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Abstract

Supertree methods are used to build comprehensive phylogenies from source trees with over-
lapping sets of leaves. Ranwez et al. (2007) recently proposed a polynomial-time method out-
putting supertrees that verify attractive mathematical properties to obtain a consensual sum-
mary of a collection of source trees. The topological information of the source trees that is
considered by the method is the set of rooted triples they define on the leaf set. The method
finds a subset of these rooted triples that identify a supertree (Semple and Steel, 2003) and re-
turn the corresponding supertree. Biologists are interested in supertrees that are as resolved as
possible (Bininda-Emonds, 2004b). Thus, given a set of rooted triples on a set of taxa, Ranwez
et al. (2007) asked whether it is possible to find in polynomial time a largest subset of rooted
triples identifying a tree. In this short note, we show that solving this problem is an NP-hard
task.
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1 Introduction

Phylogenies are invaluable tools in various areas of biology to understand the evolution of genes
and taxa. Trees that incorporate an exhaustive sampling of taxonomic biodiversity provide crucial
information about systematics, genomics, and diversification patterns of species (Davies et al.,
2004). Large trees can be built according to a divide-and-conquer approach, first inferring source
trees from biological data sets covering only part of the taxa, then assembling the source trees in a
comprehensive tree, called a supertree (Bininda-Emonds, 2004a).

To assess the quality of a supertree, it is most useful to have measures but also properties char-
acterizing to what extent the supertree is a good representation of the input collection (Steel et al.,
2000). Ranwez et al. (2007) defined formal properties requesting that supertrees do not contradict
the source trees, singly or in combination, and that supertrees do not propose arbitrary resolutions.
This implies that the supertree does not favor a particular resolution among several conflicting
alternatives (non-contradiction property, denoted PC), but also that every piece of phylogenetic
signal displayed in the supertree is induced by one or several source topologies (induction property,
denoted PI). Indeed, “novel relationships displayed by a supertree (...) are worrying if they are not
implied by combinations of the input trees” (Wilkinson et al., 2005).

Until now, supertree methods have focused on mathematical criteria defining how well a su-
pertree represents a collection of source trees and trying to find the supertree optimizing such a
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fitness criterion. Yet, biologists also need inferred supertrees to be as informative as possible in
order to elucidate phylogenetic relationships of the taxa they consider. However, just trying to
maximize the amount of information in a supertree leads to infer a binary tree spanning the whole
set of considered taxa, without regard to the amount of information present in the data. Such
a supertree is not desirable if it contains arbitrary groups proposed for the sake of obtaining a
maximally resolved supertree. Thus, a reasonable goal is to obtain a supertree that is as resolved
as possible but that only displays defendable relationships with regards to the source trees. The PI
and PC properties of Ranwez et al. (2007) define a formal framework in which this request from
biologists can be investigated. We study here the hardness of the corresponding computational
problem. We show that finding the most informative supertree satisfying PI and PC is an NP-hard
problem, when the amount of information in a tree is measured by the number of rooted triples it
induces.

2 Definitions

Definitions and notations used for trees and their topological description mainly follow those used
in the book of Semple and Steel (2003). We only consider rooted trees, due to the impossibility of
supertree methods to fulfill different desirable properties listed in Steel et al. (2000) when considering
unrooted trees. Given a tree T , we denote L(T ) the set of taxa associated to its leaves. More
generally, given a collection T of trees, L(T ) denotes the set of taxa appearing in at least one tree
of T . Given two trees T, T ′ on the same leaf set (L(T ) = L(T ′)), we say that T refines T ′, denoted
T D T ′, whenever T contains all clades of T ′. In other words, T can be transformed into T ′ by
collapsing some of its internal edges (i.e., merging the respective extremities of these edges)

A rooted tree on three leaves a, b, c has only three possible binary shapes, called rooted triples
(or triplets) and denoted ab|c, resp. ac|b, resp. bc|a, depending on the innermost clade (ab, resp. ac,
resp bc). Given a rooted triple t, we denote t̄ any of the two other rooted triples on the same set of
leaves. Alternatively, a tree on three leaves can be a star tree, i.e. a unique internal node connected
to the leaves. It is well known that a rooted tree T with more than three leaves can be equivalently
described by a set of rooted triples: we note rt(T ) the set of rooted triples homeomorphic to subtrees
of T connecting three leaves. Given a collection T of trees, we denote rt(T ) =

⋃

Ti∈T
rt(T ) the

set of rooted triples present in theses trees. Note that it is possible that rt(T ) contains two rooted
triples t and t̄, namely when T hosts two incompatible trees. Clearly, two such rooted triples can
not be combined into a single supertree of the collection. Given a set R of triples, L(R) denotes
the set of taxa appearing in at least one tree in R.

