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(LIRMM,UMR 5506, CNRS), Université Montpellier II 161, rue Ada, 34392

Montpellier Cedex 5, France,
{scornava, vberry}@lirmm.fr, Vincent.Ranwez@univ-montp2.fr

*Corresponding author

Abstract. Gene trees are leaf-labeled trees inferred from molecular se-
quences. Due to duplication events arising in genome evolution, gene
trees usually have multiple copies of some labels, i.e. species. Inferring a
species tree from a set of multi-labeled gene trees (MUL trees) is a well-
known problem in computational biology. We propose a novel approach
to tackle this problem, mainly to transform a collection of MUL trees
into a collection of evolutionary trees, each containing single copies of
labels. To that aim, we provide several algorithmic building stones and
describe how they fit within a general species tree inference process. Most
algorithms have a linear-time complexity, except for an FPT algorithm
proposed for a problem that we show to be intractable.
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1 Introduction

An evolutionary tree (or phylogeny), is a tree displaying the evolutionary history
of a set of sequences or organisms. A gene tree is an evolutionary tree built by
analyzing a gene family, i.e. homologous molecular sequences appearing in the
genome of different organisms. Gene trees are primarily used to estimate species
trees, i.e. trees displaying the evolutionary relationships among studied species.
Unfortunately, most gene trees can significantly differ from the species tree for
methodological or biological reasons, such as long branch attraction, lateral gene
transfers, deep gene coalescence and, principally, gene duplications and losses [1].
For this reason, species trees are usually estimated from a large number of gene
trees.

Inferring a species tree from gene trees is mostly done in a two-step approach.
First, a micro-evolutionary model that takes into account events affecting indi-
vidual sites is used to infer the gene trees. The species tree is then inferred on



the basis of a macro-evolutionary model, i.e. minimizing the number of transfer,
duplication and loss events [2–6]. To produce more biologically meaningful trees,
unified models have been proposed in which the micro and macro-evolutionary
dimensions are entangled [7–9]. However, it is difficult to determine how to in-
corporate events occurring on different spatial and temporal scales, as well as
belonging to neutral and non-neutral processes, in a single model [9]. Lately,
a hybrid approach has been proposed, where a first draft of a species tree is
inferred with a micro-evolutionary model, the most uncertain parts of which are
then corrected according to a macro-evolutionary model [9].

In this paper, we propose instead to take advantage of the very large number
of gene trees present in recent phylogenomic projects to avoid entering into the
detail of all possible macro-evolutionary scenarios (e.g. is a parsimony approach
always justified? Should only the most parsimonious scenario be retained?). We
propose to extract the non-ambiguous part of the topological information con-
tained in the gene trees, i.e. that resulting from speciation events as opposed
to duplication events, and then apply a traditional supertree method letting the
weight of evidence decide in favor of one candidate species tree [10–12].

This approach is only possible when the number of gene trees is very large,
and indeed this is now the case in projects such as the HOMOLENS database
(http://pbil.univ-lyon1.fr/databases/homolens.php), storing several thou-
sands of gene trees. In the release 04 of this database, 51% of gene families have
paralogous sequences, i.e. sequences where duplications and losses have actu-
ally taken place. Currently, these gene families are discarded when inferring a
supertree of the concerned species. Disentangling information derived from spe-
ciation events from that resulting from duplication events would thus provide
more information for species tree inference.

Supertree methods combine source trees whose leaves are labeled with in-
dividual species into a larger species tree. The source trees are single-labeled,
i.e. each species labels at most one leaf. Note that, by definition, the inferred
supertree is also single-labeled. In contrast, gene trees are usually multi-labeled,
i.e. a single species can label more than one leaf, since duplication events re-
sulted in the presence of several copies of the genes in the species genomes. The
task we therefore have to solve is to extract the largest amount of unambigu-
ous topological information from the multi-labeled gene trees under the form of
single-labeled trees. This paper presents a number of results in this direction,
that all play a role in the general scheme that is fully described below. The rest
of the paper details these results, though in a different order for the sake of
dependancies between definitions.

