JancestorK〈η; ~m〉) ⊆ κ′ (d)

Γ[cs 7→ Σ′] `E Path : (τ, κ) (e)
ρ[cd 7→ ~m] η Path Z⇒ ~n (f)
χ(~n) ⊆ Στ (g)
χ(JancestorK〈η;~n〉 ⊆ κ′ (h)

and since Γ `E x/Path : (τ, κ) and ρ η x/Path Z⇒ ~n by hypothesis
(a-h) both condition (1) and (2) holds.

[T-For]

132 CHAPTER 7. PROOFS

By inductive hypotheses on rules T-For and S-For we have that

Γ[cs 7→ Σ] `E q1 : ({Y1, . . . , Yn}, κ
′) (a)

ρ η q1 Z⇒ ~m (b)
χ(~m) ⊆ {Y1, . . . , Yn} (c)
χ(JancestorK〈η;~n〉 ⊆ κ′ (d)

for each Yj Γ[cs 7→ ({Yj}, κ
′)] `E q2 : Σj (e)

for each mj ∈ ~m ρ[cd 7→mj] η q2 Z⇒ ~nj (f)

for each j = 1..| ~m| χ(~nj) ⊆ Σj
τ (g)

for each j = 1..| ~m| χ(JancestorK〈η, ~nj〉) (h)

then by hypothesis (a-h) follows that both conditions (1) and (2) holds.

[T-Let]
By inductive hypotheses on rules T-LetQry and S-LEtQry we have that

Γ `E q1 : (τ ′, κ′) (a)
ρ η q1 Z⇒ ~m (b)
χ(~m) ⊆ τ ′ (c)
χ(JancestorK〈η;~n〉 ⊆ κ′ (d)

Γ[x 7→ τ ′] `E q2 : (τ, κ) (e)
ρ[x 7→m] η q2 Z⇒ ~n (f)
χ(~n) ⊆ τ (g)
χ(JancestorK〈η, ~n〉) ⊆ κ (h)

then by hypothesis (a-h) follows that both conditions (1) and (2) holds.

[T-If]
By inductive hypotheses on rules T-If and S-If we have that

for all i = 1..n cs 7→ ({Yi}, κ
′) ∈ Γ and Γ `E Cond : (τi, κi) (c)

for all i = 1..n cd 7→mi ∈ ρ and ρ η Cond Z⇒ ~ni (d)
for all i = 1..n χ(~ni) ⊆ τi (e)
for all i = 1..n χ(JancestorK〈η; ~ni〉) ⊆ κi (f)

moreover by the typing rule T-If

τ =
⋃

i=1..n, τi 6=∅
τi (g)

and
if τ ′ 6= ∅ then Γ `E q : Σ else Σ = (∅, ∅) (h)

where Σ is the result of the typing and satisfies both conditions (1) and (2).

7.4. COMPLETENESS OF TYPING RULES 133

7.4 Completeness of Typing Rules

Lemma(4.34) (Completeness of Axis Typing) LetA = (η, ρ,Γ) an eval-
uation wrt a DTD (W,E) (a) *–guarded, (b) non-recursive, and (c) parent-
unambiguous, if Γ `E q : (τ, κ) and ρ η q Z⇒ ~n then

1. χ(~n) = τ

2. χ(Jance–or–selfK〈η;~n〉) = κ

We prove conditions (1) and (2) by induction on the derivation tree and by
case distinction on the last applied rules.

Proof 1)
[T-Forwards, T-FolPreAxis] In this case we have τ = AE(τ ′,Axis) and
the following hypothesis:

cd 7→ ~m ∈ ρ (a)
~n = docOrderη(JAxisK〈η; ~m〉) (b)

and by inductive hypothesis

χ(~m) = τ ′ (c)

Since serialize simply orders the elements of a set of nodes, we have that

χ(docOrderη(JAxisK〈η; ~m〉)) = χ(JAxisK〈η; ~m〉)

Finally, using Theorem (4.32) Axis Selection Completeness and hypothesis
(b,c) we have that

χ(~n) = τ

[T-PareAnce] In this case we have that τ = κ′ ∩ AE(τ ′,Axis) and the
following hypothesis:

cd 7→ ~m ∈ ρ (a)
~n = docOrderη(JAxisK〈η; ~m〉) (b)

and by inductive hypothesis

χ(~m) = τ ′ (c)
χ(AE(~m, ance–or–self)) = κ′ (c)

134 CHAPTER 7. PROOFS

By Theorem (4.32) Axis Selection Completeness we have that

χ(docOrderη(~n)) = AE(τ ′,Axis)

Then by Remark (7.3) and by hypothesis that all the types of the ancestors
of nodes in ~m are both in κ′ and in τ .

χ(docOrderη(~n)) = κ′ ∩ AE(τ ′,Axis)

Proof 2)
For all the cases we have the following hypothesis:

cs 7→ (τ ′, κ′) ∈ Γ (a)
cd 7→ ~m ∈ ρ (b)
~n = docOrderη(JAxisK〈η; ~m〉) (c)

and by inductive hypothesis

χ(~m) = τ ′ (d)
χ(Jance–or–selfK〈η; ~m〉) = κ′ (e)

Then we have some cases depending on the last rule applied and the partic-
ular Axis.

[T-Forwards and Axis = self]
then following the definitions

~n = docOrderη(JselfK〈η; ~m〉) = docOrderη(~m)

and then ~n = ~m. By typing rule κ = AE(τ ′, self)∪κ′, but AE(τ ′, self) =
τ ′ and τ ′ is contained in κ by Lemma of Containment (7.2) then κ = κ′. By
hypothesis (e) we have that χ(Jance–or–selfK〈η; ~m〉) = κ′, and the thesis
follows immediately for ~n.

[T-Forwards and Axis = child]
In this case ~n = docOrderη(JchildK〈η; ~m〉) and by hypothesis:

JchildK〈η; ~m〉 =
⋃

m∈ ~m{n|(m,n) ∈ ε↑t } (f)

κ = AE(τ ′, child) ∪ κ′ (g)

7.4. COMPLETENESS OF TYPING RULES 135

and all the types of ancestors of nodes n are in κ′. This is, because for
each node n ∈ ~n we have by definition of child axis selection that its parent
is a node m ∈ ~m, and by hypothesis (d) the type of the parent node mX

belongs to τ ′, that in turn belongs to κ′ by Lemma of Containment (7.2).
Moreover by hypothesis (e) all the types of ancestors of nodes in ~m are in κ′

and, since there are no nodes between a node n and its parent m, as stated
in (f), then by transitivity all the types of ancestor-or-self nodes in ~n are in
κ′ ∪AE(τ ′, child), then by (g)

χ(Jance–or–selfK〈η;~n〉) = κ

[T-ForwAxis and Axis = descendant]
In this case we have that ~n = docOrderη(JdescendantK〈η; ~m〉) and by hy-
pothesis

JdescendantK〈η; ~m〉 =
⋃

m∈ ~m{n|(m,n) ∈ ε↑+t } (f)

κ = AE(τ ′, descendant) ∪ κ′ (g)

and types of the ancestors of the nodes in ~n can belong both to AE(τ ′, descendant)
and to κ′. This is, because for each node n ∈ ~n by definition of descendant
axis selection (f) we know only that one of its ancestors, always exists, and it
is a node m ∈ ~m. We also know that the type of that node mX and the types
of all its ancestors are in κ′ by Lemma of Containment (7.2) and hypothesis

(e) respectively. If (n,m) ∈ ε↑t then the proof follows as in the child case.