A tree T is said to display a set R of rooted triples when R ⊆ rt(T ); moreover, T strictly
displays R if additionally L(T ) = L(R). A set R of rooted triples is compatible if there is a tree
T that displays R. To find a tree displaying R, it is useful to rely on the fact that some triples of
the tree are induced by R: a compatible set R of rooted triples induces a rooted triple t, denoted
R ⊢ t, if and only if R ∪ { t̄ } is not compatible, or equivalently if any tree T that displays R
contains t. For instance, any tree displaying {ab|c, bc|d} has to also display the triple ac|d, that is
{ab|c, bc|d} ⊢ ac|d. Bandelt and Dress (Bandelt and Dress, 1986) and Dekker (Dekker, 1986) were
among the first ones to investigate such induction rules. The set of all rooted triples induced by
a compatible set R is called the closure of R and is denoted cl(R). Source trees considered for
supertree building are sometimes incompatible, in which case the set of rooted triples considered is
incompatible. Nonetheless, we can characterize the set of rooted triples induced by these collections
by extending the preceding definition: we will say that a set R of rooted triples induces a rooted
triple t when there is a compatible subset R′ ⊆ R that induces t. We now recall the definition of
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the PC and PI properties given in Ranwez et al. (2007).

Definition 1 Let T be a tree, and T be a collection of trees,

• Let R(T,T ) be the set of rooted triples in rt(T ) for which T proposes a resolution. More
formally, R(T,T ) =

{

ab|c ∈ rt(T ) such that {ab|c, ac|b, bc|a} ∩ rt(T ) 6= ∅
}

.

• We say that T verifies PI for T if and only if for all t ∈ rt(T ), it holds that R(T,T ) ⊢ t.

• We say that T verifies PC for T if and only if for all t ∈ rt(T ) and all t̄, it holds that
R(T,T ) 6⊢ t̄.

The set R(T,T ) corresponds to all topological information present in the collection T , or
induced by it, that is related to the topological information present in the supertree T . Note that
when the source trees are incompatible, it is possible that this subset of rooted triples contains
two different rooted triples for the same three taxa. For some compatible collections of trees, it is
possible to find a supertree that both displays all the rooted triples of the collection and is refined
by all other possible supertrees. More formally, a set R of rooted triples is said to identify a tree
T if and only if T strictly displays R and T is refined by every tree T ′ that strictly displays R.
In this case, R is said to be identifying. A set R can identify at most one tree. Thus when rt(T )
identifies a tree T , this tree can be seen as a canonical representation of all possible supertrees of
the collection T .

Proposition 1 (Ranwez et al. (2007)) [Ranwez et al. (2007)] A tree T verifies PI and PC for
a collection T of trees if and only if R(T,T ) identifies T .

Ranwez et al. (2007) proposed a polynomial-time method that outputs supertrees verifying
PI and PC and showing a non-trivial level of resolution on several biological data sets. But the
question remains to know whether a method can be designed that produces supertrees satisfying
PI and PC and containing as much resolution as possible, e.g. resolves as much rooted triples as
possible. More precisely, using Proposition 1, we ask for a method that, given any collection T ,
proposes a supertree T such that R(T,T ) identifies T and R(T,T ) has maximum size over all such
subsets of rt(T ). Such a subset of rt(T ) is called a maximum identifying subset of rooted triples
(MIST). The difficulty of this problem can not be simply deduced from previously known results
for optimization problems on rooted triples. Indeed, the MIST problem is a middle term between
the NP-hard problem that consists of finding a maximum-sized compatible subset of rooted triples
(Bryant, 1997) and the polynomial-time problem that asks for the maximum-sized tree-like subset
of rooted triples1 (Berry and Gascuel, 2000; Bryant and Berry, 2001).

3 Finding the largest subset of rooted triples identifying a tree is

an NP-hard problem

Given a collection T of source trees, we show here that finding the largest subset of rt(T ) that
identifies a tree is an NP-hard problem. More formally, we consider the following problem:

Maximum Identifying Subset of rooted Triples (MIST)
Input: a set R of rooted triples.
Output: a subset R′ of R that is identifying and that is of maximum size among the
identifying subsets of R.

