
Designing Critical Digital Systems.

Formal Verification of a Token Player for Synchronously
Executed Petri Nets.

PhD student:
Vincent Iampietro1

PhD supervisors:
David Andreu1,2, David Delahaye1

1LIRMM, Université de Montpellier, CNRS, Montpellier, France
Firstname.Lastname@lirmm.fr

2NEURINNOV, Montpellier, France
David.Andreu@neurinnov.com

SHARC, July 2019

Context.

CRITICAL DIGITAL SYSTEMS (CDS)?

Context. HILECOP PNs. Formalization. Token Player. Conclusion. 1 / 25

CRITICAL DIGITAL SYSTEMS (CDS)

Context. HILECOP PNs. Formalization. Token Player. Conclusion. 1 / 25

CRITICAL DIGITAL SYSTEMS (CDS)

I Avionics: engine control, air traffic control. . .

I Medicine: surgical robots, radiotherapy systems. . .

I Spaceflight: launcher systems, crew transfer systems. . .

I Nuclear: reactor control systems. . .

I Infrastructure: fire alarm, telecommunications. . .

I And many more. . .

Context. HILECOP PNs. Formalization. Token Player. Conclusion. 1 / 25

Medical Implants: A Concrete Example of CDS.

Digital Analog
Controller stimulation

pulses generator

I Electrode receives electric current from stimulation generator.

I Digital controller gives instruction to stimulation generator.

Context. HILECOP PNs. Formalization. Token Player. Conclusion. 2 / 25

Need for Safety and Certification.

CE Certification for Medical Devices. 1

I European Regulation on Medical Devices (2017/745).

I Requires numerous tests on devices (technologic, clinical).

The Perks of Formal Methods.

I Many approaches: model checking, abstract interpretation,
deductive methods. . .

I Deductive methods: test exhaustiveness through proofs.

1
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32017R0745

Context. HILECOP PNs. Formalization. Token Player. Conclusion. 3 / 25

https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32017R0745

HILECOP: A Process to Design and Implement CDS.

Component C1

behavior interface

P1

T1

P2

T2

s1

s2

P1−c1

T2−c1

s2−c1

Component C2

interface behavior

P1−c2

T2−c2

s2−c2

P1

T1

P2

T2

s1

s2

Component C3

interface behavior

P1−c2

T2−c2

s2−c2

P1

T1

P2

T2

s1

s2

Abstract
model

1©

P1

T1

P2

T2

P1

T1

P2

T2

a
ss
em

bl
in
g
&

fl
a
tt
en

in
g

Implementation
model

2©

correction/
analysis

VHDL
Source
Code

m
od
el
-t
o
-t
ex
t

tr
a
n
sf
o
rm

a
ti
o
n

3©

co
m
p
il
a
ti
o
n
/

sy
n
th
es
is

FPGA
implementation

4©

I Developed at INRIA (CAMIN Team).

Context. HILECOP PNs. Formalization. Token Player. Conclusion. 4 / 25

Formal Methods for HILECOP.

Component C1

behavior interface

P1

T1

P2

T2

s1

s2

P1−c1

T2−c1

s2−c1

Component C2

interface behavior

P1−c2

T2−c2

s2−c2

P1

T1

P2

T2

s1

s2

Component C3

interface behavior

P1−c2

T2−c2

s2−c2

P1

T1

P2

T2

s1

s2

Abstract
model

1©

P1

T1

P2

T2

P1

T1

P2

T2

a
ss
em

bl
in
g
&

fl
a
tt
en

in
g

Implementation
model

2©

correction/
analysis

VHDL
Source
Code

m
od
el
-t
o
-t
ex
t

tr
a
n
sf
o
rm

a
ti
o
n

3©

co
m
p
il
a
ti
o
n
/

sy
n
th
es
is

FPGA
implementation

4©

Verification of HILECOP.

I Ensure model correctness (analysis).

I Ensure behavior preservation through transformation.

Context. HILECOP PNs. Formalization. Token Player. Conclusion. 5 / 25

Formal Methods for HILECOP.

Component C1

behavior interface

P1

T1

P2

T2

s1

s2

P1−c1

T2−c1

s2−c1

Component C2

interface behavior

P1−c2

T2−c2

s2−c2

P1

T1

P2

T2

s1

s2

Component C3

interface behavior

P1−c2

T2−c2

s2−c2

P1

T1

P2

T2

s1

s2

Abstract
model

1©

P1

T1

P2

T2

P1

T1

P2

T2

a
ss
em

bl
in
g
&

fl
a
tt
en

in
g

Implementation
model

2©

correction/
analysis

VHDL
Source
Code

m
od
el
-t
o
-t
ex
t

tr
a
n
sf
o
rm

a
ti
o
n

3©

co
m
p
il
a
ti
o
n
/

sy
n
th
es
is

FPGA
implementation

4©

Verification of HILECOP.

I Ensure model correctness (analysis).

I Ensure behavior preservation through transformation.

Context. HILECOP PNs. Formalization. Token Player. Conclusion. 5 / 25

Deductive Methods for HILECOP.

Deductive Methods with the Coq Proof Assistant.

I General-purpose Programming Language.

I Proof Language.

Proof steps.

Inspired by CompCert, a formally verified C compiler:

1. Model the semantics of the source language (i.e, Petri nets).

2. Model the semantics of the target language (i.e, VHDL).

3. Implement the transformation.

4. Prove behavior preservation.

Context. HILECOP PNs. Formalization. Token Player. Conclusion. 6 / 25

Deductive Methods for HILECOP.

Deductive Methods with the Coq Proof Assistant.

I General-purpose Programming Language.

I Proof Language.

Proof steps.

Inspired by CompCert, a formally verified C compiler:

1. Model the semantics of the source language (i.e, Petri nets).

2. Model the semantics of the target language (i.e, VHDL).

3. Implement the transformation.

4. Prove behavior preservation.

Context. HILECOP PNs. Formalization. Token Player. Conclusion. 6 / 25

Deductive Methods for HILECOP.

Deductive Methods with the Coq Proof Assistant.

I General-purpose Programming Language.

I Proof Language.

Proof steps.

Inspired by CompCert, a formally verified C compiler:

1. Model the semantics of the source language (i.e, Petri nets).

2. Model the semantics of the target language (i.e, VHDL).

3. Implement the transformation.

4. Prove behavior preservation.

Context. HILECOP PNs. Formalization. Token Player. Conclusion. 6 / 25

Deductive Methods for HILECOP.

Deductive Methods with the Coq Proof Assistant.

I General-purpose Programming Language.

I Proof Language.

Proof steps.

Inspired by CompCert, a formally verified C compiler:

1. Model the semantics of the source language (i.e, Petri nets).

2. Model the semantics of the target language (i.e, VHDL).

3. Implement the transformation.

4. Prove behavior preservation.

Context. HILECOP PNs. Formalization. Token Player. Conclusion. 6 / 25

Deductive Methods for HILECOP.

Deductive Methods with the Coq Proof Assistant.

I General-purpose Programming Language.

I Proof Language.

Proof steps.

Inspired by CompCert, a formally verified C compiler:

1. Model the semantics of the source language (i.e, Petri nets).

2. Model the semantics of the target language (i.e, VHDL).

3. Implement the transformation.

4. Prove behavior preservation.

Context. HILECOP PNs. Formalization. Token Player. Conclusion. 6 / 25

Deductive Methods for HILECOP.

Deductive Methods with the Coq Proof Assistant.

I General-purpose Programming Language.

I Proof Language.

Proof steps.

