
SOCLE: Towards a Framework for Data
Preparation in Social Applications

Sihem Amer-Yahia 1,
Noha Ibrahim, Christiane Kamdem Kengne 2,
Federico Ulliana, Marie-Christine Rousset 2

1. CNRS, LIG, Grenoble, France

Sihem.Amer-Yahia@imag.fr

2. University of Grenoble, LIG, Grenoble, France

firstname.name@imag.fr

ABSTRACT. The web has evolved from a technological platform to a real social milieu thereby be-
coming a continuous source of Big Social Data (BSD). BSD is characterized by a combination
of factual content such as the coordinates of a restaurant, the content of a webpage or the title
of a movie, behavior data such as exchanges between social relationships, as well as subjective
data such as users’ opinions, reviews, and tags. The goal of a social application is to analyze
BSD and process it in order to understand it and transform it into valuable content to users.
Building social applications requires an essential data preparation step during which raw BSD
is sanitized, normalized, enriched, pruned, and transformed making it readily available for fur-
ther processing. We argue for the need to formalize data preparation and develop appropriate
tools to enable easy prototyping of social applications. We describe SOCLE, our framework
for BSD preparation. We provide an architecture inspired from typical social applications, the
state of the art of existing languages and algebras for manipulating BSD, and the scientific
challenges and opportunities underlying the development of SOCLE.

RÉSUMÉ. Le web, initialement une plateforme technologique, est devenu un véritable éco-système
social et une source continue de Big Data sociales (BSD). Nous y trouvons des données factuelles
et objectives telles que les coordonnées d’un restaurant, des données comportementales telles
que les échanges entre amis et enfin, des données subjectives comme les revues, les étiquettes,
les notes ou les étoiles. Ces données brutes ont besoin d’être filtrées et organisées pour en
extraire des informations utiles et permettre le développement d’applications sociales qui ap-
portent une valeur ajoutée aux utilisateurs. Dans cet article, nous motivons le besoin de for-
maliser l’étape de préparation des BSD et décrivons SOCLE, notre plateforme pour le faire.
Nous présentons une architecture inspirée d’applications sociales types, un état de l’art des
langages et algèbres existants et les défis scientifiques du développement de SOCLE.

KEYWORDS: Big Social Data (BSD), Social Applications, Social Graph, Algebra

MOTS-CLÉS : Applications Sociales, Graphe Social, Algèbre, Langage Déclaratif

DOI:10.3166/ISI.volume.issue.1-24 c� 2014 Lavoisier

Ingénierie des systèmes d’information – no issue/2014, 1-24

2 ISI. Volume volume – no issue/2014

1. Introduction

The survival of the social web relies heavily on the development of social applica-
tions whose goal is to analyze social data and deliver relevant content to users thereby
providing value and incentives on the social Web. Researchers and practitioners have
been actively building a variety of social applications such as website recommen-
dation on del.icio.us, sentiment extraction from Twitter, movie recommendation on
MovieLens and itinerary extraction from Flickr. Data preparation, that is the step of
pre-processing raw input datasets into ready-to-be-exploited data, is an essential step
in building those applications. It is however proprietary to each implementation and
mostly “encapsulated” in scripts that are hard to verify and modify. In this paper, we
present SOCLE, the first framework for expressing and optimizing data preparation in
social applications.

1.1. Social Data and Applications

The web has evolved from a technological platform to a real social milieu and is
becoming a continuous source of Big Social Data (BSD). BSD is characterized by a
combination of factual content such as the coordinates of a restaurant or the content of
a webpage, behavior data such as the exchanges between social relationships, as well
as subjective data such as users’ ratings, reviews, and tags. The very first step in build-
ing social applications is data preparation that is common to all those applications and
that is repeatedly performed by data scientists today. The large volumes of raw BSD
call for the development of scalable models and algorithms to prepare such datasets.
In this paper, we make a first attempt at formalizing SOCLE a generic and extensible
framework for raw BSD preparation.

Data preparation in building social applications is an essential step during which
raw BSD is sanitized, normalized, enriched, pruned, and transformed to be made read-
ily available for developing a given application semantics. For example, for website
recommendation on del.icio.us, users’ tagging actions are pre-processed in a prelim-
inary step, in order to remove the long tail of tagging, extract topics from tags and
cluster users together (Maniu, Cautis, 2012; Schenkel et al., 2008; Stoyanovich et
al., 2008). Similarly, in a movie recommendation application on MovieLens that
caters to user groups, users’ ratings are normalized and users are pre-grouped based
on rating similarities in order to optimize the retrieval of movies for arbitrary user
groups (Amer-Yahia, Roy et al., 2009; Schafer et al., 2007; O’Connor et al., 2001).
When doing sentiment extraction on Twitter, tweets are pre-processed to extract top-
ics and entities (Davidov et al., 2010). In news recommendation (Abbar et al., 2013),
articles are pre-processed to extract topics and sentiment extraction is applied to user
comments on articles (Amer-Yahia et al., 2012). Finally, when Flickr photos are used
to build touristic itineraries in a city (De Choudhury et al., 2010), tags and geographic
coordinates are used to map individual photos to landmarks thereby enriching raw
social data. All those are examples of primitive data preparation operations that are
repeatedly hard-coded in various applications. Our first contribution (Section 2) is

Data Preparation in SOCLE 3

the study of typical social applications and the design of a general-purpose ar-
chitecture for BSD, that identifies the main phases of BSD preparation, namely
Data Collection, Data Sanitization, and Data Transformation. We proceed in a
bottom-up fashion starting from typical social applications to design a generic
and extensible framework for expressing the main phases of BSD preparation.

1.2. Benefits

The sheer volume of BSD and the many different alternative semantics in build-
ing social applications would benefit from the development of a declarative approach
to enable flexible prototyping. That is particularly true for data preparation in which
many “choices” are made that later affect the results of a search and recommendation
application. More precisely, content usefulness in search and recommendation appli-
cations is typically defined using application-dependent semantics under the form of
utility functions. A variety of those functions are implemented ranging from overall
popularity of a content item such as a restaurant, a website or a movie to personalized
functions such as websites endorsed by friends of a user. The success of an application
relies heavily on the design of appropriate utility functions. That is why an essential
step in building social applications is the evaluation of the utility of returned content.

User studies on platforms such as Amazon Mechanical Turk or CrowdFlower com-
bined with more traditional techniques from Machine Learning such as A/B testing, or
from Information Retrieval such as precision and recall, are used to perform the evalu-
ation. When the results of an evaluation are unsatisfactory, application developers tend
to “blame” the definition of utility and explore ways to fine-tune the utility function.
For example, if the use of tag-based similarity networks on del.icio.us is not a good
predictor of future user tagging actions, an application developer will experiment with
other networks such as tag and URL similarities. As a result, application developers
modify the application semantics and rebuild a different logic from scratch and run
the evaluation again. The other data preparation steps that were undertaken are often
ignored because they tend to be encapsulated in code and are therefore “invisible”.
What if unsatisfactory results were due to thresholds in cutting the tail of tagging, or
to the method used to extract topics from tags or sentiment from reviews?