1”tree-like” means that the sought subset of triples must exactly be the set of rooted triples of a tree. When the

input set of triples contains only one triple for each set of 3-taxa the mentioned problem is solvable in polynomial-time.
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We consider the particular case where rt(T ) contains at most one rooted triple for any set of 3
leaves in L(T ). The difficulty of MIST in this particular case implies its difficulty in the general
case. To show that MIST is NP-hard, we first consider a variant of the problem on somewhat
simpler objects: ordered partitions (defined in Sect. 3.1). Then we show that the identification
problem for ordered partitions (MISG) is NP-hard (Sect. 3.2). Finally, we prove the NP-hardness
of MIST by reduction from MISG (Sect. 3.3).

3.1 Ordered partitions

An ordered partition on L is a tuple P = (L,≤P ), where ≤P is a total preorder on L (that is
a binary relation satisfying reflexivity, transitivity and totality). P can be seen as a sequence
s(P ) = (L1, ..., Lk), where the Li’s are the equivalence classes of the preorder, and such that we
have x <P y whenever x ∈ Li, y ∈ Lj with i < j. The sequence s(P ) will be called the representation
of P . The ordered partition on L with only one class will be denoted by 0L, i.e. s(0L) = (L). The
set of ordered partitions on L will be denoted by O(L).

We can define the relation of refinement on ordered partitions: given P,P ′ ∈ O(L), we say that
P refines P ′, denoted by P D P ′, iff for every x, y ∈ L, x <P ′ y implies x <P y. As in the case of
trees, we can endow O(L) with a structure of join-semilattice: the join of two partitions P,P ′ is
the partition P ′′ = P ⊓ P ′ s.t. ≤P ′′ is the transitive closure of ≤P ∪ ≤P ′ .

When S is a set of ordered partitions, we will denote by S ↑ the upward closure of S by the
refinement relation, i.e. S ↑= {P : ∃P ′ ∈ S, P DP ′}. Likewise, we will denote by S ↓ the downward
closure of S, i.e. S ↓= {P : ∃P ′ ∈ S, P ′ D P}. We will also use the notations S ↑ and S ↓ when S
is a set of trees.

In the context of trees, given a set of triples R, we denote by D(R) the set of trees T that
strictly display R, i.e. such that L(R) = L(T ) and R ⊆ RT .

In the context of ordered partitions, we will redefine the notions of ”display” and ”identifies” by
analogy with the case of trees. The ordered partitions will play the role of trees, and the directed
graphs will play the role of sets of rooted triples. The definitions are as follows. Let G = (V,A) be
a directed graph, and let P ∈ O(V ′). We say that P strictly displays G iff V = V ′ and for every
(x, y) ∈ A, we have x <P y. We will denote by D(G) the set of ordered partitions P which strictly
display G. We say that G identifies P iff P ∈ D(G) and is refined by every partition P ′ ∈ D(G).
We say that G is identifying if G identifies some P ∈ O(V ).

Observe that the set D(G) enjoys the following properties (which also hold in the case of trees):

• D(G) is closed upwards: if P ∈ D(G) and P ′ D P then P ′ ∈ D(G); thus, there exists a set S
st D(G) = S ↑.

• saying that G identifies P is equivalent to saying that D(G) = {P} ↑; in this case, D(G) is
closed by ⊓.

3.2 The MISG problem

The problem Maximum Identifying Subgraph (MISG) asks: given a directed graph G = (V,A),
find an identifying subgraph G′ ⊆ G with the largest number of edges. We proceed to show that:

Proposition 2 MISG is NP-hard.

Proof.[Sketch] We reduce from the problem Maximum Edge Biclique which asks: given a bipar-
tite graph G, find a biclique (i.e. a complete bipartite graph) G′ ⊆ G with the largest number of
edges. This problem was shown NP-hard in Peeters (2003).
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The reduction is as follows. Suppose that G has bipartition X,Y , then we view G as a directed
graph G = (V,A), with A ⊆ X × Y . We show that: for every G′ ⊆ G, G′ is identifying ⇔ G′ is a
biclique or G′ is empty. Fix a graph G′ ⊆ G, then G′ = (V ′, A′); let X ′ = V ′ ∩X and Y ′ = V ′ ∩ Y .
(⇐): if G′ is a biclique, then G′ identifies P with representation (X ′, Y ′): P displays G′ obviously,
and for any P ′ displaying G′, we have x <P ′ y whenever x ∈ X ′, y ∈ Y ′ (since G′ is a biclique),
and thus P ′ must refine P . If G′ is empty, then G′ identifies P with representation (V ′).
(⇒): suppose that G′ is identifying. To derive a contradiction, suppose that G′ is neither a biclique
nor an empty graph. Since G′ is not empty, we have X ′ 6= ∅ and Y ′ 6= ∅. Consider the ordered
partition P with representation (X ′, Y ′): since G′ is bipartite, obviously P displays G′. Now, since
G′ is not a biclique, there exists u ∈ X ′, v ∈ Y ′ s.t. (u, v) /∈ A′. Consider the ordered partition P ′

with representation (X ′−{u}, {u, v}, Y ′−{v}): then P ′ displays G′. Thus, we obtain two partitions
P,P ′ which both display G′. Let P ′′ = P ⊓ P ′, then P ′′ displays G′, since G′ is identifying. But
we have P ′′ = 0V ′ by definition of ⊓. We thus obtain that 0V ′ must display G′, which is impossible
since G′ is not empty. �

