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Abstract 

 

This paper describes a new approach for yield sampling in viticulture. It combines 

approaches based on auxiliary information and path optimization to offer more consistent 

sampling strategies, integrating statistical approaches with computer methods. To achieve 

this, groups of potential sampling points, comparable according to their auxiliary data 

values are created. Then, an optimal path connecting several points, one from each group 

of potential sampling points and minimizing the route distance is constituted. This part is 

performed using constraint programming, a programming paradigm offering tools to deal 

efficiently with combinatorial problems. The paper presents the formalization of the 

problem, as well as the tests performed on real fields. Results show that combining target 

sampling and path optimization can reduce by 45% the average sampling circuit length 

compared to previous methods based on auxiliary data while being almost equivalent in 

yield prediction error.   

 

Keywords: sampling optimization, yield estimation, model sampling, NDVI, constraint 

programming. 

 

Introduction 

 

In order to optimize harvest organization, prepare the winemaking process and establish 

commercial strategies, the wine industry needs to know the yield of each vine field. 

Ideally, yield has to be estimated a few days before harvest with a relative error of less 

than 10 %. Although models have been developed to forecast the yield at the regional 

level (Cristofolini and Gottardini 2000), their results were not precise enough to manage 

logistic issues linked to harvest operations at the farm or at the winery level. Therefore, 

precise estimation of vine field yield always requires fruit sampling and counting. This 

estimation must be carried out quickly (few minutes per field) at a time when the 

workload at harvest or for the preparation of the harvest is critical. Practical constraints, 

like the time available to visit all the fields before harvest, limit the number of sampled 

sites per field. Therefore, yield estimation is based on a low number of sampling sites (4/5 

per field) where yield components (number of clusters, number of berries per cluster, 

mean berry weight) are manually measured by a practitioner. Due to these practical 

constraints and the high within-field variability of grape yield usually observed, the small 

number of observation results in high errors in yield estimation (generally around 20 to 

30%). 
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Recent works (Carillo et al. 2016) have shown the interest of integrating auxiliary data to 

improve sampling strategies and yield estimation for perennial crops. Among possible 

auxiliary information, vegetation indices derived from multispectral airborne images is 

of great interest since they can be used to characterise the spatial variability of several 

fields; in one acquisition, with a high spatial resolution (< 1 m.) and at an optimal date. 

In viticulture, Carrillo et al., (2016) showed the potential of normalised difference 

vegetation index (NDVI) to drive target sampling of the main grape yield components 

(e.g. bunch number, berry weight) to improve yield estimation. They demonstrated the 

value of using NDVI information to determine relevant within-field sampling sites 

selection based on the distribution of NDVI values.  

Although interesting, the methodology proposed by Carrillo et al. (2016) presents a 

significant drawback. Indeed, it does do not take into consideration the relative position 

of the sites to be sampled, and the fact that vine fields are structured in rows. This 

peculiarity implies that rows cannot be crossed, leading to sampling plans optimized in 

terms of prediction but potentially unrealistic in terms of sampling routes and resulting 

travelled distance (and time) for the operator.  

This paper proposes a new approach to optimally design within-field sampling routes 

which take into account the spatial organisation of the crop (rows) and spatial location of 

sampling sites. The originality of the approach, called constraint sampling, is to combine 

statistical and computer methods. It can be decomposed into two steps. In the first step, 

potential sampling sites are sorted into different groups according to their auxiliary data 

value in a similar way to traditional targeted sampling. The second step finds an optimal 

route that passes through one sampling site from each group. A Constraint Programming 

solver is used to build an optimal route in terms of travelled distance. This kind of solver 

has already been used in precision viticulture to solve the differential harvest problem 

(Briot et al. 2016). 