Finally, although the development of SOCLE follows a bottom-up approach using
a small number of social applications, we believe its extensible and generic design en-
ables the expression of a wider set of social applications. SOCLE is a start toward that
direction and it will not impede the integration of new data manipulation operations at
any one of its three key levels: Collection, Sanitization and Transformation.

1.3. Paper Organization

We argue that the evaluation step in building social applications should be re-
thought to enable a feedback loop into all data preparation steps. Therefore, we
propose a declarative approach to data preparation and explore the use of an

4 ISI. Volume volume – no issue/2014

algebra to express the main operations identified in the SOCLE architecture. The
choice of an algebra is motivated by the need for a declarative framework that enables
optimization. Indeed, while workflows and process algebras can capture task coordi-
nation appropriately, they do not express data transformations explicitly and are not
well-suited for capturing data preparation.

No algebra is possible without a data model. In Section 3, we start with a review of
existing models for representing BSD and discuss the requirements and opportunities
in designing an appropriate model to capture the variety of social data. In particular,
we describe the expressivity of existing proposals and discuss one major question, that
is, storing BSD. We then present the SOCLE data model. There exists many algebras
and languages for manipulating social data. Section 4 examines existing algebras and
languages for querying and transforming BSD as well as other data and process manip-
ulation languages, and discusses new opportunities raised by the requirements of data
preparation. In particular, the ability to undo some steps that were undertaken in data
preparation and the optimization opportunities this requirement raises. The SOCLE
algebra is presented in this section using examples inspired from the social applica-
tions described in Section 2.2. Finally, in Section 5, we describe our immediate plan
of action for SOCLE, that is, the implementation of a library of data preparation tools
and its validation in a movie recommendation application scenario. More specifically,
we are exploring the use of native and non-native graph storage options and the
implementation of primitives in the SOCLE algebra on top of those two backends.

In the rest of the paper, we use the term SOCLE interchangeably to designate the
framework, the architecture, the algebra and language.

2. Architecture and Applications

In this section, we present the architecture of SOCLE, our BSD preparation frame-
work. We examine four examples of real-world applications on social content sites
and describe how each one “instantiates” our architecture.

2.1. Architecture

The social data we are interested in is in the form of hu, i, li triples that desig-
nate the action of a user u in a set of users U on an item i in a set of items I with
a label l in a set of labels L that includes tags, ratings, reviews, comments, or senti-
ments depending on the underlying data. For example, hJohn, foodnsport, sportsi
and hJohn, foodnsport, dieti, in del.icio.us, represent user John who tagged the
foodnsport website with the tags sports and diet. In MovieLens, hSue, T itanic, 5i
represents user Sue who rated the movie Titanic with the highest rating. On Twitter,
the triple hJohn,Obama, posi expresses that user John’s sentiment on entity Obama
is positive. Finally, in Flickr, hRob, 534, Louvrei, hRob, 534, Parisi represent that
user Rob tagged the same picture with Louvre and with Paris.

Data Preparation in SOCLE 5

We examined a large number of social applications 1. Three layers that form BSD
preparation emerged from that: Data Collection, Data Sanitization and Data Trans-
formation. They are depicted in the logical architecture of SOCLE (Figure 1). All the
applications we examined gather and integrate data, possibly coming from different
sources. Then, data is normalized, pruned and enriched. Finally, several transforma-
tions are necessary to extract value from sanitized data and optimize its usage. The
result of data preparation is ready-to-be exploited data that is fed to the Social Applica-
tion Logic box which builds a variety of social applications ranging from website and
movie recommendation to itinerary extraction on Flickr and social search on Twitter.

In summary, BSD preparation admits hu, i, li triples and returns two types of data:
processed data that was collected and sanitized, and transformed data (e.g., per user
networks of interest). The returned data is then used by the Social Application Logic
component to implement a search and recommendation or an analytics application.

Data Collection. This layer gathers and integrates social data from different sites.
This data is available under different forms, either as a dump (e.g., dump of ASCII files
from MovieLens or XML dump from DBLP), or via an API (e.g., Flickr or Twitter
API). Gathered data needs to be “wrapped” into our hu, i, li triples model. Although
there is little potential for generalizing this step, it could be automated by providing
customized wrappers for existing sites such as Flickr, del.icio.us, and Twitter.

Figure 1. The SOCLE architecture

Data Sanitization. This layer takes as input all the raw data collected by the Data
Collection module and applies different operations in order to prepare it for transfor-

1. We read over 50 papers and browsed multiple websites. In particular, the experiments section of each
paper contained different descriptions of how data is pre-processed

6 ISI. Volume volume – no issue/2014

mation. We grouped those operations into four components: Pruning, Text Mining,
Normalization and Enrichment. The Pruning component removes all unnecessary in-
formation such as the long tail of tagging actions (e.g., uncommon tags or items that
were tagged by less than a certain number of users, photos that are not relevant for
itinerary extraction). As a result, the dataset is reduced and social applications do not
have to deal with irrelevant information. The Text Mining component extracts valuable
information from textual content such as tweets, reviews and comments. Examples of
such operations include topic detection from tags, entity and event identification from
tweets, and sentiment extraction from reviews. The Normalization component applies
value transformation operations such as restaurant or movie rating normalization. The
Enrichment component adds semantics to data by using external sources. For ex-
ample, this component is used to detect when users tag similar photos with different
namestags (e.g., “NYC”, “Manhattan”, “The Big Apple”, all relate to New York city).
In this case, the Enrichment component adds a number of predefined tags found in an
external source such as guidebooks.

Data Transformation. While Data Collection and Data Sanitization manipulate
data in the form of hu, i, li triples, Data Transformation modifies data and may al-
ter its form. The Normalization component in Data Sanitization may modify rating
values but it does not modify the hu, i, li triple form. Data Transformation has three
main components. The User Similarity component is central to search and recommen-
dation. It is responsible for computing similarities between users. In a given social
application, this component may use a mix of implicit and explicit ties between users.
Two users may be deemed similar if they share the same interests, for example they
use the same tags, they tag the same items, they live in nearby geographical addresses,
or are friends real life. Based on user similarity values (computed using various mea-
sures such as Jaccard distance between users’ actions, cosine in the case of tags, or
simply, users having demographics attributes in common), the second task is the con-
struction and maintenance of such networks in the Network Construction component.
The result of this component is a user-centric network hu, {v}i composed of all users
v similar to u (according to the various similarity functions). In del.icio.us for ex-
ample, one option is to use a user’s explicit network in order to recommend places
to visit in a city. Finally, Index and Cluster Generation is another key component
in search and recommendation applications. It is responsible for organizing data to
optimize its further exploitation. This component identifies appropriate (structural or
social) criteria for grouping users or items and appropriate mechanisms for ranking
and selecting them. For example, when multiple networks and results are available,
Index and Cluster Generation is used to determine which one is most relevant to a
user based on current information needs.