3.3 The MIST problem

Proposition 3 MIST is NP-hard.

Proof. We reduce from MISG. Consider an instance I of MISG, this is a directed graph G = (V,A).
We construct an instance I ′ of MIST as follows: (i) the label set is L := V ∪ {x}; (ii) for every
a = (u, v) ∈ A, we define the triple ta = xu|v. For every F ⊆ A, we define RF = {ta : a ∈ F} and
GF = (VF , F ), where VF is the set of vertices incident to an arc of F . We set R := RA.

Obviously, the construction can be done in polynomial time. It remains to justify that the
reduction is correct. To this end, we need to define a correspondence between the solutions of
MISG and the solutions of MIST. Noting P(L) the set of rooted phylogenies with leaf set L, we
say that a tree T ∈ P(L) is a brush iff there exists sets V1, ..., Vk s.t. T = brush(x, V1, ..., Vk),
where brush(x, V1, ..., Vk) denotes the tree having k internal nodes u1, u2, ..., uk s.t. ∀i = 1..k − 1
the children of ui are Vi ∪ {ui+1} and those of uk are Vk ∪ {x}.

We define a straightforward correspondence between ordered partitions and brushes:

• given an ordered partition P ∈ O(V ) with representation (V1, ..., Vk), we define Tree(P ) :=
brush(x, V1, ..., Vk).

• given a brush T ∈ P(L) s.t. T = brush(x, V1, ..., Vk), we define Partition(T ) as the partition
with representation (V1, ..., Vk).

The correctness of the reduction is based on the the following observations: for any F ⊆ A,

1. for every P,P ′ ∈ O(V ): let T = Tree(P ), T ′ = Tree(P ′), then P D P ′ iff T D T ′;

2. for every P ∈O(V ): let T = Tree(P ), then P displays GF iff T displays RF ;

3. let T be an element of D(RF ) minimal for D: then T is a brush.

Lemma 1 For every F ⊆ A, GF is identifying ⇔ RF is identifying.

Proof. (⇒): suppose that GF identifies an ordered partition P . Let T = Tree(P ), we claim that
RF identifies T . Indeed, since P ∈ D(GF ), by Observation 2, T ∈ D(RF ). Moreover, suppose that
T ′′ ∈ D(RF ). Let S = {T ′′} ↓ ∩D(RF ), and let T ′ be an element of S minimal for D. Observe
that T ′ must also be a minimal element of D(RF ). Thus, Observation 3 applies, and we obtain
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that T ′ is a brush. Now, we can define P ′ = Partition(T ′): then P ′ ∈ D(GF ) (by Observation 2).
Since GF identifies P , this implies that P ′ D P . We obtain that T ′ D T by Observation 1. On the
other hand, we have T ′′ D T ′ by definition of T ′, and we conclude that T ′′ D T .
(⇐): suppose that RF identifies a tree T . Then T must be an element of D(RF ) minimal for D.
Thus, by Observation 3, T is a brush. We can then define P = Partition(T ), and we claim that
GF identifies P . Indeed, since T ∈ D(RF ), by Observation 2 P ∈ D(GF ). Moreover, suppose that
P ′ ∈ D(GF ), and let T ′ = Tree(P ′). Then by Observation 2, we have T ′ ∈ D(RF ). Since RF

identifies T , we have T ′ D T . We conclude that P ′ D P by Observation 1. �

The result stated in this lemma suffices to end the proof of the proposition. �
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Steel, M. A., A. W. M. Dress, and S. Böcker. 2000. Simple but fundamental limitations on supertree
and consensus tree methods. Syst. Biol. 49:363–368.

Wilkinson, M., D. Pisani, J. Cotton, and I. Corfe. 2005. Measuring support and finding unsupported
relationships in supertrees. Syst. Biol. 54:823–831.

Acknowledgments

This work has been supported by the ”ACI Informatique-Mathématique-Physique en Biologie
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