If (n,m) /∈ ε↑t then there exists some nodes m such that (m,m) ∈ ε↑+t and

(m,n) ∈ ε↑+t . Each of this nodes m it is a descendant of m and then its
type n′X is contained in AE(τ ′, descendant) by Theorem of Axis Selection
Completeness (4.32) and hypothesis (d). Then by (g)

χ(Jance–or–selfK〈η;~n〉) = κ

[T-PareAnceAxis and Axis = parent]
In this case we have that ~n = docOrderη(JparentK〈η; ~m〉) and by hypothesis

κ = κ′ ∩ AE(τ ′, ancestor) (f)

JparentK〈η;~n〉 =
⋃

n∈~n

{p|(p,n) ∈ ε↑t } (g)

136 CHAPTER 7. PROOFS

and we rewrite the last term

AE(τ ′, ancestor) = AE(AE(τ ′, parent), ancestor) ∪ AE(τ ′, parent)

By Theorem of Axis Selection Completeness (4.32) and hypothesis (d) we
have that

χ(JancestorK〈η;~n〉) = AE(AE(τ ′, parent), ancestor)

Then by Remark (7.3), by Lemma of Containment (7.2) and hypothesis (e)
we have that all the types of the ancestors of nodes in ~m are both in κ′ and
in τ . Moreover by hypothesis (g) and definition of ancestor axis selection

JancestorK〈η;~n〉 =
⋃

n∈~n

{p|(p,n) ∈ ε↑+t }

=
⋃

m∈ ~m

{p|(p,m) ∈ ε↑+t }

= JancestorK〈η; ~m〉

because by definition of parent backward axes selection for each n ∈ ~n
always exists m ∈ ~m such that (m,n) ∈ ε↑t , and by hypothesis (e) we
have that χ(JancestorK〈η; ~m〉) = κ′. This means that all the types of the
ancestors of a node in ~n are yet in κ′. We have found two sets equal to
χ(Jance–or–selfK〈η;~n〉) then

χ(JancestorK〈η;~n〉) = κ

[T-PareAnceAxis and Axis = ancestor]
In this case we have that ~n = docOrderη(JancestorK〈η; ~m〉) and

κ = κ′ ∩ AE(τ ′, ancestor) (f)

JancestorK〈η;~n〉 =
⋃

n∈~n

{p|(p,n) ∈ ε↑+t } (g)

and we rewrite the last term

AE(τ ′, ancestor) = AE(AE(τ ′, ancestor), ancestor) ∪ AE(τ ′, ancestor)

and by Theorem of Axis Selection Soundness (4.27) and hypothesis (d) we
have that

χ(JancestorK〈η;~n〉) = AE(AE(τ ′, ancestor), ancestor)

7.4. COMPLETENESS OF TYPING RULES 137

Then by Remark (7.3), by Lemma of Containment (7.2) and hypothesis (e)
we have that all the types of the ancestors of nodes in ~m are both in κ′ and
in τ . By definition

JancestorK〈η;~n〉 =
⋃

n∈~n

{p|(p,n) ∈ ε↑+t }

=
⋃

m∈ ~m

{p|(p,m) ∈ ε↑+t }

= JancestorK〈η; ~m〉

because by definition of backward axes selection for each n ∈ ~n always exists
m ∈ ~m such that (m,n) ∈ ε↑+t , and by hypothesis (e) we have that

χ(JancestorK〈η; ~m〉) = κ′

This means that all the types of the ancestors of a node in ~n are yet in κ′.
We have two sets equal χ(Jance–or–selfK〈η;~n〉) then

χ(Jance–or–selfK〈η;~n〉) = κ

[T-ForwAxis and Axis = following–sibling] In this case we have that
~n = docOrderη(JAxisK〈η; ~m〉) and by hypothesis

κ = κ′ ∪ AE(τ ′,Axis) (f)
Jfollowing–siblingK〈η; ~m〉 =

⋃

m∈ ~m{n | (m,n) ∈ ε→+
t } (g)

By hypothesis (e) we have that all the types of the nodes ancestors of nodes
in the current dynamic context are in κ′. Moreover by (g) and by the relation

ε→+
t we have that ε↑+t (n) = ε↑+t (m) and this implies that

JancestorK〈η;~n〉 = JancestorK〈η; ~m〉

and then by (f)

χ(JancestorK〈η;~n〉) = κ

[T-ForwAxis and Axis = preceding–sibling] In this case we have that
~n = docOrderη(JAxisK〈η; ~m〉) and by hypothesis

κ = κ′ ∪ AE(τ ′,Axis) (f)
Jpreceding–siblingK〈η; ~m〉 =

⋃

m∈ ~m{n | (n,m) ∈ ε→+
t } (g)

138 CHAPTER 7. PROOFS

By hypothesis (e) we have that all the types of the nodes ancestors of nodes
in the current dynamic context are in κ′. Moreover by (g) and by the relation

ε→+
t we have that ε↑+t (n) = ε↑+t (m) and this implies that

Jance–or–selfK〈η;~n〉 = JancestorK〈η; ~m〉

and then by (f)

χ(Jance–or–selfK〈η;~n〉) = κ

[T-FolPreAxis and Axis = {following, preceding}] In this case we have
that ~n = docOrderη(JfollowingK〈η; ~m〉) and

κ = AE(τ,Axis) ∪ (AE(AE(τ,Axis), ancestor) ∩ κ) (f)

We have to show that

χ(Jance–or–selfK = (AE(AE(τ,Axis), ancestor) ∩ κ))

We have that all the ancestors of types of nodes selected by following axis
selection, except the root node of the DTD are in τ = AE(τ,Axis). The
ancestor axis selection wrt to τ selects all the type of the ancestor-nodes,
this means that it takes also the type of the root node and other not-useful
types as stated in Remarks (7.3), but the intersection τ ∩ κ′ gives only the
type of the root node of the DTD. In this way we have all the type ancestors
of the selected nodes and then

