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Phylogenetic trees

Rooted phylogenetic trees are used to depict the evolutionary history of a
set of taxa, whose internal nodes represent speciation events.

out-branching trees with no indegree-1 outdegreee-1 nodes and whose leaves are each
associated to a species or gene (taxa)



Phylogenetic trees

Rooted phylogenetic trees are used to depict the evolutionary history of a
set of taxa, whose internal nodes represent speciation events.
But ... Darwin described evolution as ‘descent with modification’

(does not necessarily imply a tree representation...)
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The implicit assumption of using trees is that, at a macroevolutionary scale,
each (current or extinct) species or gene only descends from one ancestor



Reticulate evolution

However, at a larger scale, genomes sometimes inherit from multiple
ancestors, because of reticulate events, e.g:

1) Hybrid speciation
2) Lateral gene transfer
3) Recombination
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Reticulate evolution

However, at a larger scale, genomes sometimes inherit from multiple
ancestors, because of reticulate events, e.g:

1) Hybrid speciation
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Reticulate evolution

However, at a larger scale, genomes sometimes inherit from

multiple ancestors, because of reticulate events, e.g:

1) Hybrid speciation
2) Lateral gene transfer
3) Recombination
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Pnaumocystis caninii (11)
Schizasaccharomyces pombe (5)

Schizosaccharomyces japonicus (0)

Sclerotinia sclerctionium (5)
Botrytis cinerea (7)
Magnaporthe grisea (14)
Neurospora crassa (8)
Chaetomium globosum (9)
Podospora anserina (14)
Trichoderma reesei (26)
Nectria haematococca (58)
Fusanum graminearum (36)
Fusariurn verticilioides (45)
Fusarium oxysporum (63) -
Stagonospora nodorum (23)
Mycosphaereila fijiensis (23) i
Histoplasma capsulatum (4)
Uncinocarpus reesii (6)
Coccidioides irmmitis (8)
Aspergillus clavatus (11)
Aspergillus fumigatus (20)
Neasartorya fischen (20)
Aspergillus nidulans (14)
Aspergillus niger (32)
Aspergillus terraus (26)
Aspergilius flavus (45)

Pssst! Hey gamin! Tu veux étre une superbactérie ?
Colle un peu de ¢ga dans ton génome..

Méme [a penicilline ne pourra pas te faire de mal !

Aspergilius oryzae (38) —
Yarrovaa lipolytica (4)(6)
Candida lusitaniae (2)

Sordariomycetes
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Eurotiomycetes

Candida guilliermondii (4)
Debaryomyces hansenii (4)(1)
Pichia stipitis (2)
Lodderomyces elongisporus (2)
Candida tropicalis (3)
Candida dubliniensis (2)
Candida albicans (2)
Kluyveromyces waltii (0)(2)
Saccharomyces kluyveri (6)(3)
Kiuyveromyces lactis (2)(6)
Ashbya gossypii (1){2)
Kiuyveromyces polysporus (0)
Candida glabrata (1)
Saccharomyces castellii (0)
Saccharomyces bayanus (0)
Saccharomyces kudriavzewi (0)
Saccharomyces mikatae (1)
Saccharomyces paradoxus (0)
Saccharomyces cerevisiae (1)(13)
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Fungal-derived HGTs
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Prokaryote-derived HGTs

(#) Marcet-Houben and Gabaldon
2010

(#) Summarised in Rolland et al.
2009



Reticulate evolution

However, at a larger scale, genomes sometimes inherit from multiple
ancestors, because of reticulate events, e.g:

1) Hybrid speciation Putative phylogeny of HIV/SIV
; infecting primates

2) lateral gene transfer (Bailes et al. Science 2003)

3) Recombination
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Bacteria Eukarya Archaea

Phylogenetic networks
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In the presence of reticulate events,
phylogenies are networks (DAGs), not
trees
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Phylogenetic network inference

The phylogenetic network N
community considers that the

ratio data/reticulation events is a bed e f
‘large enough’ to allow the

inference of the network itself. ‘ ?
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Phylogenetic network inference

The phylogenetic network N
community considers that the

ratio data/reticulation events is a bed e f
‘large enough’ to allow the
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However, most biological literature still uses trees even when a network
would be more suitable because network methods developed so far

* do not yet take the full biological complexity into account, and
* do not scale up to genomic data (based on optimization problems that
are computationally hard, often even to approximate).



Training period at ISEM/LIRMM

Phylogenetic networks have been intensively studied from a mathematical and
computational perspective in the last years; the bibliographic part of the stage will
thus focus on the literature on phylogenetic networks published since the
appearance of [1], and will lead to the production of a report updating the survey
provided in [Scornavacca et al 2012]

A possible approach is to identify subsets of varieties that encompass maximum
diversity and for which largest regions of consecutive loci in the genome have a
tree-like evolutionary history. These ground trees will then serve to compute a
phylogenetic network [1] representing hybridization events through which these
trees were obtained from the initial founders.




-
PhD Thesis plan

1. Speed up the phylogenetic networks reconstruction:

* Design models taking more into account the biological complexity :
duplication, loss, transfers in gene family evolution ; syntenies in
genome architecture ; regulatory networks ; ...

 More factors -> reduced combinatorics

* Leverage these new features to design algorithms with reasonable
running times.

2. Obtain a realistic picture of ancestral genomes' composition (which genes,
on which chromosomes,...) for ancestral species involved in reticulate
evolution:

* Extend available methods designed for trees to networks, while
limiting the combinatorial explosion

3. Apply methods on plant real data (Oryza, Banana, ...) to explain the
composition of current genomes through large-scale evolutionary events
(duplications or losses of chromosome fragments).



In practice

* PhD thesis on combinatorial algorithms (combinatorial modelization,
graphs, parameterized complexity, approximation algorithms), with an
applicative side (programming, real data analysis)

* Hosted inside the ANCESTROME (ANR) & GenomeHarvest (Agropolis
fondation) projects
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