Inspired by CompCert, a formally verified C compiler:

1. Model the semantics of the source language (i.e, Petri nets).

2. Model the semantics of the target language (i.e, VHDL).

3. Implement the transformation.

4. Prove behavior preservation.

Context. HILECOP PNs. Formalization. Token Player. Conclusion. 6 / 25

Presentation of HILECOP Petri Nets.

The Petri Net (PN) Formalism.

I To model dynamic systems.

I Directed weighted graph.

I Places (≈ states or
resources) and transitions
(≈ events).

I Marking: current state of
the system.

I Sensitization: a transition t
is ready to be fired.

P0

(waiting for

request)

P1

(request

queue)

2

T0 (start)

P2

(executing

request)

T1 (done)

Context. HILECOP PNs. Formalization. Token Player. Conclusion. 7 / 25

HILECOP High-Level Models.

Component CPU

behavior interface

P1

T1

P2

T2

s1

s2

P1−c1

T2−c1

s2−c1

Component Bus Controller

interface behavior

P1−c2

T2−c2

s2−c2

P1

T1

P2

T2

s1

s2

P1

T1

P2

T2

P1

T1

P2

T2

I Assembling components.

I Flattening model.

Context. HILECOP PNs. Formalization. Token Player. Conclusion. 8 / 25

HILECOP PNs (SITPNs).

HILECOP Petri Nets are:

I Synchronously executed
(with priorities)

I generalized

I extended

I Interpreted

I Time

I with macroplaces

I Petri Nets

P0 P1 P2

T0

3

T1

2 2

Context. HILECOP PNs. Formalization. Token Player. Conclusion. 9 / 25

HILECOP PNs (SITPNs).

HILECOP Petri Nets are:

I Synchronously executed
(with priorities)

I generalized

I extended

I Interpreted

I Time

I with macroplaces

I Petri Nets

P0

a0

P1 P2

T0

3

[1,∞]

T1

2 2

[3, 5]

c0
f0

Context. HILECOP PNs. Formalization. Token Player. Conclusion. 9 / 25

Synchronously Executed PNs.

Clock signal

1

Determines transitions to be fired.

2

3

Updates the marking.

4

P0 P1

T0

P2 P3

T1

P4
2

Context. HILECOP PNs. Formalization. Token Player. Conclusion. 10 / 25

Synchronously Executed PNs.

Clock signal

1

Determines transitions to be fired.

2

3

Updates the marking.

4

P0 P1

T0

P2 P3

T1

P4
2

Context. HILECOP PNs. Formalization. Token Player. Conclusion. 10 / 25

Synchronously Executed PNs.

Clock signal

1

Determines transitions to be fired.

2

3

Updates the marking.

4

P0 P1

T0

P2 P3

T1

P4
2

Context. HILECOP PNs. Formalization. Token Player. Conclusion. 10 / 25

Conflicts and priorities.

P0

T0 T1

Conflict types.

I Structural: T0 and T1 have P0 as a common input place.

I Effective: the firing of T0 disables T1, and conversely.

Context. HILECOP PNs. Formalization. Token Player. Conclusion. 11 / 25

Conflicts and priorities.

P0

T0 T1

Which transition will be fired?

I If asynchronous execution: T0 or T1

I If synchronous execution: T0 and T1

Context. HILECOP PNs. Formalization. Token Player. Conclusion. 11 / 25

Conflicts and priorities.

P0

T0 T1

Which transition will be fired?

I If asynchronous execution: T0 or T1

I If synchronous execution: T0 and T1

Context. HILECOP PNs. Formalization. Token Player. Conclusion. 11 / 25

Conflicts and priorities.

P0

T0 T1

Which transition will be fired?

I If asynchronous execution: T0 or T1

I If synchronous execution: T0 and T1

Context. HILECOP PNs. Formalization. Token Player. Conclusion. 11 / 25

Conflicts and priorities.

P0

T0 T1

Which transition will be fired?

I If asynchronous execution: T0 or T1

I If synchronous execution: T0 and T1 !

Context. HILECOP PNs. Formalization. Token Player. Conclusion. 11 / 25

Conflicts and priorities.

P0

T0 T1

Priority relation.

T0 has a higher firing priority than T1.

Context. HILECOP PNs. Formalization. Token Player. Conclusion. 11 / 25

Formalizing HILECOP Petri Nets.

Formal Definition of SPNs.

A synchronously executed, extended, and generalized
Petri net with priorities is a tuple
<P,T , pre, test, inhib, post,M0, clock,�>
where we have:

1. P = {P0, . . . ,Pn} a set of places.

2. T = {T0, . . . ,Tn} a set of transitions.

3. pre ∈ P → T → N.

4. test ∈ P → T → N.

5. inhib ∈ P → T → N.

6. post ∈ T → P → N.

7. M0 ∈ P → N, the initial marking of the SPN.

8. �, the priority relation, which represents the firing priority
between transitions of the same priority group.

Context. HILECOP PNs. Formalization. Token Player. Conclusion. 12 / 25

Implementation of SPNs in Coq.

1 Structure Spn : Set :=

2 mk_Spn {
3 places : list Place;

4 transs : list Trans;

5 pre : Place → Trans → nat;

6 test : Place → Trans → nat;

7 inhib : Place → Trans → nat;

8 post : Trans → Place → nat;

9 initial_marking : Place → nat;

10 priority_groups : list (list Trans);

11 lneighbors : Trans → Neighbors;

12 }.

I Record with multiple fields.

I lneighbors field associates transitions to input/output
places.

Context. HILECOP PNs. Formalization. Token Player. Conclusion. 13 / 25

Definitions and Notations.

Remark.
The following definitions are given under the scope of a SPN
<P,T , pre, test, inhib, post,M0,�>.

Definition (SPN state)

A SPN state is a couple (Fired ,M) where M ∈ P → N is the
current marking of SPN and Fired ⊆ T is a list of transitions.

Definition (Sensitization and Firability)

I Sensitization: A transition t ∈ sens(M), if M ≥ pre(t), and
M ≥ test(t), and M < inhib(t) or inhib(t) = 0.

I Firability: A transition t ∈ firable(s), where s = (Fired ,M), if
t ∈ sens(M).

Context. HILECOP PNs. Formalization. Token Player. Conclusion. 14 / 25

Definitions and Notations.

Remark.
The following definitions are given under the scope of a SPN
<P,T , pre, test, inhib, post,M0,�>.

Definition (SPN state)

A SPN state is a couple (Fired ,M) where M ∈ P → N is the
current marking of SPN and Fired ⊆ T is a list of transitions.

Definition (Sensitization and Firability)

I Sensitization: A transition t ∈ sens(M), if M ≥ pre(t), and
M ≥ test(t), and M < inhib(t) or inhib(t) = 0.

I Firability: A transition t ∈ firable(s), where s = (Fired ,M), if
t ∈ sens(M).

Context. HILECOP PNs. Formalization. Token Player. Conclusion. 14 / 25

Definitions and Notations.

Remark.
The following definitions are given under the scope of a SPN
<P,T , pre, test, inhib, post,M0,�>.

Definition (SPN state)

A SPN state is a couple (Fired ,M) where M ∈ P → N is the
current marking of SPN and Fired ⊆ T is a list of transitions.

Definition (Sensitization and Firability)

I Sensitization: A transition t ∈ sens(M), if M ≥ pre(t), and
M ≥ test(t), and M < inhib(t) or inhib(t) = 0.

I Firability: A transition t ∈ firable(s), where s = (Fired ,M), if
t ∈ sens(M).

Context. HILECOP PNs. Formalization. Token Player. Conclusion. 14 / 25

SPN Semantics.

Definition (SPN Semantics)

The semantics of an SPN is represented by the triplet < S , s0, >
where:

I S is the set of states of the SPN.

I s0 = (∅,M0) is the initial state of the SPN.