χ(JancestorK〈η;~n〉) = κ

Lemma 7.8 (Completeness of test filtering typing) Let an evaluation
wrt a DTD (W,E) A = (η, ρ,Γ) if Γ `E self::Test : (τ, κ) and ρ η

self::Test Z⇒ ~n then

1. χ(~n) = τ

2. χ(Jance–or–selfK〈η;~n〉) = κ

Proof. 1)

7.4. COMPLETENESS OF TYPING RULES 139

[T-Test and Test ∈ {node, tag, text}] In this case we have that τ =
TE(τ ′,Test) and by hypothesis

Γ(cs) = (τ ′, κ′) (a)
τ = TE(τ ′,Test) (b)
~n = docOrderη(JTestK〈η;~n〉) (c)

and since serialize simply orders elements χ(docOrderη(JTestK〈η;~n〉)) = χ(JTestK〈η;~n〉).
Then by Theorem of Test Filtering Soundness (4.28) follows

χ(docOrderη(JTestK〈η;~n〉)) = τ

Proof. 2) By hypothesis Γ(cs) = (τ ′, κ′) and ρ(cd) = ~m and we have that

χ(~m) = τ ′ (a)
χ(Jance–or–selfK〈η; ~m〉) = κ′ (b)

In this case we have that ~n = docOrderη(JTestK〈η; ~m〉) and

κ = (κ′ ∩AE(AE(τ ′,Test), ancestor)) ∪ TE(τ,Test) (c)

By Theorem of Axis Selection Completeness (4.32) and Theorem of Test
Filtering Completeness (4.33) and hypothesis (a) we have that

χ(JancestorK〈η;~n〉) = AE(TE(τ ′,Test), ancestor)

Then by Remark (7.3), by Lemma of Containment (7.2) and hypothesis (b)
we have that all the types of the ancestors of nodes in ~m are in κ′ then

χ(JancestorK〈η;~n〉) = κ′ ∩AE(AE(τ ′,Test), ancestor))

and then by hypothesis (c)

χ(JancestorK〈η;~n〉) = κ 2

Lemma 7.9 (Completeness of condition typing) Let an evaluation wrt
a DTD (W,E) A = (η, ρ,Γ) if Γ `E Cond : (τ, κ) and ρ η Cond Z⇒ ~n
then

1. χ(~n) = τ

2. χ(Jance–or–selfK〈η;~n〉) = κ

140 CHAPTER 7. PROOFS

We prove proposition (1) and (2) by induction on the derivation tree and
case distinction on the last applied rule.

Proof 1)
[Cond = true]
We have that ρ(cd) = ~m and Γ(cs) = (τ ′, κ′) and by hypothesis the environ-
ments are consistent. By semantics rule S-CondTrue and T-CondTrue
follows that χ(~n) = Στ .

[T-CondTrue] By definition χ(()) = ∅.

[T-CondDisj]
By inductive hypothesis on rules S-CondDisj and T-CondDisj χ(~n1) = Στ1

and χ(~n2) = Στ2 , then χ(~n1, ~n2) = Στ1 ∪ Στ2

[T-CondQry]
By inductive hypothesis on rules S-CondQry and T-CondQry.

[T-CondIsEmptyVar]
By consistency of Γ and ρ and inductive hypothesis on rules S-CondIsEmpty
and T-CondIsEmpty.
Proof 2)

[T-CondTrue] By hypothesis ρ(cd) = ~m and Γ(cs) = (τ ′, κ′) and the
environments are consistent. By semantics rule S-CondTrue and T-
CondTrue follows that χ(JancestorK〈η;~n〉) = κ.

[T-CondFalse] By definition χ(JancestorK〈η; () 〉) = ∅.

[T-CondDisj]
By inductive hypothesis on rules S-CondDisj and T-CondDisj we have
that

χ(JancestorK〈η; ~n1〉) = Στ1 and χ(JancestorK〈η; ~n2〉 = Στ2)

then

χ(JancestorK〈η; ~n1,~n2〉 = Στ1 ∪ Στ2)

[T-CondQry] By inductive hypothesis on rules S-CondQry and T-

7.4. COMPLETENESS OF TYPING RULES 141

CondQry.

[T-CondIsEmptyVar]
By consistency of Γ and ρ and inductive hypothesis on rules S-CondIsEmpty
and T-CondIsEmpty.

Lemma 7.10 (Completeness of path typing) Let an evaluation wrt a
DTD (W,E) A = (η, ρ,Γ) (a) *–guarded, (b) non-recursive, and (c) parent-
unambiguous, if Γ `E Path : (τ, κ) and ρ η Path Z⇒ ~n then

1. χ(~n) = τ

2. χ(JancestorK〈η;~n〉) = κ

We prove both the condition by induction on the derivation tree and
case distinction on last applied rule.

[T-AxisTest] In this case we have that Γ `E Axis::Test : (τ, κ) and
by inductive hypothesis we have that

Γ `E Axis::node/self::Test : (τ, κ) (a)
ρ η Axis::node/self::Test Z⇒ ~n (b)
χ(~n) = τ (c)
χ(Jance–or–selfK〈η;~n〉) = κ (d)

Since Axis::node/self::Test is equivalent to Axis::Test we have that ρ η

Axis::Test Z⇒ ~n′ and ~n = ~n′. By all hypothesis (a-d) both statements (1)
and (2) holds.

[T-UnfoldedPath]
In this case we have that when cs 7→ ({Y1, . . . , Yn}, κ

′) ∈ Γ then

Γ `E Path : (τ, κ)

and by inductive hypothesis we have that

ρ(cd) = ~m (a)
Γ(cs) = (τ ′, κ′) (b)
for all i = 1..n cs 7→ ({Y1}, κ

′) ∈ Γ and Γ `E Path : (τi, κi) (c)
for all i = 1..n cd 7→mi ∈ ρ and ρ η Path Z⇒ ~ni (d)
for all i = 1..n χ(~ni) = τi (e)
for all i = 1..n χ(Jance–or–selfK〈η; ~ni〉) = κi (f)

142 CHAPTER 7. PROOFS

moreover by the typing rule T-UnfoldedPath

τ =
⋃

i=1..n, τi 6=∅
τi (g)

κ =
⋃

i=1..n, τi 6=∅
κi (h)

and when cd 7→m ∈ ρ the evaluation of the query is

ρ η Path Z⇒ ~n

where ~n = (~n1, . . . , ~nn) and then by hypothesis (a-e,g) follows immediately

χ(~n) = τ

and by hypothesis (a-d,f,h) and the fact that if τi = ∅ then there are no
ancestors also