First of all, we propose to separately preprocess MUL trees in order to remove
their redundant parts with respect to speciation events. For this purpose, we
extend the tree isomorphism algorithm of [13] making it applicable to MUL
trees while preserving a linear running time (section 5). This algorithm is then
applied to the pairs of subtrees hanging from duplication nodes in MUL trees.
This preprocess lowers the number of duplication nodes in gene trees. We also
give in passing a linear time algorithm to identify duplication nodes in MUL trees



Fig. 1. An example of MUL tree with one odn indicated by a black square.

(section 4). For the gene trees that still have duplication nodes, we define a set R
of triplets (binary rooted trees on three leaves [14, 12]) containing the topological
information of a MUL tree that can be thought of as being unambiguously
related to speciation events. We show that this set of triplets can be computed
in O(|R|) time (section 2). When this set is compatible, the MUL tree contributes
a coherent topological signal to build the species tree. In such a case, we can
replace the MUL tree with a single-labeled tree representing its associated set
of triplets by using the BUILD algorithm [14] (section 3). When a MUL tree is
not auto-coherent, we propose to extract a maximum subtree that is both auto-
coherent and free of duplication events. Surprisingly, this optimization problem
can be solved in linear time (section 6). When extracting largest single-labeled
subtrees from MUL trees it is possible to obtain an incompatible collection, when
a compatible collection could have been obtained by choosing subtrees of MUL
trees in a coordinated way. However, solving this problem is computationally
harder, as we show by providing an NP-completeness proof (section 7).

2 Preliminaries

In this paper we focus on rooted binary multi-labeled (MUL) trees. Let M be a
MUL tree and v a vertex of M . We denote by s(v) and s’(v) the two sons of v
and by sons(v) the set {s(v),s’(v)}. We define by subtree(v) the subtree with
v as root and by L(v) the multiset of labels of subtree(v). We denote by L(M)
the multiset L(root(M)).

Definition 1. A node v of M is called an observed duplication node (odn)
if the intersection of L(s(v)) and L(s′(v)) is not empty.

Note that, for an odn v, L(v) will always contain some label more than once. We
denote by D(M) the set of odn. A label l ∈ L(M) is a repeated label for M iff
the label l occurs more than once in L(M). We say that f is a repeated leaf for
M iff L(f) is a repeated label. For every three leaves we can have three different
rooted tree binary shapes, called triplets. We denote by AB|C the rooted tree
that connects the pair of taxa (A, B) to C via the root.
We denote by R(M) the set of triplets of a (single/multi)labeled evolutionary



tree M i.e. R(M) = {ab|c s.t. there exist three leaf nodes x, y, z ∈ M : L(x) = a,
L(y) = b, L(z) = c and lca(x, y) 6= (lca(x, z) = lca(y, z))}1.

Definition 2. Let M be a MUL tree. We define by Rwd(M) (R(M) without
duplications) the set of triplets ab|c of M s.t. there exist three leaf nodes x, y, z ∈
M : L(x) = a, L(y) = b, L(z) = c and lca(x, y) /∈ D(M), lca(x, y, z) /∈ D(M),
lca(x, y) 6= (lca(x, z) =lca(y, z)).

Considering the MUL tree in Fig. 1 for example, Rwd(M) = {ac|b, ac|d, ab|d, bc|d, ac|o,
ab|o, ad|o, bc|o, cd|o, bd|o, ab|c}. Hence, not all the triplets of R(M) are kept. This
is due to the fact that, once a duplication event occurred in a gene’s history, the
two copies of the gene evolved independently. The history of each copy is influ-
enced by the species history but, considering them simultaneously may produce
information unrelated to the species evolution. Therefore, it is more appropriate
to discard the triplets mixing the histories of distinct copies of a gene.

Rwd(M) has an O(n3) size and can be computed in O(n3) time. Indeed,
once the lca of all pairs of nodes in M are computed in O(n) time (see [15, 16]),
checking for three leaf nodes x, y, z of M if they satisfy Definition 2 can be done
in O(1) time, thus in O(n3) for all triplets of leaves in M .

3 Auto-coherency of a MUL tree

Let M be a multi-labeled gene tree. Since M contains several copies of the same
gene, we can wonder whether the evolutionary signal of each copy is coherent or
not.