I ⊆ S ×Clk × S is the state changing relation, which is noted

s
clk

s ′ where s, s ′ ∈ S , Clk = {↓ clock, ↑ clock} and
clk ∈ Clk .

Context. HILECOP PNs. Formalization. Token Player. Conclusion. 15 / 25

SPN Semantics.

Definition (SPN Semantics)

The semantics of an SPN is represented by the triplet < S , s0, >
where:

I S is the set of states of the SPN.

I s0 = (∅,M0) is the initial state of the SPN.

I ⊆ S ×Clk × S is the state changing relation, which is noted

s
clk

s ′ where s, s ′ ∈ S , Clk = {↓ clock, ↑ clock} and
clk ∈ Clk .

Context. HILECOP PNs. Formalization. Token Player. Conclusion. 15 / 25

SPN Semantics.

Definition (SPN Semantics)

The semantics of an SPN is represented by the triplet < S , s0, >
where:

I S is the set of states of the SPN.

I s0 = (∅,M0) is the initial state of the SPN.

I ⊆ S ×Clk × S is the state changing relation, which is noted

s
clk

s ′ where s, s ′ ∈ S , Clk = {↓ clock, ↑ clock} and
clk ∈ Clk .

Context. HILECOP PNs. Formalization. Token Player. Conclusion. 15 / 25

SPN Semantics.

Definition (SPN Semantics)

The semantics of an SPN is represented by the triplet < S , s0, >
where:

I S is the set of states of the SPN.

I s0 = (∅,M0) is the initial state of the SPN.

I ⊆ S ×Clk × S is the state changing relation, which is noted

s
clk

s ′ where s, s ′ ∈ S , Clk = {↓ clock, ↑ clock} and
clk ∈ Clk .

Context. HILECOP PNs. Formalization. Token Player. Conclusion. 15 / 25

SPN State Changing Relation (Falling Edge).

Clock signal

1

Determines transitions to be fired.

2

3

Updates the marking.

4

I s = (Fired ,M)
↓ clock

s ′ = (Fired ′,M) if:

I All transitions that are not firable are not fired, i.e.:

∀t ∈ T , t /∈ firable(s)⇒ t /∈ Fired ′.

I All transitions both firable and sensitized by the residual
marking are fired, i.e:

∀t ∈ firable(s), t ∈ sens
(
M −

∑
ti∈Pr(t) pre(ti)

)
⇒ t ∈ Fired ′,

where Pr(t) = {ti | ti � t ∧ ti ∈ Fired ′}.

I All firable transitions that are not sensitized by the
residual marking are not fired, i.e.:

∀t ∈ firable(s), t /∈ sens
(
M −

∑
ti∈Pr(t) pre(ti)

)
⇒ t /∈ Fired ′.

Context. HILECOP PNs. Formalization. Token Player. Conclusion. 16 / 25

SPN State Changing Relation (Falling Edge).

Clock signal

1

Determines transitions to be fired.

2

3

Updates the marking.

4

I s = (Fired ,M)
↓ clock

s ′ = (Fired ′,M) if:

I All transitions that are not firable are not fired, i.e.:

∀t ∈ T , t /∈ firable(s)⇒ t /∈ Fired ′.

I All transitions both firable and sensitized by the residual
marking are fired, i.e:

∀t ∈ firable(s), t ∈ sens
(
M −

∑
ti∈Pr(t) pre(ti)

)
⇒ t ∈ Fired ′,

where Pr(t) = {ti | ti � t ∧ ti ∈ Fired ′}.

I All firable transitions that are not sensitized by the
residual marking are not fired, i.e.:

∀t ∈ firable(s), t /∈ sens
(
M −

∑
ti∈Pr(t) pre(ti)

)
⇒ t /∈ Fired ′.

Context. HILECOP PNs. Formalization. Token Player. Conclusion. 16 / 25

SPN State Changing Relation (Falling Edge).

Clock signal

1

Determines transitions to be fired.

2

3

Updates the marking.

4

I s = (Fired ,M)
↓ clock

s ′ = (Fired ′,M) if:
I All transitions that are not firable are not fired, i.e.:

∀t ∈ T , t /∈ firable(s)⇒ t /∈ Fired ′.
I All transitions both firable and sensitized by the residual

marking are fired, i.e:

∀t ∈ firable(s), t ∈ sens
(
M −

∑
ti∈Pr(t) pre(ti)

)
⇒ t ∈ Fired ′,

where Pr(t) = {ti | ti � t ∧ ti ∈ Fired ′}.

I All firable transitions that are not sensitized by the
residual marking are not fired, i.e.:

∀t ∈ firable(s), t /∈ sens
(
M −

∑
ti∈Pr(t) pre(ti)

)
⇒ t /∈ Fired ′.

Context. HILECOP PNs. Formalization. Token Player. Conclusion. 16 / 25

SPN State Changing Relation (Falling Edge).

Clock signal

1

Determines transitions to be fired.

2

3

Updates the marking.

4

I s = (Fired ,M)
↓ clock

s ′ = (Fired ′,M) if:
I All transitions that are not firable are not fired, i.e.:
∀t ∈ T , t /∈ firable(s)⇒ t /∈ Fired ′.

I All transitions both firable and sensitized by the residual
marking are fired, i.e:

∀t ∈ firable(s), t ∈ sens
(
M −

∑
ti∈Pr(t) pre(ti)

)
⇒ t ∈ Fired ′,

where Pr(t) = {ti | ti � t ∧ ti ∈ Fired ′}.

I All firable transitions that are not sensitized by the
residual marking are not fired, i.e.:

∀t ∈ firable(s), t /∈ sens
(
M −

∑
ti∈Pr(t) pre(ti)

)
⇒ t /∈ Fired ′.

Context. HILECOP PNs. Formalization. Token Player. Conclusion. 16 / 25

SPN State Changing Relation (Falling Edge).

Clock signal

1

Determines transitions to be fired.

2

3

Updates the marking.

4

I s = (Fired ,M)
↓ clock

s ′ = (Fired ′,M) if:
I All transitions that are not firable are not fired, i.e.:
∀t ∈ T , t /∈ firable(s)⇒ t /∈ Fired ′.

I All transitions both firable and sensitized by the residual
marking are fired, i.e:

∀t ∈ firable(s), t ∈ sens
(
M −

∑
ti∈Pr(t) pre(ti)

)
⇒ t ∈ Fired ′,

where Pr(t) = {ti | ti � t ∧ ti ∈ Fired ′}.
I All firable transitions that are not sensitized by the

residual marking are not fired, i.e.:

∀t ∈ firable(s), t /∈ sens
(
M −

∑
ti∈Pr(t) pre(ti)

)
⇒ t /∈ Fired ′.

Context. HILECOP PNs. Formalization. Token Player. Conclusion. 16 / 25

SPN State Changing Relation (Falling Edge).

Clock signal

1

Determines transitions to be fired.

2

3

Updates the marking.

4

I s = (Fired ,M)
↓ clock

s ′ = (Fired ′,M) if:
I All transitions that are not firable are not fired, i.e.:
∀t ∈ T , t /∈ firable(s)⇒ t /∈ Fired ′.

I All transitions both firable and sensitized by the residual
marking are fired, i.e:
∀t ∈ firable(s), t ∈ sens

(
M −

∑
ti∈Pr(t) pre(ti)

)
⇒ t ∈ Fired ′,

where Pr(t) = {ti | ti � t ∧ ti ∈ Fired ′}.

I All firable transitions that are not sensitized by the
residual marking are not fired, i.e.:

∀t ∈ firable(s), t /∈ sens
(
M −

∑
ti∈Pr(t) pre(ti)

)
⇒ t /∈ Fired ′.