JancestorK〈η;~n〉 = κ

[T-Cond]
In this case we have that when cs 7→ ({Y1, . . . , Yn}, κ

′) ∈ Γ then

Γ `E Cond : (τ, κ)

and by inductive hypothesis we have that

ρ(cd) = ~m (a)
Γ(cs) = (τ ′, κ′) (b)
for all i = 1..n cs 7→ ({Yi}, κ

′) ∈ Γ and Γ `E Cond : (τi, κi) (c)
for all i = 1..n cd 7→mi ∈ ρ and ρ η Cond Z⇒ ~ni (d)
for all i = 1..n χ(~ni) = τi (e)
for all i = 1..n χ(Jance–or–selfK〈η; ~ni〉) = κi (f)

moreover by the typing rule T-Cond

τ =
⋃

i=1..n, τi 6=∅
τi (g)

κ =
⋃

i=1..n, τi 6=∅
κi (h)

and when cd 7→m ∈ ρ the evaluation of the query is

ρ η Path Z⇒ ~n

7.4. COMPLETENESS OF TYPING RULES 143

where ~n = (~n1, . . . , ~nn) and then by hypothesis (a-e,g) follows immediately

χ(~n) = τ

and by hypothesis (a-d,f,h) and the fact that if τi = ∅ then there are no
ancestors also

JancestorK〈η;~n〉 = κ

[T-StepCond] In this case we have that Γ `E Step[Cond] : (τ, κ) and by
inductive hypothesis we have that

Γ `E Step/self::node[Cond] : (τ, κ) (a)
ρ η Step/self::node[Cond] Z⇒ ~n (b)
χ(~n) = τ (c)
χ(Jance–or–selfK〈η;~n〉) = κ (d)

Since Step/self::node[Cond] is equivalent to Step[Cond] we have that ρ η

Step[Cond] Z⇒ ~n′ and ~n = ~n′. By all hypothesis (a-d) both statements (1)
and (2) holds.

[T-StepPath]
By inductive hypothesis on T-StepPath and S-StepPath we have that

Γ `E Step : (τ ′, κ′) (a)
ρ η Step Z⇒ ~m (b)
χ(~m) = τ ′ (c)
χ(Jance–or–selfK〈η; ~m〉) = κ′ (d)

Γ[cs 7→ Σ′] `E Path : (τ, κ) (e)
ρ[cd 7→ ~m] η Path Z⇒ ~n (f)
χ(~n) = Στ (g)
χ(Jance–or–selfK〈η;~n〉) = κ′ (h)

and since Γ `E Step/Path : (τ, κ) and ρ η Step/Path Z⇒ ~n by
hypothesis (a-h) both condition (1) and (2) holds.

[T-StepCondPath]

144 CHAPTER 7. PROOFS

By inductive hypothesis on T-StepCondPath and S-StepCondPath
we have that

Γ `E Step[Cond] : (τ ′, κ′) (a)
ρ η Step[Cond] Z⇒ ~m (b)
χ(~m) = τ ′ (c)
χ(Jance–or–selfK〈η; ~m〉) = κ′ (d)

Γ[cs 7→ Σ′] `E Path : (τ, κ) (e)
ρ[cd 7→ ~m] η Path Z⇒ ~n (f)
χ(~n) = Στ (g)
χ(Jance–or–selfK〈η;~n〉) = κ′ (h)

and since Γ `E Step[Cond]/Path : (τ, κ) and ρ η Step[Cond]/Path Z⇒ ~n
by hypothesis (a-h) both condition (1) and (2) holds.

Theorem(4.29) (Completeness of Type System) Let an evaluation wrt
a DTD (W,E) A = (η, ρ,Γ) if Γ `E q : (τ, κ) and ρ η q Z⇒ ~n then

1. χ(~n) = τ

2. χ(JancestorK〈η;~n〉) = κ

Proof 1) by induction on the derivation tree and case distinction on the
last applied rule.

[T-Empty]
By rules T-Empty and S-Empty we have that

Γ `E () : (∅, ∅) (a)
ρ η () Z⇒ () (b)

and since χ(()) = ∅ follows immediately both conditions (1) and (2).

[T-Concat]
In this case we have that the enriched type is computed as union of the two
enriched types of the sub-expressions Σ = Σ1∪ Σ2. By inductive hypothesis
we have that

Γ `E q1 : Σ1 and ρ η q1 Z⇒ ~n1 (a)
Γ `E q2 : Σ2 and ρ η q2 Z⇒ ~n2 (b)
χ(~n1) = Σ1

τ (c)
χ(~n2) = Σ2

τ (d)
χ(Jance–or–selfK〈η, ~n1〉) = Σ1

κ (e)

χ(Jance–or–selfK〈η, ~n1〉) = Σ2
κ (f)

7.4. COMPLETENESS OF TYPING RULES 145

then by hypothesis (a-f), rule T-Concat and S-Concat follows immedi-
ately both conditions (1) and (2).

[T-EltConstruction]
By rule (S-EltConstr) ρ η <a>q Z⇒ na where naX = ⊥ because
element construction assigned it null type, and it has no ancestors since it’s
done in the rightmost part of the query both conditions (1) and (2) follows
immediately.

[T-Var]
By hypothesis on the evaluation A the variable x is bounded to an enriched
type that satisfies both conditions (1) and (2).

[T-VarPath]
By inductive hypothesis on T-VarPath and S-VarPath we have that

Γ `E x : (τ ′, κ′) (a)
ρ η x Z⇒ ~m (b)
χ(~m) = τ ′ (c)
χ(Jance–or–selfK〈η; ~m〉) = κ′ (d)

Γ[cs 7→ Σ′] `E Path : (τ, κ) (e)
ρ[cd 7→ ~m] η Path Z⇒ ~n (f)
χ(~n) = Στ (g)
χ(Jance–or–selfK〈η;~n〉) = κ′ (h)

and since Γ `E x/Path : (τ, κ) and ρ η x/Path Z⇒ ~n by hypothesis
(a-h) both condition (1) and (2) holds.

[T-For]
By inductive hypotheses on rules T-For and S-For we have that

Γ[cs 7→ Σ] `E q1 : ({Y1, . . . , Yn}, κ
′) (a)

ρ η q1 Z⇒ ~m (b)
χ(~m) = {Y1, . . . , Yn} (c)
χ(Jance–or–selfK〈η;~n〉) = κ′ (d)

for each Yj Γ[cs 7→ ({Yj}, κ
′)] `E q2 : Σj (e)

for each mj ∈ ~m ρ[cd 7→mj] η q2 Z⇒ ~nj (f)

for each j = 1..| ~m| χ(~nj) ⊆ Σj
τ (g)

for each j = 1..| ~m| χ(JancestorK〈η, ~nj〉) (h)

146 CHAPTER 7. PROOFS

then by hypothesis (a-h) follows that both conditions (1) and (2) holds.