In other research areas, data preparation has been identified as a cornerstone of
application development. A data preparation step has been recognized in data min-
ing (Pyle, 1999; Refaat, 2010) and includes acquisition and integration, enhancement
and enrichment, and transformation and a library of tools implementing specific op-
erations in SAS for data preparation were developed. No language or algebra as in
SOCLE was provided.

Data Preparation in SOCLE 7

2.2. Applications

We have examined a large number of social applications and identified four ex-
amples. These examples are far from being exhaustive but we believe they highlight
with different complexities search and recommendation applications and analytics ap-
plications. The first example is a website recommendation application for individual
users. The second is a movie recommendation application for adhoc user groups. The
third application extracts sentiment from tweets for analytics purposes. The last one
combines analytics and queries to generate travel itineraries from Flickr photos.

2.2.1. Website Recommendation in Delicious

Del.icio.us is a social bookmarking and tagging site. Users can subscribe to their
friends’ feeds in order to learn about their latest bookmarked URLs. They can also
view hotlists (most popular URLs) and browse tags to find related URLs. Several
efforts proposed a variety of methods for producing customized hotlists (as recom-
mendations for users) and evaluated their effectiveness on del.icio.us datasets (Maniu,
Cautis, 2012; Schenkel et al., 2008; Stoyanovich et al., 2008). A user specifies a
query (e.g., list of keywords) and the search and recommendation applications return
the top-k items (URLs) satisfying the query. If the query is empty, the application
returns a personalized hotlist. If the query is a set of keywords, the application returns
the highest scoring items in the user’s network.

The del.icio.us dataset is a set of triples of hu, i, li where l is a tag. Figure 2(a) in-
stantiates the architecture of SOCLE for this application. The Data Collection compo-
nent gathers data via the del.icio.us API and integrates collected data into this unique
format. The Pruning component removes all URLs that were tagged by few users (of-
ten URLS tagged by less than 10 users are pruned) as well as uncommon tags (in most
cases we examined, tags used by less than 5 users were pruned). Other options may
include Text Mining to extract topics from tags (Amer-Yahia, Huang, Yu, 2009) The
User Similarity component provides adequate functions to measure how close two
users are in terms of friendship or common tagging interest for example. This step
constitutes the holy grail of search and recommendation and has been explored exten-
sively in the examined literature. Based on these functions the Network Construction
component builds a user-centric network. This transformed data is used to construct
quality hotlists. If the user specifies keywords, the Index and Cluster Generation pro-
vides per user and per keyword indices that can further be exploited (Amer-Yahia et
al., 2008).

2.2.2. Group Recommendation in MovieLens

In many application scenarios, users get together to consume content of interest,
e.g., a regular family gathering over the week end, or on an adhoc and ephemeral
set of people attending a recital. Group recommendation is more challenging than
individual user recommendation since it needs to consider not only individual needs
but also disagreement among group members. In an individual user recommendation
as seen previously with del.icio.us, recommendation applications build ranked lists of

8 ISI. Volume volume – no issue/2014

(a) Delicious URL recommendation (b) MovieLens group recommendation

Figure 2. Instances of the SOCLE architecture

items. In group recommendation, the same item may have different predicted ratings
for each group member and a consensus function (e.g., Least Misery or Aggregated
Voting (Park et al., 2008)) is used to aggregate individual user ratings into a group
rating for each item (Roy et al., 2010; Amer-Yahia, Roy et al., 2009; Schafer et al.,
2007; Chen et al., 2008; Park et al., 2008)

Figure 2(b) instantiates the architecture of SOCLE for group recommendation.
Data preparation starts by collecting known user ratings. That is the case for Movie-
Lens whose rating information is available in a dump of ASCII files. Data Collection
component wraps the collected data into hu, i, li triples where l is the rating of u for i.
The Normalization component processes ratings in order to make them comparable.
A typical normalization formula recomputes each user’s ratings in light of the scale
used by a user. For example, to make the ratings of users u and v comparable, their
ratings are transformed according to their respective lowest and highest ratings (Ricci,
Shapira, 2011; Han et al., 2004) The result is then used by the Index and Cluster
Generation component to form user groups, based on group size and group cohesive-
ness (how similar/different users are in a group). Group size and cohesiveness are
key factors in evaluating group recommendations. Index and Cluster Generation uses
a similarity function provided by User Similarity in order to determine user groups.
The similarity function takes into account user ratings to reflect how similar two users
are in their movie preferences. The result of Index and Cluster Generation is a set of
groups of varying size and cohesiveness that can then be used by different consensus
functions to produce and evaluate group recommendations.

2.2.3. Social Analytics on Twitter

Twitter is a popular microblogging service. It allows users to publish and read
short messages called tweets. The length of a tweet is restricted to 140 characters.
Many social analytics applications apply their analytics algorithm on tweets especially
for phrase and sentence level sentiment classification. Some analytics applications on

Data Preparation in SOCLE 9

Twitter are sarcasm recognition over a collection of 5,9 million tweets (Davidov et al.,
2010), or automatic classification of sentiment (e.g., positive or negative) of Twitter
messages (Go et al., 2009).

Figure 3(a) instantiates the architecture of SOCLE for Twitter sentiment analytics.
The data preparation phase for this application (and other similar ones (O Connor
et al., 2010; Paul, Dredze, 2011)) comprises two important tasks. Firstly, Data En-
richment such as substitution of some meta-tags with predefined tags (Davidov et al.,
2010) is usually performed. An example is the detection of URLs or other Twitter
users in a tweet and their substitution with special tags such as [LINK] and [USER].
Another enrichment is mapping emoticons to two defined emoticons expressing pos-
itive and negative feelings, for instance the following emoticons :), :-), :) and :D
are all mapped to :). Secondly, Data Pruning removes irrelevant tweets (Davidov et
al., 2010) or any tweet containing both positive and negative emoticons. That may
happen if a tweet contains two subjects or is a re-tweet (Go et al., 2009). The pre-
processed data (pruned and enriched) is an input for various algorithms and/or clas-
sifiers implemented by the Social Application Logic layer. The authors of (Davidov
et al., 2010) identify in a semi-supervised way sarcastic tweets using pattern recog-
nition and matching tools whereas those of (Go et al., 2009) use machine-learning
algorithms for classifying messages in Twitter as either positive or negative.

2.2.4. Itinerary Extraction from Flickr

Our last example is travel itinerary extraction from Flickr (De Choudhury et al.,
2010). Travel planning especially itineraries is a difficult and time consuming task.
These applications use the experience of millions of travelers who share their itineraries
via rich media data support such as photos. The application goal is to extract the
itinerary of each traveler by mapping photos into Points Of Interest (POIs) and ag-
gregate actions of many travelers into coherent queryable itineraries. Once those
itineraries constructed, they can be queried to find itineraries from a point of inter-
est to another satisfying certain time constraints specified by the users.