Context. HILECOP PNs. Formalization. Token Player. Conclusion. 16 / 25

SPN State Changing Relation (Falling Edge).

Clock signal

1

Determines transitions to be fired.

2

3

Updates the marking.

4

I s = (Fired ,M)
↓ clock

s ′ = (Fired ′,M) if:
I All transitions that are not firable are not fired, i.e.:
∀t ∈ T , t /∈ firable(s)⇒ t /∈ Fired ′.

I All transitions both firable and sensitized by the residual
marking are fired, i.e:
∀t ∈ firable(s), t ∈ sens

(
M −

∑
ti∈Pr(t) pre(ti)

)
⇒ t ∈ Fired ′,

where Pr(t) = {ti | ti � t ∧ ti ∈ Fired ′}.
I All firable transitions that are not sensitized by the

residual marking are not fired, i.e.:

∀t ∈ firable(s), t /∈ sens
(
M −

∑
ti∈Pr(t) pre(ti)

)
⇒ t /∈ Fired ′.

Context. HILECOP PNs. Formalization. Token Player. Conclusion. 16 / 25

SPN State Changing Relation (Falling Edge).

Clock signal

1

Determines transitions to be fired.

2

3

Updates the marking.

4

I s = (Fired ,M)
↓ clock

s ′ = (Fired ′,M) if:
I All transitions that are not firable are not fired, i.e.:
∀t ∈ T , t /∈ firable(s)⇒ t /∈ Fired ′.

I All transitions both firable and sensitized by the residual
marking are fired, i.e:
∀t ∈ firable(s), t ∈ sens

(
M −

∑
ti∈Pr(t) pre(ti)

)
⇒ t ∈ Fired ′,

where Pr(t) = {ti | ti � t ∧ ti ∈ Fired ′}.
I All firable transitions that are not sensitized by the

residual marking are not fired, i.e.:
∀t ∈ firable(s), t /∈ sens

(
M −

∑
ti∈Pr(t) pre(ti)

)
⇒ t /∈ Fired ′.

Context. HILECOP PNs. Formalization. Token Player. Conclusion. 16 / 25

An Example of SPN Semantics Rule.

All transitions both firable and sensitized by the residual
marking are fired.

P0

T0 T1 T2

Figure: At state s.

s = (Fired ,M)
↓ clock

s ′ = (Fired ′,M)

I T0, T1 ∈ Fired ′

I T2 ∈ Fired ′?

I M = (P0, 3), T2 ∈ firable(s)?

YES!

I MR = (P0, 1), T2 ∈ sens(MR)?

YES!

I Then, according to rule 2 of SPN
semantics: T2 ∈ Fired ′

Context. HILECOP PNs. Formalization. Token Player. Conclusion. 17 / 25

An Example of SPN Semantics Rule.

All transitions both firable and sensitized by the residual
marking are fired.

P0

T0 T1 T2

Figure: At state s.

s = (Fired ,M)
↓ clock

s ′ = (Fired ′,M)

I T0, T1 ∈ Fired ′

I T2 ∈ Fired ′?

I M = (P0, 3), T2 ∈ firable(s)?

YES!

I MR = (P0, 1), T2 ∈ sens(MR)?

YES!

I Then, according to rule 2 of SPN
semantics: T2 ∈ Fired ′

Context. HILECOP PNs. Formalization. Token Player. Conclusion. 17 / 25

An Example of SPN Semantics Rule.

All transitions both firable and sensitized by the residual
marking are fired.

P0

T0 T1 T2

Figure: At state s.

s = (Fired ,M)
↓ clock

s ′ = (Fired ′,M)

I T0, T1 ∈ Fired ′

I T2 ∈ Fired ′?

I M = (P0, 3), T2 ∈ firable(s)?

YES!

I MR = (P0, 1), T2 ∈ sens(MR)?

YES!

I Then, according to rule 2 of SPN
semantics: T2 ∈ Fired ′

Context. HILECOP PNs. Formalization. Token Player. Conclusion. 17 / 25

An Example of SPN Semantics Rule.

All transitions both firable and sensitized by the residual
marking are fired.

P0

T0 T1 T2

Figure: At state s.

s = (Fired ,M)
↓ clock

s ′ = (Fired ′,M)

I T0, T1 ∈ Fired ′

I T2 ∈ Fired ′?

I M = (P0, 3), T2 ∈ firable(s)?

YES!

I MR = (P0, 1), T2 ∈ sens(MR)?

YES!

I Then, according to rule 2 of SPN
semantics: T2 ∈ Fired ′

Context. HILECOP PNs. Formalization. Token Player. Conclusion. 17 / 25

An Example of SPN Semantics Rule.

All transitions both firable and sensitized by the residual
marking are fired.

P0

T0 T1 T2

Figure: At state s.

s = (Fired ,M)
↓ clock

s ′ = (Fired ′,M)

I T0, T1 ∈ Fired ′

I T2 ∈ Fired ′?

I M = (P0, 3), T2 ∈ firable(s)?
YES!

I MR = (P0, 1), T2 ∈ sens(MR)?

YES!

I Then, according to rule 2 of SPN
semantics: T2 ∈ Fired ′

Context. HILECOP PNs. Formalization. Token Player. Conclusion. 17 / 25

An Example of SPN Semantics Rule.

All transitions both firable and sensitized by the residual
marking are fired.

P0

T0 T1 T2

Figure: At state s.

s = (Fired ,M)
↓ clock

s ′ = (Fired ′,M)

I T0, T1 ∈ Fired ′

I T2 ∈ Fired ′?

I M = (P0, 3), T2 ∈ firable(s)?
YES!

I MR = (P0, 1), T2 ∈ sens(MR)?

YES!

I Then, according to rule 2 of SPN
semantics: T2 ∈ Fired ′

Context. HILECOP PNs. Formalization. Token Player. Conclusion. 17 / 25

An Example of SPN Semantics Rule.

All transitions both firable and sensitized by the residual
marking are fired.

P0

T0 T1 T2

Figure: At state s.

s = (Fired ,M)
↓ clock

s ′ = (Fired ′,M)

I T0, T1 ∈ Fired ′

I T2 ∈ Fired ′?

I M = (P0, 3), T2 ∈ firable(s)?
YES!

I MR = (P0, 1), T2 ∈ sens(MR)?
YES!

I Then, according to rule 2 of SPN
semantics: T2 ∈ Fired ′

Context. HILECOP PNs. Formalization. Token Player. Conclusion. 17 / 25

An Example of SPN Semantics Rule.

All transitions both firable and sensitized by the residual
marking are fired.

P0

T0 T1 T2

Figure: At state s.

s = (Fired ,M)
↓ clock

s ′ = (Fired ′,M)

I T0, T1 ∈ Fired ′

I T2 ∈ Fired ′?

I M = (P0, 3), T2 ∈ firable(s)?
YES!

I MR = (P0, 1), T2 ∈ sens(MR)?
YES!

I Then, according to rule 2 of SPN
semantics: T2 ∈ Fired ′

Context. HILECOP PNs. Formalization. Token Player. Conclusion. 17 / 25

SPN State Changing Relation (Rising Edge).

Clock signal

1

Determines transitions to be fired.

2

3

Updates the marking.

4

I s = (Fired ,M)
↑ clock

s ′ = (Fired ,M ′):

I M ′ is the new marking resulting from the firing of all transitions
contained in Fired, i.e.:

M ′ = M −
∑

ti∈Fired
(
pre(ti)− post(ti)

)
.

Context. HILECOP PNs. Formalization. Token Player. Conclusion. 18 / 25

SPN State Changing Relation (Rising Edge).

Clock signal

1

Determines transitions to be fired.