Definition 3. A MUL tree M is said to be auto-coherent if there exists a
single-labeled tree T such that Rwd(M) ⊆ R(T ).

In the case of an auto-coherent MUL tree, we know that we can find a tree
T containing all the information in Rwd(M), i.e. the information of M that is
considered reliable. To find such a tree, we use the AncestralBuild algorithm of
[17]. For a set of triplets Rwd(M), this algorithm indicates in O(|Rwd(M)|·log2 n)
time whether there exists a tree T s.t. Rwd(M) ⊆ R(T ) and returns T in case of
a positive answer. At present, it is not clear whether an implicit representation
of Rwd(M) using only O(n) triplets, as that reported in [18] to encode an binary
tree, could be used here. Indeed, the presence of multiple occurrences of labels
might lead to obtain a small compatible sets of triplets, while the whole set
Rwd(M) would be incompatible.

4 Computing D(M) in linear time

The easiest way to compute D(M) is checking for each node v if the sets L(s(v))
and L(s′(v)) have at least one label in common; in the case of a positive answer,
v is inserted in D(M). The complexity of this approach is O(n2), since it requires

1 lca(x, y) denotes the least common ancestor of nodes x and y, i.e. the lowest node
in the tree that has both x and y as descendants.



computing O(n) intersections of two lists of O(n) elements. The algorithm 1 uses
the lca to find the set of odn D(M) and requires only linear time. To demonstrate
the correctness of algorithm 1, we need to determine some relationships between
the lca and the odn.

Lemma 1. A node is an odn if and only if it is the lca of at least two repeated
leaves m and p.

Proof. Indeed, from the definition 1, v is an odn iff L(s(v)) ∩ L(s’(v)) 6= ∅.
Therefore, ∃m ∈ subtree(s(v)) and ∃p ∈ subtree(s′(v)): L(m) = L(p). Thus v
is a common ancestor of the two leaves m and p with the same label. Now, m
and p belong to two different subtrees having v as father (m ∈ subtree(s(v)) and
p ∈ subtree(s′(v))), hence v is their lowest common ancestor in M . Reciprocally,
if v is the lca of two leaves m and p with the same label, this means that L(s(v))
∩ L(s’(v)) 6= ∅, then v is an odn according to definition 1. �

According to Lemma 1, we can search for the lca of any two leaves m and p
with the same label. To determine the lca between multiple pairs of nodes, one
can use an algorithm in [15] which preprocesses a data structure in O(n) time,
where n is the number of nodes and returns the lca of any two specific nodes
from the data structure in O(1). We still have O(n2) of these couples, and even
constant time for each gives an O(n2) total complexity. However, since there
are only O(n) odn, checking the lca of any pair of leaves computes the same
lca several times. A smarter approach is used in algorithm 1: first of all, the
subtrees of M are ordered from the left to the right in an arbitrary way. Then,
each repeated leaf, starting from the left of the tree and moving to the right, is
tagged with the repeated label followed by its occurrence number. Then, for each
repeated label e, the lca of any two successive occurrences of e, ei and ei+1 is
inserted in D(M). This leads to a linear time complexity. Indeed, we have O(n)
of these couples since each leaf of M is involved in at most two pairs (ei, ei+1).

Algorithm 1: CompDuplicationNodes(r)

Data: A MUL tree M .
Result: A set of odn D(M).
Order M in an arbitrary way. In this order, tag each duplicated leaf with the
repeated label followed by its occurrence number. Compute the lca for each
couple of leaves.
D(M)← ∅;
foreach (repeated label e) do

foreach ({ej , ej+1}) do D(M) ← lca(ej , ej+1);

return D(M);

The correctness of algorithm 1 is justified by Lemma 2 showing that algorithm
1 retrieves all the odn of M .

Lemma 2. Let M be a MUL tree. For each odn v, ∃ two successive occurrences
of a label e denoted by ei and ei+1 s.t. v = lca(ei, ei+1).