Figure 3(a) instantiates the architecture of SOCLE for itinerary extraction from
Flickr. Before constructing itineraries, data is pre-processed. All photos taken by resi-
dents are filtered and the application only keeps photos related to touristic sightseeing.
The photo timestamps are also used to prune photos with a time uploaded smaller than
the picture time taking (this may be due to a dysfunction in the camera). Such tasks
belong to the Pruning component. Then, the Enrichment component associates photos
with their related POIs. POIs are obtained from various sources such as Yahoo! Travel
and Lonely Planet. The association process can be geo-based or tag-based. The for-
mer relies on matching the photo geo location to the POI geo location in case these
two information are available. The latter matches the photos’ tags to the POIs names
using well-known substring matching methods.

10 ISI. Volume volume – no issue/2014

(a) Twitter sentiment extraction (b) Flickr itinerary extraction

Figure 3. Instances of the SOCLE architecture

3. Data and Storage Models

In this section, we identify the general requirements for SOCLE in terms of mod-
eling BSD, we survey the related work in social and graph models, and we discuss the
SOCLE data model and the main opportunities in designing it.

3.1. Requirements

There are two main requirements when modeling BSD: that of designing an ex-
pressive enough model to represent BSD and enable their efficient manipulation and
that of choosing the right storage backend for BSD to enable their efficient retrieval.
Evidently, the choice of model to use to represent BSD affects the data manipulation
language and vice versa. Section 4 discusses the requirements of a data manipulation
language for SOCLE and describes an algebra based on the model we will propose in
this section.

The applications we consider in Section 2.2, use input data in the form of triples
hu, i, li to represent a user u 2 U that assigned the label l 2 L to an item i 2 I. Hence,
the first requirement is to design a model able to represent all the information handled
by common social applications. To do that, a label may be a tag as in del.icio.us or
Flickr, a rating as in MovieLens, a review as in Yelp, a comment as on Al Jazeera,
or sentiment as in Twitter. The natural choice for representing social networks is to
use graphs where users and items are nodes, and relations are edges. For instance,
the triple hSue, T itanic, 5i which specifies that Sue rates the movie Titanic with the
score 5 is mapped to two nodes Sue and T itanic, and an edge between them that
represents the relation “rate”. Nodes may have a variety of attributes, associated with
users such as their demographics (age and location) or with items such as title and
actors for a movie. Edges may correspond to explicit ties such as tagging between a
user and an item or friendship between two users. Alternatively, they may correspond

Data Preparation in SOCLE 11

to implicit ties, deduced through some further analysis such as similarity in tagging
actions or people living in the same neighborhood.

Beyond representing raw and transformed social data, an appropriate model must
enable efficient data manipulation. Hence, it is going to be used as a basis for defining
algebraic operations that manipulate instances of that model. Therefore, it should be
powerful enough to address the requirements of those operations.

Storing BSD is our second big challenge. Indeed, raw and transformed BSD have
to be efficiently stored in order to enable undoing some data preparation steps effi-
ciently. For example, storing computed user similarity networks would enable their
partial recomputation when another similarity function is used.

It is also sometimes necessary to store nodes together, such as a user and his net-
works. To illustrate that, let us assume the example of John who would like to go
to Australia, with a personalized itinerary, by visiting several intermediate countries.
He currently lives in France. He would like to use connections in his social network,
in order to find a simple path from his city to a city in Australia and have a roof to
sleep at each step. John would like the path to satisfy a number of requirements: it
should consist of at most five persons, the person at the end of the path should live
in Australia, the guests along the path do not live in France, except for the first one,
because John does not have a direct friend abroad. The output paths should be stored
with the user John. The storage has to be optimized for data represented in a graph,
with the possibility of storing nodes and edges. It also has to be optimized for searches
exploiting data locality, from one or more root nodes.

In light of the above requirements, we propose to review the existing literature in
modeling social data, namely SoQL (Ronen, Shmueli, 2009), SociQL (Serrano et al.,
2007), BiQL2 (Dries et al., 2009), SocialScope (Amer-Yahia, Lakshmanan, Yu, 2009),
and SNDB3 (Cohen et al., 2013).

3.2. Related Work

All social networks databases have at their formal foundation variants of the basic
mathematical definition of a graph. Nevertheless, the graph model of every system
has a particular combination of features. For instance, it can be directed or undirected,
with labeled or unlabeled edges and nodes, with attributes in edges and nodes, and
with hyperedges. This yields a spectrum of more or less generic data models, that we
now present.

Nodes and Edges At the basis of all graph models, nodes represent people and
edges represent relationships among people. This allows to define, for instance, that
Alice is a friend of Ben, by representing Alice and Ben with two nodes connected by an

2. This is a database developed for general networks, thus including social networks.
3. The acronym refers to the title of the article where the system is proposed: A Social Network DataBase
that learns how to answer queries.

12 ISI. Volume volume – no issue/2014

edge labeled with isFriendOf. However, in more general models nodes rather repre-
sent resources (or items), that are physical and abstract entities, like items and topics.
This allows to represent Alice tagged the movie Titanic. Different kinds of nodes are
allowed in SociQL, SocialScope, BiQL, and SNQL. Edges in the graph can be either
directed or undirected. Notice that while isFriendOf is a symmetric relation, tagged is
an asymmetric one. For symmetric relations, undirected edges suffice. However, be-
cause most of the interesting relations are asymmetric (e.g., tagged) directed edges are
needed. Directed edges are supported by all systems, except for SoQL that employes
the so-called reciprocal friends model (Ronen, Shmueli, 2009).

Attributes. Nodes and edges can have a set of attribute-value pairs to define
richer content. Node attributes allow to have an enriched profile of a user or an
item, by adding for instance an email address, a job profession, or geographic coordi-
nates. Edge attributes allow to represent various types of relationships and interactions
among people, by adding for instance a description of the edge, a weight representing
the uncertainty of a relation, or a timestamp denoting when the relation took place.
Node attributes are supported by all systems, while edge attribute are not supported
by SoQL and SociQL.

Hyperedges. A social network graph can also have hyperedges. These are edges
involving a set of nodes, that are used to model the notion of group of users and
interactions. For example, an hyperedge can define the co-authorship of more than
two persons (represented as nodes) for a particular book.4 Conceptually, hyperedges
allow to go beyond binary relations between resources of the social network graph,
and are roughly equivalent to n-ary relations. BiQL, SNQL and SNDB graph data
model are the most general ones, and support hyperedges.

3.3. Opportunities

Implementing a framework for BSD preparation in building social applications
requires rethinking appropriate data models, and mainly how to store BSD in its dif-
ferent forms: raw, sanitized or transformed.