2

3

Updates the marking.

4

I s = (Fired ,M)
↑ clock

s ′ = (Fired ,M ′):
I M ′ is the new marking resulting from the firing of all transitions

contained in Fired, i.e.:

M ′ = M −
∑

ti∈Fired
(
pre(ti)− post(ti)

)
.

Context. HILECOP PNs. Formalization. Token Player. Conclusion. 18 / 25

SPN State Changing Relation (Rising Edge).

Clock signal

1

Determines transitions to be fired.

2

3

Updates the marking.

4

I s = (Fired ,M)
↑ clock

s ′ = (Fired ,M ′):
I M ′ is the new marking resulting from the firing of all transitions

contained in Fired, i.e.:
M ′ = M −

∑
ti∈Fired

(
pre(ti)− post(ti)

)
.

Context. HILECOP PNs. Formalization. Token Player. Conclusion. 18 / 25

SPN Semantics in Coq.

1 Inductive SpnSemantics (spn : Spn) (s s’ : SpnState) : Clock → Prop :=

2 | SpnSemantics_falling_edge :

3 (* Rules 1, 2 and 3 *)

4 ... → SpnSemantics spn s s’ falling_edge

5 | SpnSemantics_rising_edge :

6 (* Ensures the consistency of spn, s and s’. *)

7 IsWellDefinedSpn spn →
8 IsWellDefinedSpnState spn s →
9 IsWellDefinedSpnState spn s’ →

10 (* Fired stays the same between state s and s’. *)

11 s.(fired) = s’.(fired) →
12 (* Rule 4 of SPN semantics. *)

13 (forall (p : Place) (n : nat),

14 (p, n) ∈ s.(marking) →
15 (p, n − (presum spn p s.(fired)) + (postsum spn p s.(fired))) ∈ s’.(marking)) →
16 SpnSemantics spn s s’ rising_edge.

I s.(marking) expresses the marking at state s.

I Markings are list of couples (place, number of tokens).

Context. HILECOP PNs. Formalization. Token Player. Conclusion. 19 / 25

SPN Token Player Program.

SPN Token Player Program.

I Implementation of the SPN semantics rules.

I Computes the evolution of a given SPN from initial state s0 to
state sn, where n is the number of evolution cycles.

I Gives us confidence in our implementation of SPN semantics.

Context. HILECOP PNs. Formalization. Token Player. Conclusion. 20 / 25

SPN Token Player Program.

I Implementation of the SPN semantics rules.

I Computes the evolution of a given SPN from initial state s0 to
state sn, where n is the number of evolution cycles.

I Gives us confidence in our implementation of SPN semantics.

Context. HILECOP PNs. Formalization. Token Player. Conclusion. 20 / 25

SPN Token Player Program.

I Implementation of the SPN semantics rules.

I Computes the evolution of a given SPN from initial state s0 to
state sn, where n is the number of evolution cycles.

I Gives us confidence in our implementation of SPN semantics.

Context. HILECOP PNs. Formalization. Token Player. Conclusion. 20 / 25

An Algorithm for one cycle of evolution.
Data: spn, an SPN. s, the state of spn at the beginning of the clock cycle.

Result: A couple of SPN states, s’ and s”, results of the evolution of spn from state s.

1 begin

2 fired transitions← []

/* Phase 1, falling edge of the clock. */

3 foreach priority group in spn.priority groups do

4 resid m← s.marking

5 foreach trans in priority group do

6 if is firable(trans, s) and is sensitized(trans, resid m) then

7 update residual marking(trans, resid m)

8 push back(trans, fired transitions)

9 s’← make state(fired transitions, s.marking)

/* Phase 2, rising edge of the clock. */

10 new marking ← s’.marking

11 foreach trans in fired transitions do

12 update marking pre(trans, new marking)

13 update marking post(trans, new marking)

14 s”← make state(s’.fired, new marking)

15 return (s’, s”)

Algorithm 1: cycle(spn, s)

Context. HILECOP PNs. Formalization. Token Player. Conclusion. 21 / 25

Execution on An Example.
Falling edge phase.

P0

T0 T1 T2

P1 P2

fired transitions← []

foreach priority group in spn.priority groups do

resid m← s.marking

foreach trans in priority group do

if is firable(trans, s) and is sensitized(trans, resid m)

then

update residual marking(trans, resid m)

push back(trans, fired transitions)

s’← make state(fired transitions, s.marking)

s = (fired ,marking) with s.marking = (P0, 2), (P1, 0), (P2, 0)
priority groups = [[T0,T1,T2]]

Context. HILECOP PNs. Formalization. Token Player. Conclusion. 22 / 25

Execution on An Example.
Falling edge phase.

P0

T0 T1 T2

P1 P2

fired transitions← []

foreach priority group in spn.priority groups do

resid m← s.marking

foreach trans in priority group do

if is firable(trans, s) and is sensitized(trans, resid m)

then

update residual marking(trans, resid m)

push back(trans, fired transitions)

s’← make state(fired transitions, s.marking)

priority groups = [[T0,T1,T2]]
fired transitions = []

Context. HILECOP PNs. Formalization. Token Player. Conclusion. 22 / 25

Execution on An Example.
Falling edge phase.

P0

T0 T1 T2

P1 P2

fired transitions← []

foreach priority group in spn.priority groups do

resid m← s.marking

foreach trans in priority group do

if is firable(trans, s) and is sensitized(trans, resid m)

then

update residual marking(trans, resid m)

push back(trans, fired transitions)

s’← make state(fired transitions, s.marking)

priority groups = [[T0,T1,T2]]
fired transitions = []
priority group = [T0,T1,T2]

Context. HILECOP PNs. Formalization. Token Player. Conclusion. 22 / 25

Execution on An Example.
Falling edge phase.

P0

T0 T1 T2

P1 P2

fired transitions← []

foreach priority group in spn.priority groups do

resid m← s.marking

foreach trans in priority group do

if is firable(trans, s) and is sensitized(trans, resid m)

then

update residual marking(trans, resid m)

push back(trans, fired transitions)

s’← make state(fired transitions, s.marking)

fired transitions = []
priority group = [T0,T1,T2]

resid m = (P0, 2), (P1, 0), (P2, 0)

Context. HILECOP PNs. Formalization. Token Player. Conclusion. 22 / 25

Execution on An Example.
Falling edge phase.

P0

T0 T1 T2

P1 P2

fired transitions← []

foreach priority group in spn.priority groups do

resid m← s.marking

foreach trans in priority group do

if is firable(trans, s) and is sensitized(trans, resid m)

then

update residual marking(trans, resid m)

push back(trans, fired transitions)

s’← make state(fired transitions, s.marking)

fired transitions = []
priority group = [T0,T1,T2]

resid m = (P0, 2), (P1, 0), (P2, 0)

Context. HILECOP PNs. Formalization. Token Player. Conclusion. 22 / 25

Execution on An Example.
Falling edge phase.

P0

T0 T1 T2

P1 P2

fired transitions← []

foreach priority group in spn.priority groups do

resid m← s.marking

foreach trans in priority group do

if is firable(trans, s) and is sensitized(trans, resid m)

then

update residual marking(trans, resid m)

push back(trans, fired transitions)

s’← make state(fired transitions, s.marking)

fired transitions = []
priority group = [T0,T1,T2]

resid m = (P0, 2), (P1, 0), (P2, 0)

Context. HILECOP PNs. Formalization. Token Player. Conclusion. 22 / 25

Execution on An Example.
Falling edge phase.