Proof. Given an odn v, there exists at least one label e present in both subtrees
s(v) and s′(v). We denote by A the set of leaves ai s.t. ai ∈ subtree(s(v)) and



L(ai) = e and by B the set of leaves bj s.t. bj ∈ subtree(s′(v)) and L(bj) = e.
If we take the last element of B (b|B|) and the first one of A (a1), we know that
v is their lca. Additionally, due to the way we tagged M, we know that there
is no other occurrence of the label e between b|B| and a1. Indeed, if there was
another leaf x labeled with e, it would be either in s(v) (and then x = a1) or
in s′(v) (and then x = b|B|). Then b|B| and a1 are two successive occurrences of
the same label and their lca is the node v. �

5 Isomorphic subtrees

Definition 4. Two rooted trees T1 , T2 are isomorphic (denoted by T1=T2) iff
there exists a one-to-one mapping from the nodes of T1 onto the nodes of T2

preserving leaf labels and descendancy.

We are interested in testing if, for each odn v, the two subtrees s(v) and s′(v)
are isomorphic or not. In the positive, we can prune one of the two isomorphic
subtrees without losing any information contained in Rwd and eliminate the
odn v, as in the example of Fig. 2. For detecting isomorphism of multi-labelled
trees, we propose Algorithm 2, an extension of the Check-isomorphism-or-

find-conflict algorithm [19]. Indeed, the latter does not deal with MUL trees.
Alternatively, we could have proposed an appropriate variant of the tree isomor-
phism algorithm detailed in [20]. However, such an algorithm would likely have
been less space efficient than the one we present here due to a number of string
sorting steps using a number of queues and lists to ensure linear running time.

A node that has only two leaves as children is called cherry. In the case of
single-labeled trees we have the following lemma:

Lemma 3. [13] Let T1, T2 be two isomorphic trees and let c1 be a cherry in T1.
Then, there is a cherry c2 ∈ T2 s.t. L(c1) = L(c2).

In the case of MUL trees, we can have several copies of the same cherry. We call
a multiple cherry the list of cherries on the same two labels. For a multiple
cherry mc, we note |mc| the number of occurences of the cherry in its tree.

Lemma 4. Let M1, M2 be two isomorphic MUL trees and let mc1 be a multiple
cherry in M1. Then, there is a multiple cherry mc2 ∈ M2 s.t. L(mc1) = L(mc2)
and |mc1| = |mc2|.

The proof is inspired from that of Lemma 3 in [13] and left to the reader.

n  n ∈ D(M )  n ∉ D(M )

a b c a b c x x y a b c x x y

Fig. 2. An example of MUL tree where the sons of the duplication node are isomorphic.



Algorithm 2: CheckIsomorphismMULTree(M1,M2)

Data: Two MUL tree M1 and M2.
Result: TRUE if M1 and M2 are isomorphic, FALSE otherwise.
Let Lmc be the list of multiple cherries in M1 and M2. Let H be the hashtable
where each mc ∈ Lmc is a key. To each H(mc), we associates two lists O2(mc)
and O1(mc), resp. of the occurrences of mc in M1 and M2;
while (Lmc 6= ∅) do

mc ← the first multiple cherry in Lmc; delete mc form Lmc;
if (O2(mc) = O1(mc) ) then

Turn all cherries in O2(mc) and O1(mc) into leaves to which the same
label chosen in L(mc) is assigned;
add the new multiple cherries in Lmc and H ;

else return FALSE;

return TRUE;

5.1 Outline of the algorithm

First of all, we find all the multiple cherries for the MUL trees M1 and M2.
We store them in the list Lmc using a simple linked list. Additionally, we use a
hashtable H where each mc ∈ Lmc is a key. H associates to each multiple cherry
mc two linked lists, O1(mc) and O2(mc), storing pointers to nodes of M1 and M2

respectively that correspond to the occurrences of mc. The multiple cherries of
a MUL tree are then examined in a bottom-up process. Given a multiple cherry
mc in Lmc we check if the size of O1(mc) is the same as that of O2(mc). If this
is not the case, we have found a multiple cherry for which we do not have the
same number of occurrences in M1 and M2. In this instance, M1 and M2 are not
isomorphic (Lemma 4) and the algorithm returns FALSE. Otherwise we turn all
the cherries in O1(mc) and O2(mc) into leaves to which the same label, chosen
arbitrarily in L(mc), is assigned. This modification of M1 and M2 can turn the
fathers of some cherries in O1(mc) and O2(mc) into new cherries. Then Lmc is
updated and the processing of cherries in M1 is iterated until both MUL trees
are reduced to a single leaf with the same label if M1 and M2 are isomorphic,
or a FALSE statement is returned.