 

Materials and methods 

 

Sampling sites and selection principles  

The purpose of constraint sampling is to select N sampling sites constituting a sampling 

route in the vine field. Accounting for classical sampling practices in viticulture, N will 

vary between 5 and 10. It is assumed that there is a finite number of sites on the plot 

where sampling can be carried out, these sites are called potential sampling sites. For 

instance, in the data presented in this article, a potential sampling site is defined every 

15m. The sampling sites are then chosen from the list of potential sampling sites. In order 

to be able to apply selection methods based on auxiliary data, an NDVI value must be 

associated with each potential sampling point. For each potential site, the method assumes 

that: i) the co-ordinate of the potential site, ii) the row that the potential site belongs to 

and iii) the corresponding NDVI values are known. 

The method requires a distance matrix to be computed. This matrix gives the distance 

between each couple of potential sampling sites. This distance must take into account the 

structure of the vineyard. It corresponds to the shortest walking distance between two 

sites. If the points are in the same row, it corresponds to classical Euclidian distance. If 

they belong to different rows, the distance is computed considering that the practitioner 

has to leave the row, reach the desired rows passing by all extremities of intermediate 

rows and finally reach the targeted sampling site. As rows have two extremities, two 

different distances can be computed and the shortest one is kept. 



To consider auxiliary data efficiently, the idea of model sampling proposed by Carillo et 

al. (2016) was considered. The model sampling approach aims at calibrating a linear 

regression which relates the yield to auxiliary data (NDVI). This author also shown that 

yield components, especially berry weight, were linearly related to NDVI. Therefore, 

sampling sites can be selected representatively to build this linear model. This model is 

then used to estimate yield using all available high-resolution NDVI data. 

The approach proposed in this paper relies on the following principle. Potential sampling 

sites are split into N homogeneous groups. Once groups are formed, one element from 

each group is selected in order to optimize the length of the route connecting all these 

points. It will ensure a good repartition of selected points by accounting for auxiliary data 

distribution, which is a key element to build a linear model with very few points (Kennard 

and Stone 1969). Three different ways to create these groups were tested:  

(i) The first method relies on quantiles. If K is the number of potential sampling 

points, then each group has 
𝐾

𝑁
 elements. A first group will contain the 

𝐾

𝑁
  

potential sampling points with the lowest NDVI values. A second one the 
𝐾

𝑁
 

potential sampling sites with NDVI values just above those of the first group 

and the last group contains the 
𝐾

𝑁
 highest NDVI values.  

(ii) The second method uses the K-means algorithm. This clustering algorithm is 

efficient for partitioning K elements into N groups. The main principle of K-

means is to minimize the difference between points in the same groups and 

thus maximise the difference between a group’s mean.  

(iii) The last method is derived from the Kennard & Stone (1969) approach. As 

described by these authors, this approach selects elements by iteratively 

choosing a new sitethat is the furthest from the sitesalready selected in terms 

of auxiliary data (Figure 1b). The approach was adapted to create groups, one 

centred around each value selected by Kennard & Stone approach. A 

parameter called β, expressed as a percentage of the NDVI range, set the width 

of the groups (Figure 1c). Using this method, groups may overlap with each 

other or, on the contrary, some sites may not belong to any group. This 

Figure 1: choice of potential sampling sites (for N = 5 sampling sites) based on NDVI 

values with method (iii) adapted from Kennard & Stone (1969); a) Distribution of 

observed NDVI values (each black dash represents one NDVI value). b) Selection of 

values corresponding to a potential sampling (arrows) and c) Groups of potential 

sampling sites built to account for the distribution of NDVI values, the width of groups is 

controlled by β 



depends on the number of groups (N) and their length (β). Figure 1 illustrates 

the method with potential sampling sites projected on an NDVI axis. 

 

The second step of the approach consists in selecting one sampling site per group. These 

N sampling sites must be all different and have to form the shortest possible sampling 

circuit. There are numerous possible choices to select these sampling sites and many ways 

to order them to form a circuit. It is therefore a highly combinatorial optimization 

problem. Constraint Programming is one of the programming paradigms able to deal with 

such problems. It aims at solving a problem expressed as a set of variables and a set of 

constraints on these variables. Such a problem is called a Constraint Satisfaction Problem 

(CSP). A Constraint Solver is used to find a solution to the problem that satisfies all the 

constraints. The efficiency of these solvers relies on the implementation of many methods 

such as filtering, which allows quick detection of combinations of values that do not lead 

to an optimal solution. The interest of constraint solvers lies in their ability to address 

many types of constraints. 