P0

T0 T1 T2

P1 P2

fired transitions← []

foreach priority group in spn.priority groups do

resid m← s.marking

foreach trans in priority group do

if is firable(trans, s) and is sensitized(trans, resid m)

then

update residual marking(trans, resid m)

push back(trans, fired transitions)

s’← make state(fired transitions, s.marking)

fired transitions = []
priority group = [T0,T1,T2]
resid m = (P0, 1), (P1, 0), (P2, 0)

Context. HILECOP PNs. Formalization. Token Player. Conclusion. 22 / 25

Execution on An Example.
Falling edge phase.

P0

T0 T1 T2

P1 P2

fired transitions← []

foreach priority group in spn.priority groups do

resid m← s.marking

foreach trans in priority group do

if is firable(trans, s) and is sensitized(trans, resid m)

then

update residual marking(trans, resid m)

push back(trans, fired transitions)

s’← make state(fired transitions, s.marking)

fired transitions = [T0]
priority group = [T0,T1,T2]
resid m = (P0, 1), (P1, 0), (P2, 0)

Context. HILECOP PNs. Formalization. Token Player. Conclusion. 22 / 25

Execution on An Example.
Falling edge phase.

P0

T0 T1 T2

P1 P2

fired transitions← []

foreach priority group in spn.priority groups do

resid m← s.marking

foreach trans in priority group do

if is firable(trans, s) and is sensitized(trans, resid m)

then

update residual marking(trans, resid m)

push back(trans, fired transitions)

s’← make state(fired transitions, s.marking)

fired transitions = [T0]
priority group = [T0,T1,T2]
resid m = (P0, 1), (P1, 0), (P2, 0)

Context. HILECOP PNs. Formalization. Token Player. Conclusion. 22 / 25

Execution on An Example.
Falling edge phase.

P0

T0 T1 T2

P1 P2

fired transitions← []

foreach priority group in spn.priority groups do

resid m← s.marking

foreach trans in priority group do

if is firable(trans, s) and is sensitized(trans, resid m)

then

update residual marking(trans, resid m)

push back(trans, fired transitions)

s’← make state(fired transitions, s.marking)

fired transitions = [T0]
priority group = [T0,T1,T2]
resid m = (P0, 1), (P1, 0), (P2, 0)

Context. HILECOP PNs. Formalization. Token Player. Conclusion. 22 / 25

Execution on An Example.
Falling edge phase.

P0

T0 T1 T2

P1 P2

fired transitions← []

foreach priority group in spn.priority groups do

resid m← s.marking

foreach trans in priority group do

if is firable(trans, s) and is sensitized(trans, resid m)

then

update residual marking(trans, resid m)

push back(trans, fired transitions)

s’← make state(fired transitions, s.marking)

fired transitions = [T0]
priority group = [T0,T1,T2]
resid m = (P0, 0), (P1, 0), (P2, 0)

Context. HILECOP PNs. Formalization. Token Player. Conclusion. 22 / 25

Execution on An Example.
Falling edge phase.

P0

T0 T1 T2

P1 P2

fired transitions← []

foreach priority group in spn.priority groups do

resid m← s.marking

foreach trans in priority group do

if is firable(trans, s) and is sensitized(trans, resid m)

then

update residual marking(trans, resid m)

push back(trans, fired transitions)

s’← make state(fired transitions, s.marking)

fired transitions = [T0,T1]
priority group = [T0,T1,T2]
resid m = (P0, 0), (P1, 0), (P2, 0)

Context. HILECOP PNs. Formalization. Token Player. Conclusion. 22 / 25

Execution on An Example.
Falling edge phase.

P0

T0 T1 T2

P1 P2

fired transitions← []

foreach priority group in spn.priority groups do

resid m← s.marking

foreach trans in priority group do

if is firable(trans, s) and is sensitized(trans, resid m)

then

update residual marking(trans, resid m)

push back(trans, fired transitions)

s’← make state(fired transitions, s.marking)

fired transitions = [T0,T1]
priority group = [T0,T1,T2]
resid m = (P0, 0), (P1, 0), (P2, 0)

Context. HILECOP PNs. Formalization. Token Player. Conclusion. 22 / 25

Execution on An Example.
Falling edge phase.

P0

T0 T1 T2

P1 P2

fired transitions← []

foreach priority group in spn.priority groups do

resid m← s.marking

foreach trans in priority group do

if is firable(trans, s) and is sensitized(trans, resid m)

then

update residual marking(trans, resid m)

push back(trans, fired transitions)

s’← make state(fired transitions, s.marking)

fired transitions = [T0,T1]
priority group = [T0,T1,T2]
resid m = (P0, 0), (P1, 0), (P2, 0)

Context. HILECOP PNs. Formalization. Token Player. Conclusion. 22 / 25

Execution on An Example.
Falling edge phase.

P0

T0 T1 T2

P1 P2

fired transitions← []

foreach priority group in spn.priority groups do

resid m← s.marking

foreach trans in priority group do

if is firable(trans, s) and is sensitized(trans, resid m)

then

update residual marking(trans, resid m)

push back(trans, fired transitions)

s’← make state(fired transitions, s.marking)

s’ = ([T0,T1], [(P0, 2), (P1, 0), (P2, 0)])

Context. HILECOP PNs. Formalization. Token Player. Conclusion. 22 / 25

Execution on An Example.
Rising edge phase.

P0

T0 T1 T2

P1 P2

new marking ← s’.marking

foreach trans in fired transitions do

update marking pre(trans, new marking)

update marking post(trans, new marking)

s”← make state(s’.fired, new marking)

return (s’, s”)

s’ = ([T0,T1], [(P0, 2), (P1, 0), (P2, 0)])
fired transitions = [T0,T1]

Context. HILECOP PNs. Formalization. Token Player. Conclusion. 23 / 25

Execution on An Example.
Rising edge phase.

P0

T0 T1 T2

P1 P2

new marking ← s’.marking

foreach trans in fired transitions do

update marking pre(trans, new marking)

update marking post(trans, new marking)

s”← make state(s’.fired, new marking)

return (s’, s”)

fired transitions = [T0,T1]
new marking = (P0, 2), (P1, 0), (P2, 0)

Context. HILECOP PNs. Formalization. Token Player. Conclusion. 23 / 25

Execution on An Example.
Rising edge phase.

P0

T0 T1 T2

P1 P2

new marking ← s’.marking

foreach trans in fired transitions do

update marking pre(trans, new marking)

update marking post(trans, new marking)

s”← make state(s’.fired, new marking)

return (s’, s”)

fired transitions = [T0,T1]
new marking = (P0, 2), (P1, 0), (P2, 0)

Context. HILECOP PNs. Formalization. Token Player. Conclusion. 23 / 25

Execution on An Example.
Rising edge phase.

P0

T0 T1 T2

P1 P2

new marking ← s’.marking

foreach trans in fired transitions do

update marking pre(trans, new marking)

update marking post(trans, new marking)

s”← make state(s’.fired, new marking)

return (s’, s”)

fired transitions = [T0,T1]
new marking = (P0, 1), (P1, 0), (P2, 0)

Context. HILECOP PNs. Formalization. Token Player. Conclusion. 23 / 25

Execution on An Example.
Rising edge phase.

P0

T0 T1 T2

P1 P2

new marking ← s’.marking

foreach trans in fired transitions do

update marking pre(trans, new marking)

update marking post(trans, new marking)

s”← make state(s’.fired, new marking)

return (s’, s”)

fired transitions = [T0,T1]
new marking = (P0, 1), (P1, 1), (P2, 0)

Context. HILECOP PNs. Formalization. Token Player. Conclusion. 23 / 25

Execution on An Example.
Rising edge phase.