Theorem 1. Let M1 and M2 be two rooted MUL trees with L(M1) = L(M2)
of cardinality n. In time O(n), algorithm 3 returns TRUE if M1 and M2 are
isomorphic, FALSE otherwise.

Proof. This algorithm is an extension of the Check-isomorphism-or-find-

conflict algorithm [19] applicable to MUL trees. We show here that we can
keep a linear time execution, using supplementary data structures.
A simple depth-first search of trees M1 and M2 initializes Lmc and H in O(n)
time. At each iteration of the algorithm, choosing a multiple cherry mc to process
is done in O(1) by removing the first element mc of Lmc. H then provides in
O(1) the lists O1(mc) and O2(mc) of its occurrences in the trees. Checking that
these lists have the same number of elements is proportional to the number



of nodes they contain, hence costs O(n) amortized time, as each node is only
once in such a list, and the list is processed once during the whole algorithm.
Replacing all occurrences of mc by a previously chosen label l ∈ L(mc) is done
in O(n) amortized time, since each replacement is a local operation replacing
three nodes by one in a tree and at most O(n) such replacements can take place
in a tree to reduce it down to a single node (the algorithm stops when this
situation is reached). Reducing a cherry can create a new occurrence omc′ of a
cherry mc′. Checking in O(1) time if mc′ is a key in H allows to know whether
occurrences of mc′ have already been encountered or not. In the positive, we
simply add omc′ to the beginning of the list O1(mc) (if omc′ ∈ M1) or O2(mc) (if
omc′ ∈ M2), requiring O(1) time. In the negative, we add mc′ to the beginning of
Lmc, create a new entry in H for mc′, and initialize the associated lists O1(mc)
and O2(mc) so that one contains omc′ and the other is the empty list. Again,
this requires only O(1) time. Thus, performing all operations required by the
algorithm globally costs O(n) time.

Apply algorithm 2 to each subtree(s(v)) and subtree(s′(v)) of each odn of
a MUL tree M in a bottom-up approach requires O(dn) time, where d is the
number of duplication nodes in M .

6 Computing a largest duplication-free subtree of a MUL
tree

If a MUL tree is not auto-coherent, identifying duplication nodes allows for
the discrimination of leaves representing orthologous and paralogous sequences.
Since only orthologous sequence history reflects the species history, a natural
question is to determine the most informative sequence set for a given gene. As
long as the gene tree contains odn, it will also contain leaves representing paral-
ogous sequences. Yet, if for each node v ∈ D(M) of M we choose to keep either
s(v) or s′(v), we obtain a pruned single-labeled tree containing only apparent or-
thologous sequences (observed paralogous have been removed by pruning nodes).
Note that the so obtained single-labeled tree is auto-coherent by definition.

Definition 5. Let M be a MUL tree. We say that T is obtained by (duplication)
pruning M iff T is obtained from M choosing for each odn v either s(v) or s′(v).
We denote this operation by the symbol ..

One can wonder, for a non auto-coherent MUL tree M , what is the most infor-
mative single-labeled tree T s.t. T . M . We define this problem as the MIPT
(Most Informative Pruned Tree) problem.
To evaluate the informativeness of a tree we can use either the number of triplets
of T (see [21, 22, 11]) that, for binary trees, depends only on the number of leaves,
or the CIC criterion (see [23, 12]). The CIC of a not fully resolved and incom-
plete2 tree T with |L(T )| leaves among the n possible is a function of both the

2 A tree is called incomplete when it misses some taxa.



Algorithm 3: pruning(v,M ,D(M))