[T-Let]
By inductive hypotheses on rules T-LetQry and S-LEtQry we have that

Γ `E q1 : (τ ′, κ′) (a)
ρ η q1 Z⇒ ~m (b)
χ(~m) = τ ′ (c)
χ(Jance–or–selfK〈η;~n〉) = κ′ (d)

Γ[x 7→ τ ′] `E q2 : (τ, κ) (e)
ρ[x 7→m] η q2 Z⇒ ~n (f)
χ(~n) = τ (g)
χ(Jance–or–selfK〈η, ~n〉) = κ (h)

then by hypothesis (a-h) follows that both conditions (1) and (2) holds.

[T-If]
By inductive hypotheses on rules T-If and S-If we have that

for all i = 1..n cs 7→ ({Yi}, κ
′) ∈ Γ and Γ `E Cond : (τi, κi) (c)

for all i = 1..n cd 7→mi ∈ ρ and ρ η Cond Z⇒ ~ni (d)
for all i = 1..n χ(~ni) = τi (e)
for all i = 1..n χ(JancestorK〈η; ~ni〉) = κi (f)

moreover by the typing rule T-If

τ =
⋃

i=1..n, τi 6=∅
τi (g)

and
if τ ′ 6= ∅ then Γ `E q : Σ else Σ = (∅, ∅) (h)

where Σ is the result of the typing and satisfies both conditions (1) and (2).

7.5 Soundness of Type Projection

Theorem(5.6) (Soundness Projection Inference) Given an evaluation

A = (η, ρ,Γ) wrt a DTD (W,E). If Γ �
[m]
E q : π then the following

propositions hold.

1. π is a type projector for (W,E)

2. If ρ η q Z⇒ ~n; η′ then ρ η\π
q Z⇒ ~m; η′′ and ~n ∼= ~m

7.5. SOUNDNESS OF TYPE PROJECTION 147

Proof by induction on the length of the derivation and case distinction on
the last applied rule.

[P-Empty]
The set π = ∅ is by definition a type projector a for (W,E). By rule
P-Empty the semantics of the empty query is always the empty sequence
whatever store is used.

[P-Concat]
Let π1 and π2 type projectors for the subqueries, by rule P-Concat
π = π1 ∪ π2, and the type projector is closed respect to the union so π
is a type projector too. We apply inductive hypothesis on subqueries q1, q2

obtaining:

ρ η q1 Z⇒ ~n′ , ρ η\π
q1 Z⇒ ~m′ and ~n′ ∼= ~m′

ρ η q2 Z⇒ ~n′′ , ρ η\π
q2 Z⇒ ~m′′ and ~n′′ ∼= ~m′′

then the thesis follows by rule S-Concat.

[P-EltConstr]
By inductive hypothesis, π is a type projector for (W,E) and element con-
struction does not introduce new types. By rule S-EltConstr ρ η

<a>q Z⇒ na and ρ η\π
<a>q Z⇒ na because the pruning

does not affect na.

[P-Var1]
By hypothesis (τ, κ) is an enriched type and by Theorem (4.29) Soundness
of Type System we have that τ ∪ κ is a type projector. The variable is not
useful for the final result of the query. Moreover, whatever store is used
(pruned or not) the semantics of the variable evaluation depends only by
the binding into the dynamical environment ρ, so the second proposition
holds too.

[P-Var2]
By hypothesis (τ, κ) is an enriched type and by Theorem (4.29) Soundness of
Type System we have that AE(τ, dos)∪ κ is a type projector. The variable
is useful for the final result of the query then all types of descendants of
nodes typed in τ must be taken to materialize the result. Whatever store is
used (pruned or not) the semantics of the variable evaluation depends only
by the binding into the dynamical environment ρ, so the second proposition
holds too.

148 CHAPTER 7. PROOFS

[AxTe]
By rule (S-AxTe) we know that Axis::node/self::Test and Axis::Test evalua-
tions are the same, if done under the same dynamic environment. By induc-
tive hypothesis we have that the theorem holds for Axis::node/self::Test,
then π is a type projector and also if ρ η Axis::Test Z⇒ ~n then
ρ η\π

Axis::Test Z⇒ ~m and ~n ∼= ~m.

[AxTeCond]
By rule (S-AxTeCond) we know that are equivalent Axis::node/self::Test[Cond]
and Axis::Test[Cond] evaluations, if done under the same dynamic environ-
ment. By inductive hypothesis theorem holds for Axis::node/self::Test[Cond],
then π is a type projector and also if ρ η Axis::Test[Cond] Z⇒ ~n then
ρ η\π

Axis::Test[Cond] Z⇒ ~m and ~n ∼= ~m.

[P-VAx1]
We can apply Theorem of Axis Selection Soundness (4.27) on hypothesis
Γ `E Axis::node : (τ, κ) thus obtaining that if ρ η Axis::node Z⇒ ~n
then

χ(~n) ⊆ τ (a)
χ(JancestorK〈η;~n〉) ⊆ κ (b)

Since in this case π = τ ∪ κ we have that π is trivially a type projector and

η\π = {t\π, t1, . . . , tp}

because only the input tree is pruned.
If ρ η Axis::node Z⇒ (n1, . . . ,nq) the for all i = 1..q we have two cases:

� ni ∈ Nodes(t) and t is computed a run-time. This is never possible
because we do not navigate over constructed elements.

� ni ∈ Nodes(t) and t is the input tree. Since this is a vertical axes
navigation and pruning discards nodes typed as not specified in τ ∪ π
then by hypothesis (b) all the ancestors of ni are not discarded, and
also by hypothesis (a) ni is not discarded.

Finally, since the expression is not useful for the final result of the evaluation
we do not need to consider types of descendants, and then follows that if
ρ η Axis::node Z⇒ ~n then ρ η\π

Axis::node Z⇒ ~n and ~n ∼= ~m.

[P-VAx2]

7.5. SOUNDNESS OF TYPE PROJECTION 149

We can apply Theorem of Axis Selection Soundness (4.27) on hypothesis
Γ `E Axis::node : (τ, κ) thus obtaining that if ρ η Axis::node Z⇒ ~n
then

χ(~n) ⊆ τ (a)
χ(JancestorK〈η;~n〉) ⊆ κ (b)

Since in this case π = AE(dos, τ) ∪ κ we have that π is trivially a type
projector and

η\π = {t\π, t1, . . . , tp}

because only the input tree is pruned.
If ρ η Axis::node Z⇒ (n1, . . . ,nq) the for all i = 1..q we have two cases:

� ni ∈ Nodes(t) and t is computed a run-time. This is never possible
because we do not navigate over constructed elements.