P0

T0 T1 T2

P1 P2

new marking ← s’.marking

foreach trans in fired transitions do

update marking pre(trans, new marking)

update marking post(trans, new marking)

s”← make state(s’.fired, new marking)

return (s’, s”)

fired transitions = [T0,T1]
new marking = (P0, 1), (P1, 1), (P2, 0)

Context. HILECOP PNs. Formalization. Token Player. Conclusion. 23 / 25

Execution on An Example.
Rising edge phase.

P0

T0 T1 T2

P1 P2

new marking ← s’.marking

foreach trans in fired transitions do

update marking pre(trans, new marking)

update marking post(trans, new marking)

s”← make state(s’.fired, new marking)

return (s’, s”)

fired transitions = [T0,T1]
new marking = (P0, 0), (P1, 1), (P2, 0)

Context. HILECOP PNs. Formalization. Token Player. Conclusion. 23 / 25

Execution on An Example.
Rising edge phase.

P0

T0 T1 T2

P1 P2

new marking ← s’.marking

foreach trans in fired transitions do

update marking pre(trans, new marking)

update marking post(trans, new marking)

s”← make state(s’.fired, new marking)

return (s’, s”)

fired transitions = [T0,T1]
new marking = (P0, 0), (P1, 1), (P2, 1)

Context. HILECOP PNs. Formalization. Token Player. Conclusion. 23 / 25

Execution on An Example.
Rising edge phase.

P0

T0 T1 T2

P1 P2

new marking ← s’.marking

foreach trans in fired transitions do

update marking pre(trans, new marking)

update marking post(trans, new marking)

s”← make state(s’.fired, new marking)

return (s’, s”)

s’’ = ([T0,T1], [(P0, 0), (P1, 1), (P2, 1)])

Context. HILECOP PNs. Formalization. Token Player. Conclusion. 23 / 25

Execution on An Example.
Rising edge phase.

P0

T0 T1 T2

P1 P2

new marking ← s’.marking

foreach trans in fired transitions do

update marking pre(trans, new marking)

update marking post(trans, new marking)

s”← make state(s’.fired, new marking)

return (s’, s”)

s’ = ([T0,T1], [(P0, 2), (P1, 0), (P2, 0)])
s’’ = ([T0,T1], [(P0, 0), (P1, 1), (P2, 1)])

Context. HILECOP PNs. Formalization. Token Player. Conclusion. 23 / 25

Correctness/Completeness of The SPN Token Player.

Theorem (Correctness)

∀ (spn : Spn) (s s’ s’’ : SpnState), which are well-defined,

cycle spn s = (s’, s’’) ⇒ s
↓ clock

s’
↑ clock

s’’.

Theorem (Completeness)

∀ (spn : Spn) (s s’ s’’ : SpnState), which are well-defined,

s
↓ clock

s’
↑ clock

s’’ ⇒ cycle spn s = (s’, s’’).

Context. HILECOP PNs. Formalization. Token Player. Conclusion. 24 / 25

Correctness/Completeness of The SPN Token Player.

Theorem (Correctness)

∀ (spn : Spn) (s s’ s’’ : SpnState), which are well-defined,

cycle spn s = (s’, s’’) ⇒ s
↓ clock

s’
↑ clock

s’’.

Theorem (Completeness)

∀ (spn : Spn) (s s’ s’’ : SpnState), which are well-defined,

s
↓ clock

s’
↑ clock

s’’ ⇒ cycle spn s = (s’, s’’).

Context. HILECOP PNs. Formalization. Token Player. Conclusion. 24 / 25

Conclusion.

Conclusion.

Context.

I Formal verification of a model-to-text transformation from
HILECOP PNs to VHDL.

I First step: model the semantics of HILECOP PNs (SITPNs).

Done.
Model the semantics of SPNs (subclass of HILECOP PNs).

On Going.

Add time, interpretation and macroplaces to SPNs semantics.

Context. HILECOP PNs. Formalization. Token Player. Conclusion. 25 / 25

Conclusion.

Context.

I Formal verification of a model-to-text transformation from
HILECOP PNs to VHDL.

I First step: model the semantics of HILECOP PNs (SITPNs).

Done.
Model the semantics of SPNs (subclass of HILECOP PNs).

On Going.

Add time, interpretation and macroplaces to SPNs semantics.

Context. HILECOP PNs. Formalization. Token Player. Conclusion. 25 / 25

Conclusion.

Context.

I Formal verification of a model-to-text transformation from
HILECOP PNs to VHDL.

I First step: model the semantics of HILECOP PNs (SITPNs).

Done.
Model the semantics of SPNs (subclass of HILECOP PNs).

On Going.

Add time, interpretation and macroplaces to SPNs semantics.

Context. HILECOP PNs. Formalization. Token Player. Conclusion. 25 / 25

Thank you for your attention!

Bibliography.

D. Andreu, D. Guiraud, and S. Guillaume.

A distributed architecture for activating the peripheral nervous system.
Journal of Neural Engineering, 6(2):18, Feb. 2009.

H. Leroux.

Méthodologie de conception d’architectures numériques complexes: du formalisme à l’implémentation en
passant par l’analyse, préservation de la conformité. Application aux neuroprothèses. (A methodology for
the design of complex digital architectures: from formalism to implementation, taking into account formal
analysis. Application to neuroprosthetics).
PhD thesis, Montpellier 2 University, France, 2014.

X. Leroy.

Formal Verification of a Realistic Compiler.
Communications of the ACM (CACM), 52(7):107–115, July 2009.

I. Merzoug.

Validation formelle des systèmes numériques critiques : génération de l’espace d’états de réseaux de Petri
exécutés en synchrone. (Formal validation of critical digital systems : generation of state space of Petri nets
executed in synchronous).
PhD thesis, University of Montpellier, France, 2018.

The Coq Development Team.

Coq, version 8.9.0.
Inria, Jan. 2019.
http://coq.inria.fr/.

http://coq.inria.fr/

Coq Implementation of the SPN Token Player.

1 Definition spn_cycle (spn : Spn) (starting_state : SpnState) :

2 option (SpnState ∗ SpnState) :=

3 (* Computes the transitions to be fired. *)

4 match spn_falling_edge spn starting_state with

5 | Some inter_state ⇒
6 (* Updates the marking. *)

7 match spn_rising_edge spn inter_state with

8 | Some final_state ⇒ Some (inter_state, final_state)

9 | None ⇒ None

10 end

11 | None ⇒ None

12 end.

Figure: The SPN Token Player Program in Coq.

I match checks the result of function calls.

I Functions return Some value or None (error case).

27 / 25

Coq Implementation of the SPN Token Player.

1 Definition spn_cycle (spn : Spn) (starting_state : SpnState) :

2 option (SpnState ∗ SpnState) :=

3 (* Computes the transitions to be fired. *)

4 match spn_falling_edge spn starting_state with

5 | Some inter_state ⇒
6 (* Updates the marking. *)

7 match spn_rising_edge spn inter_state with

8 | Some final_state ⇒ Some (inter_state, final_state)

9 | None ⇒ None

10 end

11 | None ⇒ None

12 end.

Figure: The SPN Token Player Program in Coq.

I match checks the result of function calls.

I Functions return Some value or None (error case).

27 / 25

Coq Implementation of the SPN Token Player.

1 Definition spn_cycle (spn : Spn) (starting_state : SpnState) :

2 option (SpnState ∗ SpnState) :=

3 (* Computes the transitions to be fired. *)

4 match spn_falling_edge spn starting_state with

5 | Some inter_state ⇒
6 (* Updates the marking. *)

7 match spn_rising_edge spn inter_state with

8 | Some final_state ⇒ Some (inter_state, final_state)

9 | None ⇒ None

10 end

11 | None ⇒ None

12 end.

Figure: The SPN Token Player Program in Coq.

I match checks the result of function calls.

I Functions return Some value or None (error case).