Data: A node v, a MUL tree M , and a set of odn D(M).
Result: The most informative MUL tree M ′ s.t. subtree(v)M′ . subtree(v)M .
foreach (m ∈ sons(v)) do pruning(m,M ,D(M));
if (v ∈ D(M)) then

if (|L(s(v))| > |L(s′(v))|) then v ← s(v);
else v ← s′(v);
D(M)← D(M) − {v};

return M ;

number nR(T, n) of fully resolved trees T ′ on L(T ) such that R(T ) ⊆ R(T ′) and
the number nR(n) of fully resolved trees on n leaves. More precisely,

CIC(T, n) = − log
(

nR(T, n)/nR(n)
)

In the case of binary trees, nR(T, n) depends only on the number of source taxa
missing in T since T does not contain multifurcations. Thus, dealing with bi-
nary trees, maximizing the information of a tree (i.e. maximizing the number of
triplets or minimizing the CIC value) consists in finding the tree with the largest
number of leaves. A natural approach for the MIPT problem for binary MUL
trees is an algorithm that, after having computed D(M), uses the bottom-up
algorithm 3, with v =root(M), to keep the most informative subtree between
subtree(s(m)) and subtree(s′(m)), for each odn m.

Theorem 2. Let M a MUL tree on a set of leaves of cardinality n. In time O(n),
pruning(M,root(M),D(M)) returns the most informative tree T s.t. T . M .

Proof. First of all, it’s obvious that pruning(M,root(M),D(M)) returns a tree.
Indeed, if for each odn v only one node between s(v) and s′(v) is kept, at the end
of the bottom-up procedure one copy of each duplicated leaf is present in the
modified M . Now, we have to show that the resulting tree is the most informative
tree s.t. T . M , i.e. the tree with as many leaves as possible. For an odn v that
is the ancestor of other duplication nodes, the choices made for s(v) do not
influence the choices for s′(v) since for each duplication node we can keep only
one of the two subtrees, the most populous one. Thus we can search for the best
set of choices left/right for s(v) and s′(v) independently and then choose the
most populous pruned subtree between s(v) and s′(v). Iterating recursively this
reasoning, we demonstrate that the tree obtained by Algorithm 3 is the most
informative tree T s.t. T . M .

The computation of the set of odn D(M) takes linear time. The subroutine
pruning(M, root(M),D(M)) requires a tree walk, thus the time complexity of
Algorithm 3 is O(n). �



7 The compatibility issue of single-labeled subtrees
obtained from MUL trees

We can also ask if it is possible, given a collection of MUL tree M, to discriminate
leaves representing orthologous and paralogous sequences in a gene tree using
the information contained in the other gene trees to obtain a compatible forest
T , i.e. a forest for which there exists a tree T s.t. ∪Ti∈T R(Ti) ⊆ R(T ). We
denote this problem by EPCF, Existence of a Pruned and Compatible Forest.
Unfortunately, the EPCF problem is NP-complete.

EPCF
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∣
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∣

∣
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∣
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Instance : A set of leaves X and a collection M = {M1, · · ·Mk}

of MUL trees on X .

Question : ∃ a set S of choices left/right, S : M → T ,

with T = {T1, · · ·Tk} s.t. Ti . Mi and T is compatible?

Theorem 3. The EPCF problem is NP-complete.

Proof. We start by proving that EPCF is in NP, i.e. checking if a set S of choices
left/right is a solution for the instance I = (M, X) can be done in polynomial
time. First of all, for each MUL tree Mj ∈ M, we place the choices left/right
on Mj , i.e. we discard the subtrees not chosen, obtaining a forest of trees T .
We check then the compatibility of T with the Aho graph[14]. Constructing this
graph can be done in polynomial time.

Given that EPCF is in NP, we use a reduction of 3-SAT to EPCF to demon-
strate that it is NP-complete.

3-SAT
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Instance : A boolean expression C = (C1 ∧ C2 ∧ · · · ∧ Cn) on a

finite set L = {l1, l2, · · · , lm} of variables with Cj =

(a ∨ b ∨ c) where {a, b, c} ∈ {l1, l2, · · · , lm, l1, l2 · · · , lm}

Question : ∃ a truth assignment for L that satisfies all Cj in C ?