� ni ∈ Nodes(t) and t is the input tree. Since this is a vertical axes
navigation and pruning discards nodes typed as not specified in τ ∪ π
then by hypothesis (b) all the ancestors of ni are not discarded, and
also by hypothesis (a) ni is not discarded.

Finally, since the expression is not useful for the final result of the evaluation
we consider types of descendants that allows materialization of the result,
and then follows that if ρ η Axis::node Z⇒ ~n then ρ η\π

Axis::node Z⇒
~n and ~n ∼= ~m.

[P-HAx1]
We can apply Theorem of Axis Selection Soundness (4.27) on hypothesis
Γ `E Axis::node : (τ, κ) thus obtaining that if ρ η Axis::node Z⇒ ~n
then

χ(~n) ⊆ τ (a)
χ(JancestorK〈η;~n〉) ⊆ κ (b)

Moreover by hypothesis on the evaluation A we know that cs 7→ (τ ′, π′) and
cd 7→ ~m and

χ(~m) ⊆ τ ′ (d)
χ(JancestorK〈η; ~m〉) ⊆ κ′ (e)

Since in this case π = τ ′ ∪ κ′ ∪ τ ∪ κ we have that π is at the matter of facts
the union of two type projectors that are (τ ′ ∪ κ′) and (τ ∪ κ). Another
time it happens that

η\π = {t\π, t1, . . . , tp}

because only the input tree is pruned.
If ρ η Axis::node Z⇒ (n1, . . . ,nq) the for all i = 1..q we have two cases:

150 CHAPTER 7. PROOFS

� ni ∈ Nodes(t) and t is computed a run-time. This is never possible
because we do not navigate over constructed elements.

� ni ∈ Nodes(t) and t is the input tree. Since this is an horizontal axes
navigation it moves from a node that is typed with a name in τ ′ and
all its ancestors are typed with a name in κ′. Those nodes must be
reached during navigation, to do this we use hypothesis (c) and (d)
imposing that (τ ′ ∪ π′) ⊆ π. Moreover, pruning discards nodes typed
as not specified in τ ∪ π then by hypothesis (b) all the ancestors of ni

are not discarded, and also by hypothesis (a) ni is not discarded.

Finally, since the expression is not useful for the final result of the evaluation
we do not need to consider types of descendants, and then follows that if
ρ η Axis::node Z⇒ ~n then ρ η\π

Axis::node Z⇒ ~n and ~n ∼= ~m.

[P-HAx2]
We can apply Theorem of Axis Selection Soundness (4.27) on hypothesis
Γ `E Axis::node : (τ, κ) thus obtaining that if ρ η Axis::node Z⇒ ~n
then

χ(~n) ⊆ τ (a)
χ(JancestorK〈η;~n〉) ⊆ κ (b)

Moreover by hypothesis on the evaluation A we know that cs 7→ (τ ′, π′) and
cd 7→ ~m and

χ(~m) ⊆ τ ′ (d)
χ(JancestorK〈η; ~m〉) ⊆ κ′ (e)

Since in this case π = τ ′ ∪ κ′ ∪ AE(descendant–or–self, τ) ∪ κ we have
that π is at the matter of facts the union of two type projectors that are
(τ ′ ∪ κ′) and (descendant–or–selfτ ∪ κ). Another time it happens that

η\π = {t\π, t1, . . . , tp}

because only the input tree is pruned.
If ρ η Axis::node Z⇒ (n1, . . . ,nq) the for all i = 1..q we have two cases:

� ni ∈ Nodes(t) and t is computed a run-time. This is never possible
because we do not navigate over constructed elements.

� ni ∈ Nodes(t) and t is the input tree. Since this is an horizontal axes
navigation it moves from a node that is typed with a name in τ ′ and
all its ancestors are typed with a name in κ′. Those nodes must be
reached during navigation, to do this we use hypothesis (c) and (d)

7.5. SOUNDNESS OF TYPE PROJECTION 151

imposing that (τ ′ ∪ π′) ⊆ π. Moreover, pruning discards nodes typed
as not specified in τ ∪ π then by hypothesis (b) all the ancestors of ni

are not discarded, and also by hypothesis (a) ni is not discarded.

Finally, since the expression is useful for the final result of the evalua-
tion we need to consider types of descendants, and then follows that if
ρ η Axis::node Z⇒ ~n then ρ η\π

Axis::node Z⇒ ~n and ~n ∼= ~m.

[P-SeTe1]
We can apply Theorem of Test Filtering Soundness (4.28) on hypothesis
Γ `E self::Test : (τ, κ) thus obtaining that if ρ η self::Test Z⇒ ~n
then

χ(~n) ⊆ τ (a)
χ(JancestorK〈η;~n〉) ⊆ κ (b)

Since in this case π = τ ∪ κ we have that π is trivially a type projector and

η\π = {t\π, t1, . . . , tp}

because only the input tree is pruned.
If ρ η self::Test Z⇒ (n1, . . . ,nq) the for all i = 1..q we have two cases:

� ni ∈ Nodes(t) and t is computed a run-time. This is never possible
because we do not navigate over constructed elements.

� ni ∈ Nodes(t) and t is the input tree. Since this is a vertical axes
navigation and pruning discards nodes typed as not specified in τ ∪ π
then by hypothesis (b) all the ancestors of ni are not discarded, and
also by hypothesis (a) ni is not discarded.

Finally, since the expression is not useful for the final result of the evaluation
we do not need to consider types of descendants, and then follows that if
ρ η self::Test Z⇒ ~n then ρ η\π

self::Test Z⇒ ~n and ~n ∼= ~m.

[P-SeTe2]
We can apply Theorem of Test Filtering Soundness (4.28) on hypothesis
Γ `E self::Test : (τ, κ) thus obtaining that if ρ η self::Test Z⇒ ~n
then

χ(~n) ⊆ τ (a)
χ(JancestorK〈η;~n〉) ⊆ κ (b)

Since in this case π = AE(dos, τ) ∪ κ we have that π is trivially a type
projector and

η\π = {t\π, t1, . . . , tp}

152 CHAPTER 7. PROOFS

because only the input tree is pruned.
If ρ η self::Test Z⇒ (n1, . . . ,nq) the for all i = 1..q we have two cases:

� ni ∈ Nodes(t) and t is computed a run-time. This is never possible
because we do not navigate over constructed elements.

� ni ∈ Nodes(t) and t is the input tree. Since this is a vertical axes
navigation and pruning discards nodes typed as not specified in τ ∪ π
then by hypothesis (b) all the ancestors of ni are not discarded, and
also by hypothesis (a) ni is not discarded.