27 / 25

Reminder on Correctness and Completeness.

I Let X ,Y be two types.

I Let P ∈ X → Y be a program, that takes x ∈ X as an input
value and returns some y ∈ Y .

I Let S ∈ X → Y → {>, ⊥} be the specification of program
P. S is a predicate that takes x and y as input values and
return True or False.

Definition (Correctness)

A program P is said to be correct regarding its specification if
∀x ∈ X , y ∈ Y , P(x) = y ⇒ S(x , y)

Definition (Completeness)

A program P is said to be complete regarding its specification if
∀x ∈ X , y ∈ Y , S(x , y)⇒ P(x) = y

28 / 25

Correctness of The SPN Token Player.

Theorem (Correctness)

∀ (spn : Spn) (s s’ s’’ : SpnState), which are well-defined,

spn cycle spn s = Some (s’, s’’) ⇒ s
↓ clock

s’
↑ clock

s’’.

Lemma (Rising Edge Correct)

∀ (spn : Spn) (s s’ : SpnState), which are well-defined,

spn rising edge spn s = Some s’ ⇒ s
↑ clock

s’.

Rising Edge Correct Proof.

I Induction on the list of transitions to be fired of state s.
I With the help of other lemmas:

1 update marking pre(t, M) = Some M’

⇔ M ′ = M −
∑

ti∈Fired pre(ti)
2 update marking post(t, M) = Some M’

⇔ M ′ = M +
∑

ti∈Fired post(ti)
3 . . .

29 / 25

Correctness of The SPN Token Player.

Theorem (Correctness)

∀ (spn : Spn) (s s’ s’’ : SpnState), which are well-defined,

spn cycle spn s = Some (s’, s’’) ⇒ s
↓ clock

s’
↑ clock

s’’.

Lemma (Falling Edge Correct)

∀ (spn : Spn) (s s’ : SpnState), which are well-defined,

spn falling edge spn s = Some s’ ⇒ s
↓ clock

s’.

Lemma (Rising Edge Correct)

∀ (spn : Spn) (s s’ : SpnState), which are well-defined,

spn rising edge spn s = Some s’ ⇒ s
↑ clock

s’.

Rising Edge Correct Proof.

I Induction on the list of transitions to be fired of state s.
I With the help of other lemmas:

1 update marking pre(t, M) = Some M’

⇔ M ′ = M −
∑

ti∈Fired pre(ti)
2 update marking post(t, M) = Some M’

⇔ M ′ = M +
∑

ti∈Fired post(ti)
3 . . .

29 / 25

Correctness of The SPN Token Player.

Theorem (Correctness)

∀ (spn : Spn) (s s’ s’’ : SpnState), which are well-defined,

spn cycle spn s = Some (s’, s’’) ⇒ s
↓ clock

s’
↑ clock

s’’.

Lemma (Falling Edge Correct)

∀ (spn : Spn) (s s’ : SpnState), which are well-defined,

spn falling edge spn s = Some s’ ⇒ s
↓ clock

s’.

Falling Edge Correct Proof.

I Induction on the priority groups of spn.
I With the help of other lemmas:

1 is sensitized(t, M) ⇔ t ∈ sens(M)
2 is firable(t, s) ⇔ t ∈ firable(s)
3 spn falling edge computes a proper residual marking.
4 . . .

Lemma (Rising Edge Correct)

∀ (spn : Spn) (s s’ : SpnState), which are well-defined,

spn rising edge spn s = Some s’ ⇒ s
↑ clock

s’.

Rising Edge Correct Proof.

I Induction on the list of transitions to be fired of state s.
I With the help of other lemmas:

1 update marking pre(t, M) = Some M’

⇔ M ′ = M −
∑

ti∈Fired pre(ti)
2 update marking post(t, M) = Some M’

⇔ M ′ = M +
∑

ti∈Fired post(ti)
3 . . .

29 / 25

Correctness of The SPN Token Player.

Theorem (Correctness)

∀ (spn : Spn) (s s’ s’’ : SpnState), which are well-defined,

spn cycle spn s = Some (s’, s’’) ⇒ s
↓ clock

s’
↑ clock

s’’.

Lemma (Rising Edge Correct)

∀ (spn : Spn) (s s’ : SpnState), which are well-defined,

spn rising edge spn s = Some s’ ⇒ s
↑ clock

s’.

Rising Edge Correct Proof.

I Induction on the list of transitions to be fired of state s.
I With the help of other lemmas:

1 update marking pre(t, M) = Some M’

⇔ M ′ = M −
∑

ti∈Fired pre(ti)
2 update marking post(t, M) = Some M’

⇔ M ′ = M +
∑

ti∈Fired post(ti)
3 . . .

29 / 25

Correctness of The SPN Token Player.

Theorem (Correctness)

∀ (spn : Spn) (s s’ s’’ : SpnState), which are well-defined,

spn cycle spn s = Some (s’, s’’) ⇒ s
↓ clock

s’
↑ clock

s’’.

Lemma (Rising Edge Correct)

∀ (spn : Spn) (s s’ : SpnState), which are well-defined,

spn rising edge spn s = Some s’ ⇒ s
↑ clock

s’.

Rising Edge Correct Proof.

I Induction on the list of transitions to be fired of state s.
I With the help of other lemmas:

1 update marking pre(t, M) = Some M’

⇔ M ′ = M −
∑

ti∈Fired pre(ti)
2 update marking post(t, M) = Some M’

⇔ M ′ = M +
∑

ti∈Fired post(ti)
3 . . .

29 / 25

Completeness of The SPN Token Player.

Theorem (Completeness)

∀ (spn : Spn) (s s’ s’’ : SpnState), which are well-defined,

s
↓ clock

s’
↑ clock

s’’ ⇒ spn cycle spn s = Some (s’, s’’).

Lemma (Falling Edge Complete)

∀ (spn : Spn) (s s’ : SpnState), which are well-defined,

s
↓ clock

s’ ⇒ spn falling edge spn s = Some s’.

Lemma (Rising Edge Complete)

∀ (spn : Spn) (s s’ : SpnState), which are well-defined,

s
↑ clock

s’ ⇒ spn rising edge spn s = Some s’.

30 / 25

Completeness of The SPN Token Player.

Theorem (Completeness)

∀ (spn : Spn) (s s’ s’’ : SpnState), which are well-defined,

s
↓ clock

s’
↑ clock

s’’ ⇒ spn cycle spn s = Some (s’, s’’).

Lemma (Falling Edge Complete)

∀ (spn : Spn) (s s’ : SpnState), which are well-defined,

s
↓ clock

s’ ⇒ spn falling edge spn s = Some s’.

Lemma (Rising Edge Complete)

∀ (spn : Spn) (s s’ : SpnState), which are well-defined,

s
↑ clock

s’ ⇒ spn rising edge spn s = Some s’.

30 / 25

Completeness of The SPN Token Player.

Theorem (Completeness)

∀ (spn : Spn) (s s’ s’’ : SpnState), which are well-defined,

s
↓ clock

s’
↑ clock

s’’ ⇒ spn cycle spn s = Some (s’, s’’).

Lemma (Falling Edge Complete)

∀ (spn : Spn) (s s’ : SpnState), which are well-defined,

s
↓ clock

s’ ⇒ spn falling edge spn s = Some s’.

Lemma (Rising Edge Complete)

∀ (spn : Spn) (s s’ : SpnState), which are well-defined,

s
↑ clock

s’ ⇒ spn rising edge spn s = Some s’.

30 / 25

	Context.
	Presentation of HILECOP Petri Nets.
	Formalizing HILECOP Petri Nets.
	SPN Token Player Program.
	Conclusion.
	
	Appendix