3.3.1. BSD Model

First and foremost, modeling BSD to enable efficient manipulation is a big chal-
lenge. We adopt a graph model for representing social content. Intuitively, nodes
in the graph represent users and items, and links represent connections and activities
between users such as friendship and between users and items such as tagging and
rating actions. Each node or link has a unique id. The graph model described here is
a logical model that is not tied to any specific physical implementation.

We adopt and extend the data model defined in (Amer-Yahia, Lakshmanan, Yu,
2009). That model is powerful enough to represent raw, sanitized and transformed

4. Attributes such as the name of the book are represented as attributes of the hyperedge

Data Preparation in SOCLE 13

social data. Nodes and links contain structural attributes, including a mandatory type
attribute. We adopt a flexible (i.e., schema-less) typing system and allow the type
attribute to have multiple values. For example Fig. 4(a) represents two users, Eva and
John, who tagged websites with different tags; in Fig. 4(b), Sue and Rob rate movies
whereas Eva, John and Rob express their sentiments on Obama entity in Fig. 5(a).
Finally, Fig. 5(b) represents users who tagged the same picture with different tags.

(a) Delicious data model (b) MovieLens data model

Figure 4. Examples of social data in the SOCLE model

(a) Twitter data model (b) Flickr data model

Figure 5. Examples of social data in the SOCLE model

Our typing system gives us the flexibility of creating new types through content
analysis (e.g., if entities are extracted from text, their type can be added). We also
maintain an evolving catalog of basic types, including user, item, topic, movie, con-
nect (e.g., friend), act (e.g., tag, rate, review, click, visit). Those basic types are ade-
quate for modeling most of the social content sites we have encountered.

To easily represent interactions, edges may be directed or undirected. Edge at-
tributes can be user-defined or system-generated (e.g., computing the number of vis-
ited cities).

3.3.2. BSD Storage

The key challenge in data storage in general is to allow for its efficient retrieval.
BSD storage has two additional challenges: first, data preparation (in particular, its
data sanitization and data transformation steps) may generate new instances (in entity
identification in text mining for example), new data types (in data enrichment for
example), second, the same data instances may be accessed together or separately
(for example, a user’s network formed by other others should be accessed together to
compute recommendations or separately whether its that one user’s recommendations

14 ISI. Volume volume – no issue/2014

that are computed or recommendations for users in his network). We here discuss the
opportunities raised by such peculiarities.

Native vs non-native stores. There are numerous ways to encode and store a
graph, some of which take advantage of natural index-free adjacency which is crucial
for fast, efficient graph traversals (such as answering questions like “which cities did
my friends visit that I did not visit yet?”). This means that each data element points
directly to its inbound and outbound relationships, which in turn, point directly to
related nodes, and so on. This ability is present in Neo4j (Neo4j the Graph Database,
n.d.), a graph database useful for managing and querying highly connected data. in
Neo4j, both nodes and relationships can hold properties in a key/value fashion.

In a non-native graph store (e.g., a relational database), there is a collection of
tables of data items. For instance, to store data in Fig. 4(b), three tables (Fig. 6) can
be used. The values of user (respectively movie and edge) attributes are given in table
T
users

(respectively T
movies

and T
ratings

).

Figure 6. Example of MovieLens data in a relational database

In a non-native graph store, indexes are used to link together nodes, whereas in
a native graph store each node acts as a kind of micro-index of other nearby nodes
(thereby inducing low retrieval costs). Conversely, in a native graph store, there is
no requirement to maintain large global indexes to reconstruct subgraphs (at greater
computational costs).

Hybrid stores. In practice, the best performance may be obtained from a hybrid
storage (e.g., use of a relational database for indexing nodes and use of a native stor-
age to benefit from index-free adjacency). This has been already found as an effective
solution (Barbosa et al., 2009) for storing and querying an XML corpus. The idea is
that for instance, some XML documents have both very structured and very unstruc-
tured parts. Thus, one can use different storage models and systems to store different
document parts. For instance, a sequence of tree nodes with the same tag, can be ei-
ther stored in a relational table, or in a native XML storage system. Of course, this
implies the development of different access methods corresponding to the different
storage mappings and account for potentially contradictory data access requirements
as discussed at the beginning of this section.

Data Preparation in SOCLE 15

4. Languages and Algebras

In this section, we examine existing languages and algebras for querying and trans-
forming social data and their applicability to the data preparation steps described in
Section 2. We first discuss the requirements of a data manipulation language for
SOCLE and review some of the related work. Then, we present the SOCLE algebra
through examples inspired from our selected applications in Section 2.2. Finally, we
summarize the main opportunities in developing a data manipulation language for
BSD preparation.

4.1. Requirements

The SOCLE data manipulation language consists of a set of graph transformation
primitives based on the following requirements.

Expressivity. Querying nodes, edges, and their attributes, in a social graph are
fundamental operations, that however do not suffice for expressing data preparation
operations when building social applications. The reason is that they find their appli-
cations mainly in Data Sanitization, for example in pruning operations. As we shall
discuss, Data Transformation operations are ill-represented.

One essential operation the language must support is aggregate queries over sets
of edges and nodes. Aggregates are fundamental for instance for value normaliza-
tion in Data Sanitization, and when computing similarity networks for users in Data
Transformation. Once aggregates are computed, their results are stored in new nodes
and edges. Creating new edges and nodes is also helpful for restructuring a social net-
work graph. For instance, the names of locations that are encoded as tag attributes of
graph edges (see Figure 5(b)), may be needed in the form of graph nodes for itinerary
extraction. Analogously, for website recommendation, one may want to represent as
nodes the topics hidden in tags that reside on edges (see Figure 4(a)).

Restructuring a network is mainly done during Data Transformation. Top-k query
answering is very important, for search and recommendation, to refine intermediate
results and retain the most relevant ones. The language should also allow invoking
external tools to perform operations such as mining and clustering. Those tools are
used repeatedly to compute a measure of similarity and closeness of a set of nodes,
perform node clustering, apply topic discovery on tags, or extract sentiment from
text. They play a prominent role in Data Transformation. Analogously, it should be
possible for the language to integrate external data sources (such as Lonely Planet to
extract landmarks in a city), and mapping them to the SOCLE data model. This is
needed to enrich data during Data Sanitization.

Declarativity. This is considered a crucial aspect of any data manipulation lan-
guage. Declarative access to data permits fast deployment and easy maintenance of
applications, in the spirit of logical and physical data independence. For building
social applications, this is even more important since developers may have a strong

16 ISI. Volume volume – no issue/2014

knowledge on a particular social application, but choosing the best implementations
for data sanitization or data transformation will often be beyond their abilities.

Closure and invertibility. The graph manipulation operations expressed in SO-
CLE are required to be closed and invertible. Just like SQL or XQuery, the closure of
the SOCLE language aims to ensure that each operation in the language takes as input
one or more instances of and outputs an instance of the SOCLE model. Therefore,
operations can be composed any number of times and in any order. Invertibility is
unique property of the SOCLE language. It aims to guarantee that each sanitization
or transformation operation admits an inverse allowing to undo and backtrack com-
putation. This property is important to enable the evaluation of different application
semantics, without rebuilding applications from scratch. For instance, one may want
to change the threshold values of the user similarity functions or those used in an
external clustering tool. Ensuring fine-grained invertibility (at the level of each oper-
ation in the language), will enable optimized execution plans where bulk pruning and
aggregations, typical of Data Sanitization, are avoided.