Finally, since the expression is not useful for the final result of the evaluation
we consider types of descendants that allows materialization of the result,
and then follows that if ρ η self::Test Z⇒ ~n then ρ η\π

self::Test Z⇒
~n and ~n ∼= ~m.

[P-SeNoCond1]
We can apply Theorem of Soundness Type System (4.29) on hypothesis
Γ `E self::node[Cond] : (τ, κ) thus obtaining that if ρ η self::node[Cond] Z⇒
~n then

χ(~n) ⊆ τ (a)
χ(JancestorK〈η;~n〉) ⊆ κ (b)

Since in this case π = τ ∪ κ we have that π is trivially a type projector and

η\π = {t\π, t1, . . . , tp}

because only the input tree is pruned.
If ρ η self::node[Cond] Z⇒ (n1, . . . ,nq) the for all i = 1..q we have two
cases:

� ni ∈ Nodes(t) and t is computed a run-time. This is never possible
because we do not navigate over constructed elements.

� ni ∈ Nodes(t) and t is the input tree. Since this is a vertical axes
navigation and pruning discards nodes typed as not specified in τ ∪ π
then by hypothesis (b) all the ancestors of ni are not discarded, and
also by hypothesis (a) ni is not discarded.

Finally, since the expression is not useful for the final result of the evaluation
we do not need to consider types of descendants, and then follows that if
ρ η self::node[Cond] Z⇒ ~n then ρ η\π

self::node[Cond] Z⇒ ~n and
~n ∼= ~m.

7.5. SOUNDNESS OF TYPE PROJECTION 153

[P-SeNoCond2]
We can apply Theorem Soundness of Type System (4.29) on hypothesis
Γ `E self::node[Cond] : (τ, κ) thus obtaining that if ρ η self::node[Cond] Z⇒
~n then

χ(~n) ⊆ τ (a)
χ(JancestorK〈η;~n〉) ⊆ κ (b)

Since in this case π = AE(dos, τ) ∪ κ we have that π is trivially a type
projector and

η\π = {t\π, t1, . . . , tp}

because only the input tree is pruned.
If ρ η self::node[Cond] Z⇒ (n1, . . . ,nq) the for all i = 1..q we have two
cases:

� ni ∈ Nodes(t) and t is computed a run-time. This is never possible
because we do not navigate over constructed elements.

� ni ∈ Nodes(t) and t is the input tree. Since this is a vertical axes
navigation and pruning discards nodes typed as not specified in τ ∪ π
then by hypothesis (b) all the ancestors of ni are not discarded, and
also by hypothesis (a) ni is not discarded.

Finally, since the expression is not useful for the final result of the evalu-
ation we consider types of descendants that allows materialization of the
result, and then follows that if ρ η self::node[Cond] Z⇒ ~n then
ρ η\π

self::node[Cond] Z⇒ ~n and ~n ∼= ~m.

[P-VarPath]
We know that if (x 7→ Σx) ∈ Γ we have that Γ `E x/Path : Σ and
Γ[cs 7→ Σx] `E Path : Σ. In other word rules yield to the same enriched
type. This said, there are some types Y ∈ Σx

τ such that

Γ[cs 7→ ({Y },AE({Y }, ance–or–self))] `E Path : (∅,−)

As stated in Corollary (4.30) this types yield to empty sequence in eval-
uation, and can be discarded optimizing the static inference. A light en-
riched type (τ, κ′), as described in the rule, is computed thus obtaining
that Γ[cs 7→ (τ, κ′)] `E Path : Σ. Then using inductive hypothesis on

Γ �
[m]
E Path : π follows that ρ η Path Z⇒ ~n and ρ η\π

Path Z⇒ ~m
and ~n ∼= ~m.

154 CHAPTER 7. PROOFS

By inductive hypothesis on rule P-VarPath we have that π is a type
projector. By Corollary (4.30) names that generates an empty set as result
of static analysis can be discarded because their evaluation is the empty
sequence. By inductive hypothesis on the same rule if ρ η Path Z⇒ ~m
and ρ η\π

Path Z⇒ ~n then ~n ∼= ~m.

[P-StepPath]

We know that if Γ �
[m]
E Step : (Σ) we have that Γ `E Step/Path : Σ

and Γ[cs 7→ Σ] `E Path : Σ. In other word rules yield to the same
enriched type. This said, there are some types Y ∈ Στ such that

Γ[cs 7→ ({Y },AE({Y }, ance–or–self))] `E Path : (∅,−)

As stated in Corollary (4.30) this types yield to empty sequence in eval-
uation, and can be discarded optimizing the static inference. A light en-
riched type (τ, κ′), as described in the rule, is computed thus obtaining
that Γ[cs 7→ (τ, κ′)] `E Path : Σ. Then using inductive hypothesis on

Γ �
[m]
E Path : π follows that ρ η Path Z⇒ ~n and ρ η\π

Path Z⇒ ~m
and ~n ∼= ~m.

By inductive hypothesis on rule P-VarPath we have that π is a type
projector. By Corollary (4.30) names that generates an empty set as result
of static analysis can be discarded because their evaluation is the empty
sequence. By inductive hypothesis on the same rule if ρ η Path Z⇒ ~m
and ρ η\π

Path Z⇒ ~n then ~n ∼= ~m.

[P-StepCond]

We know that if Γ �
[m]
E Step[Cond] : (Σ) we have that Γ `E Step[Cond]/Path :

Σ and Γ[cs 7→ Σ] `E Path : Σ. In other word rules yield to the same
enriched type. This said, there are some types Y ∈ Στ such that

Γ[cs 7→ ({Y },AE({Y }, ance–or–self))] `E Path : (∅,−)

As stated in Corollary (4.30) this types yield to empty sequence in eval-
uation, and can be discarded optimizing the static inference. A light en-
riched type (τ, κ′), as described in the rule, is computed thus obtaining
that Γ[cs 7→ (τ, κ′)] `E Path : Σ. Then using inductive hypothe-

sis on Γ �
[m]
E Path : π follows that ρ η Path[Cond] Z⇒ ~n and

ρ η\π
Path[Cond] Z⇒ ~m and ~n ∼= ~m.

[P-Path] By inductive hypothesis the theorem holds for all the partial type

7.5. SOUNDNESS OF TYPE PROJECTION 155

projection inference then thesis straightforward holds.

[P-For]
By inductive hypothesis we have that both π and π ′ are type projectors
and that the evaluations of both the subexpressions of the for construct are
sound wrt to projection. Moreover by Corollary (4.30) unuseful types are
discarded as explained for the case rule [P-VarPath].