We need to show that every instance of 3-SAT can be transformed into an in-
stance of EPCF; then we will show that given an instance I = (C, L) of 3-SAT,
I is a positive instance, i.e. an instance for which a solution exists, iff the cor-
responding instance for EPCF is positive.

Given an instance I = (C, L) of 3-SAT, we build an instance I ′ = (M, X) of
EPCF associating to each li in L the binary tree3 T (li) = (((xi, yi), zi), d) and
to li the binary tree T (li) = (((zi, yi), xi), d) (see Fig. 3 for an example).

3 T (li) is expressed in the Newick format.



T(li)  =

xi yi zi d zi yi xi d

 T(li)=
_

Fig. 3. Binary trees on four leaves associated to li and to li.

The set of subtrees
{

T (a) | a ∈ {l1, l2, · · · , lm, l1, l2, · · · , lm}
}

is denoted by TL.

Then, for each clause Cj = (a∨b∨c) in C, a binary MUL tree Mj is built, formed
by three subtrees ((T (a), T (b)), T (c)). Note that Mj has exactly two duplication
nodes due to the presence of d in T (a), T (b) and T (c), so that any left/right
choice of Mj will reduce it to either T (a), T (b) or T (c). In Fig. 4 an example of
a MUL tree built from a clause. In this way we obtain a forest of MUL trees M

on the leaf set X =
{

{
⋃m

i=1
{xi, yi, zi}

}

∪ {d}
}

, i.e. an instance of the EPCF

problem. Clearly M can be built in polynomial time.
We now need to show that a positive instance of 3-SAT gives a positive instance

xi yi zi d
T(li) T(lj)

xi yi zi d
 T(lk)

_  xi yi zi d

Fig. 4. MUL tree built from the clause {li∨lj∨lk}. Odn are indicated by black squares.

of EPCF through the previous transformation. Having a positive instance for
3-SAT implies that for each Cj ∈ C with Cj = (a∨b∨c), at least one of the three
literals is TRUE. Without loss of generality, let us suppose that a is TRUE. Then
in the MUL tree Mj corresponding to Cj we set the choice left/right so that only
the subtree T (a) is kept. We then obtain a forest T that is a subset of TL. We need
to prove that T is compatible. Let T̃ (a) denote the tree T (a)|(L(T (a)) − {d})4

and T̃ the forest composed by all trees {T̃ (a)|T (a) ∈ T }. Then, we can build a
tree Ts = (T̃1, T̃2, · · · , T̃|T̃ |, d). Since li cannot have the value TRUE and FALSE

at the same time, we have either T (li) or T (li) in T . The tree Ts is therefore a

4 Given a tree T and a label set S, we denote by T |S the restriction of T to the set S.



single-labeled tree. Moreover, by construction Ts|(L(T (a)) is identical to T (a),
for all T (a) in T ensuring that

⋃

Ti∈T R(Ti) ⊆ R(Ts). Thus T is compatible.

Now, the only thing left to prove is that a positive instance of EPCF gives a
positive instance of 3-SAT.
The repetition of the taxon d in each subtree makes the two nodes connecting
the subtrees in each Mj be odn. Thus a left/right choice set S reduces each
Mj in M into a tree T (a) ∈ TL, providing the forest T . Setting the value of
a to TRUE ensures that the clause Cj corresponding to Mj is TRUE. This
can be done simultaneously for all clauses ∈ C since the forest compatibility
implies that there is no contradiction among the trees in T , all the more so
direct contradictions. Then, either T (li) or T (li) is in T . This ensures us that
either li or li is assigned to TRUE, but not both. �

Note that the problem to find the most informative forest T = {T1, · · ·Tk} s.t.
Ti . Mi and T is compatible, denoted by MIPCF (Most Informative Pruned and
Compatible Forest) is FPT. Indeed, analyzing all possible scenarios of choices
left/right is FPT on the total number of duplication nodes in M.

8 Conclusions

In this paper we presented several algorithms to transform multi-labeled evolu-
tionary trees into single-labeled ones so that they can be used by all existent
supertree methods. In the future we plan to go further and extend the algorithm
find-refinement-or-confict in [19] applicable to MUL trees. We are also
working on a more sophisticated FPT algorithm for the MIPCF problem.
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