Figure 7. Features of social network languages

4.2. Related Work

Our related work into two subsections: social languages and algebras which are
directly applicable to social data preparation, and other models for representing and
processing data.

Data Preparation in SOCLE 17

4.2.1. Social languages and algebras

Figure 7 summarizes data manipulation languages for social graphs and their fea-
tures. It also provides a bibliographic reference for each language. These languages
are tailored to social network analysis, and are used to query paths, create new net-
works, perform aggregations, and run data mining algorithms. We discuss some of
their main features that are essential in our selected applications (Section 2.2).

Paths. A feature that makes social network databases akin to graph databases is
the possibility of querying paths. A path is a sequence of nodes and edges in the graph
that, for instance, represents the connection between two individuals in a social net-
work. In social networks, it is important to perform path selection, path matching, and
compute transitive closures. Path selection consists of retrieving all paths that satisfy
some constraints. In its simplest form, a path selection can be expressed through a
conjunctive query. This is expressible of course in any social network database. How-
ever, systems like SoQL and SociQL allow also to query paths according to i) a set
of conditions on nodes and edges attributes and labels, ii) a distance from a fixed re-
source node. Path matching is a means of finding pairs of nodes that are connected by
a path, whose sequence of edges and nodes matches some regular expression pattern.
This is supported only by BiQL and SNQL. This kind of expressions have been ex-
tensively studied during the development of several graph-database systems (Consens,
Mendelzon, 1990), and are described in comprehensive surveys (Wood, 2012; Angles,
Gutiérrez, 2008). In a nutshell, the most important feature of such expressions is the
Kleene-* operator, that allows to denote the transitive closures of relations.

Aggregation. Aggregation is critical for most analysis tasks on social content
graphs. An aggregate is a function that applies to a set of objects yielding an ag-
gregation result. Almost all languages we reviewed can express popular functions
like summation, count, average, minimum and maximum (see Figure 7). The So-
cialScope algebra features two different types of aggregation: over nodes and over
edges. SoQL supports also aggregation queries over paths. BiQL supports aggre-
gation over paths and nested aggregate functions, that are needed for instance to get
the maximum/maximum sum of weights for a set of paths satisfying a condition. For
supporting aggregates, it is important to be able to create new nodes and edges where
the aggregation results are stored. In BiQL and SNQL, one can radically change the
social network graph, for instance by making edges and attributes become nodes. So-
cialScope supports graph composition, that is the possibility to create a graph induced
by new edges, that are composed from edges belonging to two different source graphs.

External tools. To better analyze the data, some systems propose to also integrate
a set of mining capabilities tailored to social network analysis. Ranking and top-k
query answering are used in BiQL, SocialScope, and SNDBto reduce intermediate
results. BiQL also supports calling external clustering tools.

18 ISI. Volume volume – no issue/2014

4.2.2. Other models and algebras

We briefly review the closest non-social data representation and manipulation mod-
els and primitives in this section.

XML and Query. Another possible way of doing data preparation is by exploit-
ing the universality of the XML format, and the XQuery and XSLT programming
languages (Chamberlin et al., 2007; Kay, 2007). These languages are specifically de-
signed to write (XML) data transformations, and can express the various data prepara-
tion tasks. XQuery is a functional language whose core, XPath, is also at the basis of
the template-based language XSLT. These are however in contrast with our approach,
where we directly define the algebraic operators to manipulate social graphs. Most
importantly, the XML programming languages are designed and fully optimized to
process tree-shaped data. Despite the fact that we can easily instantiate social graphs
in the XML data-model, the joins needed to reconstruct graphs, stored and processed
as a trees, become the bottleneck for computation.

Process algebras. Process algebras (Fokkink, 2007) model concurrent systems.
They are used as a high level tool describing the interactions, communications and
orchestrations of a set of processes. If we consider each module of the SOCLE archi-
tecture as a process, we can use process algebra languages (Fokkink, 2007) to describe
the execution of each of module and represent the interaction between modules. For
instance, a process algebra provides a set of operators such as parallel composition
of processes or specification of which channels to use for sending and receiving data
and process replication. But these languages are not suitable for describing data and
data transformation. In SOCLE, manipulating and storing data is a crucial aspect that
captures all the transformation data goes through in data preparation.

Workflows. Workflows provide a way of capturing a process so that results can
be reproduced and the method can be reviewed, repeated and adapted. A workflow
is usually a pipeline of different processes, described at a high level so that program-
mers do not need to be concerned with low-level programming. One major strength
of workflows is their visual component allowing a large scale management process
execution. Workflows have been used in many different areas (service oriented ar-
chitecture, agent based model, etc) and many languages (Mathias Wesken, 2006) are
dedicated to helping developers construct and execute their workflows. As powerful
as it can be this precise description of a multi-step process to coordinate multiple tasks
is far away of a declarative way. Social application developers will need to acquire
a specific knowledge in data preparation processes, in order to describe and execute
their workflows whereas an algebra will allow them to describe what they want to do
and not how to do it.

4.3. Our algebra

We illustrate through examples the core operators of the SOCLE algebra for ma-
nipulating social graphs, allowing to perform selections, joins, and aggregates. It is
inspired from the algebra of SocialScope (Amer-Yahia, Lakshmanan, Yu, 2009).

Data Preparation in SOCLE 19

Selecting sub-networks of interest. Querying nodes, edges, and their attributes,
is needed in all phases of Data Sanitization and Data Transformation, either to select
a portion of the input social graph to analyze or in order to refine intermediary results.
In particular, this is at the basis of all pruning tasks. We present two examples of
selections made during website recommendation on del.icio.us.

“Which users are interested in sports sites?”. This query can be written in the
SOCLE algebra by means of two operators corresponding to the selection on nodes and
links, that we denote by �N

C

and �L

C

respectively, where C is the filtering predicate.

�N

type=user

((�L

tag=sport

((G))))

The inner expression selects all edges with a tag sport in the graph G. These corre-
spond to all tagging actions concerning sports sites, made by users. Then, the whole
expression returns a (null) graph constituted of the set of nodes of type user associated
to that edges. Consider the graph in Figure 4(a). The evaluation of this expression on
the graph yields a social network graph constituted of the two nodes corresponding to
the users Eva and John respectively.

“Which topics interest John?”. This query is of crucial importance in website
recommendation, since it feeds the successive research of all users that are interested
in the same topics as John. Finally, it will be possible to suggest to John new topics
that similar users already expressed, and he may like.