[P-Let]
By inductive hypothesis we have that both π and π ′ are type projectors
and that the evaluations of both the subexpressions of the for construct are
sound wrt to projection.

[P-If]
By inductive hypothesis we have that both π and π ′ are type projectors
and that the evaluations of both the subexpressions of the for construct are
sound wrt to projection.

156 CHAPTER 7. PROOFS

Bibliography

[1] Benzaken, Castagna, Colazzo, Nguyên, Type-based XML Projection,
VLDB, 2006

[2] Marian, Siméon, Projecting XML Documents, VLDB, 2003

[3] Dario Colazzo, Path Correctness for XML Queries: Characterization
and Static Type Checking, Ph.D. Thesis, 2004

[4] Colazzo, Ghelli, Manghi, Sartiani Static Analysis for Path Correctness
of XML Queries, Journal of Functional Programming, 2006

[5] Ghelli, Rose, SimCorollaryon, Commutativity Analysis for XML Up-
dates, ACM Transactions on Database Systems, 2008

[6] Hidders, Paredaens, Vercammen, Demeyer A Light but Formal Intro-
duction to XQuery, Proc. of the Second International XML Database
Symposium, 2004

[7] W3C Working Group, XPath 2.0 and XQuery 1.0 formal semantics,
http://www.w3.org/TC/xquery-semantics, 2007

[8] W3C Working Group, XML Query, http://www.w3.org/XML/Query

[9] W3C Working Group, XML Schema, http://www.w3.org/XML/Schema

[10] W3C Working Group, XQuery 1.0 and XPath 2.0 data model,
http://www.w3.org/TR/xpath-datamodel/,W3C Recommendation,
2007

[11] W3C Working Group, XML Query Uses Cases,
http://www.w3.org/TC/xquery-use-cases, 2007

[12] Massimo Franceschet, XPathMark: An XPath benchmark for XMark ,
Technical Report, 2004

157

158 BIBLIOGRAPHY

[13] Anders Møller and Michael Schwartzbach, An Introduction to XML and
Web Technologies, Addison Wesley, 2006

[14] D. Chamberlin XQuery: An XML query language, IBM Systems Jour-
nal, 2002

[15] C. M. Sperberg-McQueen, XML <and Semi-Structured Data>, ACM
Queue, 2005

[16] Murata, Lee, Mani Taxonomy of XML Schema Languages using Formal
Language Theory, Extreme Markup Languages, 2000

[17] Brüggermann-Klein, Regular Expression into Finite Automata, Theo-
retical Computer Science, 1993

[18] Glushkov, The abstract theory of automata, Russian Mathematical Sur-
veys, 1961

[19] Brüggermann-Klein, Wood, One Unambiguous Regular Expressions, In-
formation and computation , 1998

[20] S. Bressan, B. Catania, Z. Lacroix, Y-G Li and A. Maddalena, Accel-
erating queries by pruning XML documents, Data Knowledge Eng., 2005

[21] Hidders, Michiels, Avoiding Unnecessary Ordering Operation in XPath,
VLDB, 2003

[22] Segoufin, Vianum Validating Streaming XML Documents, Symposium
on Principles of Database Systems, 2002

[23] Frnandez, Hidders, Michiels, Siméon, Vercammen Optimizing Sorting
and Duplicate Elimination in XQuery Path Expressions, Database and
Expert Systems Applications, 2205

[24] Libkin, Kolahi, Topics in DB: Foundations of XML Lecture 4, Notes of
the Course, 2005

[25] Colazzo, Sartiani Detection of Corrupted Schema Mappings in XML
Data Integration Systems, ACM Journal, 2008

[26] Colazzo, Ghelli, Sartiani Efficient Inclusion for a Class of XML Types
with Interleaving an Counting, ACM Queue, 2005

[27] Colazzo, Ghelli, Sartiani Efficient Inclusion Between Regular Expres-
sion Types, ACM, 2008

BIBLIOGRAPHY 159

[28] Koch, On the Complexity of Nonrecursive XQuery and Functional
Query Lanaguages on Complex Values, ACM Transactions on Database
Systems, 2006

[29] Cheney, Regular Expressions Subtyping for XML Query and Update
Languages, European Symposium on Programming, 2008

[30] Afanasiev, Distributivity for XQuery expressions, Technical report,
2007

[31] Afanasiev, Grust, Marx, Rittinger, Teubner An Inflationary Fixed Poin
Operator in XQuery, International Conference on Data Engineering , 2008

[32] Fan, Chan, Garofalakis, Secure XML Querying with SEcurity Views,
SIGMOD, 2004

ESTRATTO PER RIASSUNTO DELLA TESI DI LAUREA E
DICHIARAZIONE DI CONSULTABILITA' (*)

Il sottoscritto/a

Matricola n.

Facoltà

iscritto al corso di laurea laurea magistrale/specialistica in:

Titolo della tesi (**):

DICHIARA CHE LA SUA TESI E':

Riproducibile totalmente Non riproducibile Riproducibile parzialmente

Venezia, Firma dello studente

(spazio per la battitura dell'estratto)

(**) il titolo deve essere quello definitivo uguale a quello che risulta stampato sulla copertina dell'elaborato

consegnato al Presidente della Commissione di Laurea (*) Da inserire come ultima pagina della tesi. L'estratto

non deve superare le mille battute

Università Ca' Foscari - Venezia

Università Ca' Foscari - Venezia

1

Informativa sul trattamento dei dati personali

Ai sensi dell'art. 10 della Legge n. 675/ 96 recante disposizioni a "Tutela delle persone e di altri soggetti
rispetto al trattamento dei dati personali" si informa che:
1) I dati personali richiesti o acquisiti, i dati relativi alla carriera universitaria e comunque prodotti

dall'Università Ca' Foscari di Venezia nello svolgimento delle proprie funzioni istituzionali, nonchè i
dati derivanti dal trattamento automatizzato di entrambi, possono essere raccolti, trattati, comunicati
e diffusi dall'Università tramite i propri uffici - sia durante la carriera universitaria dell'interessato che
dopo la specializzazione - a soggetti esterni per finalità connesse allo svolgimento delle attività
istituzionali dell'Università nonchè per comunicazione e diffusione rivolte esclusivamente ad
iniziative di avviamento o orientamento al lavoro (stage e placement) e per attività di formazione
post-laurea.

2) Il conferimento dei dati personali nell'ambito descritto al punto 1 è obbligatorio
3) Il trattamento dei dati può essere effettuato attraverso strumenti manuali, informatici e telematici atti

a gestire i dati stessi ed avviene in modo da garantire la sicurezza e la riservatezza.

Università Ca' Foscari - Venezia

Università Ca' Foscari - Venezia

2