The query can be written with a selection of all outgoing edges of the node rep-
resenting John. The outgoing edges of the node representing John are computed by
using a semi-join operator between two graphs, that we denote by G1 n

�

G2. The
directional condition � is a pair � = (�1, �2) with, �

i

2 {s, t}, which defines that
the join condition between the edges in the two graphs is either between two source
nodes (s, s), or between two target nodes (t, t), or between a target and a source node
(s, t), (t, s), belonging to the first and second graphs respectively. This condition is
called directional because it fixes the “direction” of joining edges. For all graph edge
connecting n1 with n2, we say that n1 is the source node and n2 is the target node
of the edge. A node with no edges is also considered a source node. The following
expression joins all edges in the graph G with the source node representing John.

G n(s,s) �N

name=John

((G))

This yields a graph G0 constituted of all outgoing edges of John node in G. Since
all types of links are in the result, we apply a further link selection �L

type=tag

(G0),
as in the previous example, in order to retain just those representing a tagging ac-
tion. Consider the graph in Figure 4(a). The evaluation of this expression on the
graph yields a social network graph constituted of the edges connecting the John node
with those representing the sites foodandsport.com and openculture.com,
respectively.

Aggregation. Aggregation operators are at the basis of computing many different
statistics on the data. Here we present an application in Data Sanitization for group

20 ISI. Volume volume – no issue/2014

recommendation in MovieLens, where we computed the min (and analogously max)
movie rating value of a user. This is needed for the Data Normalization phase, where
in order to compare ratings of different users, these are first settled to the same range.

“What is the min movie rating given by Bob?”. This query can be written by
first selecting all rating actions of Bob with selections as illustrated before, and then
by running an aggregate query on top of them. The aggregation operator for links
is denoted by �L

⌫

(G). Here ⌫ = (C, att,A) is a triple containing all aggregation
parameters, namely an aggregation condition C, an attribute att where to store the
aggregation result, and the aggregation operation A 2 {Sum, Avg, Min, Max, . . . }. Let
G

Bob

be the graph containing all outgoing edges from Bob node, the number of friends
of Bob is computed by the following expression.

�L

(rating, min_rating, Min)(GBob

)

In this case, we have a boolean condition driving the aggregation just saying that the
attribute target of aggregation is rating. Hence, in order to participate to the aggrega-
tion, an edge must have a rating attribute. However, for other types of aggregates
(e.g., Sum) and applications (e.g., itinerary recommendation) we employ standard
predicates such as rating > 2 or type = travel. Finally, the particularity of the
aggregation operator is that it modifies the graph, in order to store the aggregation re-
sult. Each edge satisfying the aggregation condition (in this case featuring attribute
tag rating) is here replaced with a fresh edge featuring the attribute min_rating,
whose aggregation value is the number of edges satisfying the condition. Consider the
graph in Figure 4(b). The evaluation of this expression on the graph yields a social
network graph constituted of the edges connecting the Bob node with those represent-
ing the movies Titanic and Mama. Both edges feature a fresh id, and the only attribute
min_rating = 1.

4.4. Opportunities

Evaluating an expression in the SOCLE language poses new opportunities, due to
the sheer volume of BSD and to the complexity of the language operators. We describe
some classic optimization problems, such as query evaluation and result maintenance,
and their applicability to building social applications.

Query evaluation. SOCLE operations are algebraic expressions over graphs. Each
operation has an associated execution plan. Often, many equivalent execution plans
for a single expression are possible, and choosing the best is crucial for efficiency.
This challenge can be tackled by estimating the cost of each operation, rewriting one
expression to an equivalent one, and by choosing access paths for evaluating subex-
pressions. The new opportunity is the ability to combine a native and a non-native
storage of the social graph and leverage adjacency and ad-hoc indexes.

Full/Partial recomputation. A unique challenge of the SOCLE framework is that
it should efficiently permit an iterative development of applications, where continuous
changes in an application’s semantics are made by developers which are not satisfied

Data Preparation in SOCLE 21

with the results after evaluation. These continuous changes immediately raise an op-
timization issue, since it is inconvenient to restart the whole evaluation process from
scratch every time there is a change. Instead, it could be more efficient to revert some
operations, and perform partial restarts. Of course, this cannot always be the case and
it is thus interesting to understand the tradeoff between a full recomputation and a par-
tial one. To carry over this task, we envision the use of statistics to estimate the cost
of different strategies, and define a notion of operation invertibility as an extension of
work on provenance (Binnig et al., 2007; Cheney et al., 2009). Finally, notice that
this is different from the classic view maintenance problem, that arises when changes
on the data occur (as opposed to changes in computation).

Result maintenance. Efficiently maintaining intermediate results of computation,
after changes on the data is a classic optimization problem. We plan to leverage that
work to deal with general updates on the data, such as the integration of an external
data set allowing for a more comprehensive analysis, or the suppression of a redundant
graph.

Efficient evaluation on BSD. Efficiently evaluating SOCLE expressions over large
social graphs demands to devise (i) proper indexes to quickly access graph nodes and
edges according to their attributes, (ii) cost estimation functions for driving algebraic
optimizations, and (iii) storage strategies that reflects the topology of the graph so
as to minimize the cost of joins between adjacent nodes and edges. In particular,
the evaluation of aggregates would largely benefit from effective indexing and storage
techniques. All of these are central questions for the future development of the SOCLE
platform.

5. Conclusion and Future Work

We presented SOCLE, a framework composed of an architecture, algebra and lan-
guage for data preparation in social applications. We examined a large number of
efforts in building two families of social applications, recommendation and analytics,
that manipulate Big Social Data (BSD). We also reviewed the related work in model-
ing and querying graph data and social data in particular. We proposed a taxonomy of
the operations covered by proposed algebras and languages and showed via examples
inspired from the applications we examined, that there is a need for a new algebra and
language for expressing BSD preparation.

Our immediate plan of action is the development of a concrete application in which
we will explore the challenges raised in this paper. We conducted preliminary experi-
mentation on storing data on graph database (Neo4j) and relational database (MySql).
We developed a recommendation application for MovieLens users that implements
the Pruning, Normalization, User similarity Functions, Network Construction Func-
tions and Cluster and Index Generation modules. This application uses collaborative
filtering to find for each user a list of recommended movies. User similarity for collab-
orative filtering was based on computing the Jaccard distance between rated movies.

22 ISI. Volume volume – no issue/2014

Our first results are promising and show some differences in performance between
the two storage solutions (relational and graph). However, we do not have substantial
experimental results to report at this time as this would require many more experiments
to make sure our results are satisfactory. We are currently running more experiments
with a variety of other applications including tweets analysis.

The architecture of SOCLE is flexible and can be extended to cover other data
preparation modules. The SOCLE algebra and language are based on SocialScope (Amer-
Yahia, Lakshmanan, Yu, 2009) based on a data model with an extensible type system
and that allows the definition of new primitives. Later, we plan to explore other social
applications and identify BSD primitives not covered by the SOCLE algebra.

References

Abbar S., Amer-Yahia S., Indyk P., Mahabadi S. (2013). Real-time recommendation of diverse
related articles. In D. Schwabe, V. A. F. Almeida, H. Glaser, R. A. Baeza-Yates, S. B. Moon
(Eds.), Www, p. 1-12. International World Wide Web Conferences Steering Committee /
ACM.

Amer-Yahia S., Anjum S., Ghenai A., Siddique A., Abbar S., Madden S. et al. (2012). Maqsa:
a system for social analytics on news. In Sigmod conference, p. 653-656.

Amer-Yahia S., Benedikt M., Lakshmanan L. V. S., Stoyanovich J. (2008). Efficient network
aware search in collaborative tagging sites. PVLDB, Vol. 1, No. 1, pp. 710-721.

Amer-Yahia S., Huang J., Yu C. (2009). Jelly: A language for building community-centric
information exploration applications. In Icde, p. 1588-1594.

Amer-Yahia S., Lakshmanan L. V. S., Yu C. (2009). Socialscope: Enabling information dis-
covery on social content sites. In Cidr.

Amer-Yahia S., Roy S. B., Chawla A., Das G., Yu C. (2009). Group recommendation: Seman-
tics and efficiency. PVLDB, Vol. 2, No. 1, pp. 754-765.

Angles R., Gutiérrez C. (2008). Survey of graph database models. ACM Comput. Surv., Vol. 40,
No. 1.

Barbosa D., Bohanson P., Freire J., Kanne C.-C., Manolescu I., Vassalos V. et al. (2009). XML
Storage.

Binnig C., Kossmann D., Lo E. (2007). Reverse query processing. In Icde, p. 506-515.

Chamberlin D., Florescu D., Boag S., Fernández M. F., Robie J., Siméon J. (2007). XQuery
1.0: An XML query language. W3C Recommendation.

Chen Y.-L., Cheng L.-C., Chuang C.-N. (2008). A group recommendation system with consid-
eration of interactions among group members. Expert systems with applications, Vol. 34,
No. 3, pp. 2082–2090.

Cheney J., Chiticariu L., Tan W.-C. (2009, April). Provenance in databases: Why, how, and
where. Found. Trends databases, Vol. 1, No. 4, pp. 379–474. Retrieved from http://dx.doi
.org/10.1561/1900000006

Cohen S., Ebel L., Kimelfeld B. (2013). A social network database that learns how to answer
queries. CIDR.

Data Preparation in SOCLE 23

Consens M. P., Mendelzon A. O. (1990). Graphlog: a visual formalism for real life recursion.
In Proceedings of the ninth acm sigact-sigmod-sigart symposium on principles of database
systems, pp. 404–416. New York, NY, USA, ACM. Retrieved from http://doi.acm.org/
10.1145/298514.298591

Davidov D., Tsur O., Rappoport A. (2010). Enhanced sentiment learning using twitter hashtags
and smileys. In Coling (posters), p. 241-249.

De Choudhury M., Feldman M., Amer-Yahia S., Golbandi N., Lempel R., Yu C. (2010). Au-
tomatic construction of travel itineraries using social breadcrumbs. In Proceedings of the
21st acm conference on hypertext and hypermedia, pp. 35–44. New York, NY, USA, ACM.
Retrieved from http://doi.acm.org.gate6.inist.fr/10.1145/1810617.1810626

Dries A., Nijssen S., De Raedt L. (2009). A query language for analyzing networks. In
Proceedings of the 18th acm conference on information and knowledge management, pp.
485–494. New York, NY, USA, ACM. Retrieved from http://doi.acm.org/10.1145/1645953
.1646016

Fokkink W. (2007). Introduction to process algebra. Springer-Verlag.

Go A., Bhayani R., Huang L. (2009). Twitter sentiment classification using distant supervision.
CS224N Project Report, Stanford, pp. 1–12.

Han P., Xie B., Yang F., Shen R. (2004). A scalable p2p recommender system based on
distributed collaborative filtering. Expert systems with applications, Vol. 27, No. 2, pp. 203–
210.

Kay M. (2007). XSL Transformations (XSLT) Version 2.0. W3C Recommendation.

Maniu S., Cautis B. (2012). Taagle: efficient, personalized search in collaborative tagging
networks. In Sigmod conference, p. 661-664.

Mathias Wesken F. P., Gottfried Vossen. (2006). Workflow and service composition languages.
Springer.

Neo4j the graph database. (n.d.). http://www.neo4j.org/. (Accessed: 2013-05-20)

O Connor B., Balasubramanyan R., Routledge B. R., Smith N. A. (2010). From tweets to polls:
Linking text sentiment to public opinion time series. In Proceedings of the international
aaai conference on weblogs and social media, pp. 122–129.

O’Connor M., Cosley D., Konstan J. A., Riedl J. (2001). Polylens: A recommender system for
groups of user. In Ecscw, p. 199-218.

Park M.-H., Park H.-S., Cho S.-B. (2008). Restaurant recommendation for group of people
in mobile environments using probabilistic multi-criteria decision making. In Computer-
human interaction, pp. 114–122.

Paul M., Dredze M. (2011). You are what you tweet: Analyzing twitter for public health. In
Fifth international aaai conference on weblogs and social media (icwsm 2011).

Pyle D. (1999). Data preparation for data mining. In, Vol. 1. Morgan Kaufmann.

Refaat M. (2010). Data preparation for data mining using sas. Morgan Kaufmann.

Ricci F., Shapira B. (2011). Recommender systems handbook. Springer.

Ronen R., Shmueli O. (2009). Soql: A language for querying and creating data in social
networks. In Icde, p. 1595-1602.

24 ISI. Volume volume – no issue/2014

Roy S. B., Amer-Yahia S., Chawla A., Das G., Yu C. (2010). Space efficiency in group
recommendation. VLDB J., Vol. 19, No. 6, pp. 877-900.

Schafer J. B., Frankowski D., Herlocker J., Sen S. (2007). Collaborative filtering recommender
systems. In The adaptive web, pp. 291–324. Springer.

Schenkel R., Crecelius T., Kacimi M., Michel S., Neumann T., Parreira J. X. et al. (2008).
Efficient top-k querying over social-tagging networks. In Proceedings of the 31st annual
international acm sigir conference on research and development in information retrieval,
pp. 523–530. New York, NY, USA, ACM. Retrieved from http://doi.acm.org/10.1145/
1390334.1390424

Serrano D., Stroulia E., Barbosa D., Guana V. (2007). Sociql: A query language for the
socialweb. In Icdt, p. 269-283.

Stoyanovich J., Amer-Yahia S., Marlow C., Yu C. (2008). Leveraging tagging to model user
interests in del.icio.us. In Aaai spring symposium: Social information processing, p. 104-
109.

Wood P. T. (2012, April). Query languages for graph databases. SIGMOD Rec., Vol. 41, No. 1,
pp. 50–60. Retrieved from http://doi.acm.org/10.1145/2206869.2206879