Without going into small detail, let 𝑆 = {1,… , 𝐾} be the set of potential sampling sites 

and {𝐺𝑖}𝑖∈(1,… ,𝑁) the set of groups covering S, formed in the previous step. For 

decomposition (i) and (ii) all groups are disjoint and {𝐺𝑖}𝑖∈(1,… ,𝑁)is a partition of S. 𝑃𝑖 is 

defined as the selected site for group 𝐺𝑖. The first constraint imposes that all 𝑃𝑖 must be 

different (this constraint is immediately satisfied in the case of methods (i) and (ii)). 𝑃0 

represents the point of departure and arrival; it is a fixed parameter representing the initial 

position of the practitioner. The length of the optimum route passing through all the 

𝑃𝑖∈(0,…,𝑁) must be a minimum. This is a particular case of the vehicle routing problem 

(VRP) where the goal is not to find a Hamiltonian tour (visiting once every site) but a 

tour covering only a subset of sites. Recent work about the WeightedSubCircuit constraint 

(Vismara et al. 2018) has proposed a filtering algorithm that is well adapted to address 

this type of situation. All these constraints and variables constitute the constraint 

satisfaction problem. An instance of this problem is built from each dataset and solved 

with the solver in order to get an ordered set of sites that form a sampling circuit. The 

program returns the list of sampling sites, the order in which they are visited and the 

associated distance. 

 

Yield estimation 

The aim is to estimate 𝑌, the average grape weight (GW) per vine. For each site selected 

by the sampling method (𝑠 ∈ 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑), 𝐺𝑊(𝑠), the observed grape weight per vine 

value, is available. A linear model linking the NDVI to GW is built from these sites (Eq. 

1): 

 

For a given site 𝑠, 𝐺𝑊(𝑠)̂  represents an estimate of 𝐺𝑊(𝑠). The parameters a and b are 

obtained from a linear regression on the N sites selected by the sampling method.  

With 𝑆 = {1,… , 𝐾} being the full set of potential sampling sites available, 𝐺𝑊̅̅ ̅̅ ̅̂, the 

estimate of 𝐺𝑊̅̅ ̅̅ ̅, can be computed from the model using all these potential sites (Eq. 2): 



Estimation error 

The estimation error is a deviation from the actual yield value (𝑌), expressed as a 

percentage (Eq. 3). 

Reference methods 

The method is compared to two references: 

- A conventional random sampling where the N sampling sites are randomly 

selected. 𝐺𝑊̅̅ ̅̅ ̅̂ is directly estimated from the mean of observed GW values. Here, 

𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 represent the N sampling sites chosen randomly (Eq. 4). Random 

sampling represents what is generally done in practice in terms of yield estimation 

 

- A model sampling whose method principles have been described by Carillo et al. 

(2016). Sampling sites are chosen according to NDVI values. One site is randomly 

selected for each of the N NDVI quantiles. Model sampling uses a model based 

on the NDVI/yield relationship, as described in Eq. 1. The main difference is that 

model sampling does not consider the spatial position of the selected sampling 

sites.  

To compare the length of the routes between the different methods, the optimal route 

between the selected sites must be computed for the reference methods. This is done with 

the Concorde TSP solver. As for constraint sampling, the route includes the starting point 

of the practitioner (𝑃0). 

 

Experimental data 

The data used to test the method came from INRA Pech-Rouge (Narbonne, France). The 

experiment and the database were detailed by Carrillo et al., (2016). It is briefly 

summarised hereafter. NDVI values from 9 different vine fields were considered. All of 

them are non-irrigated and exposed to Mediterranean climate with precipitation occurring 

during spring and with hot and dry summers. The characteristics of each plot are shown 

in Table 1. 

 

Table 1. Description of the 9 fields 

 

Field 

(Id) 

Area (ha) Variety Row 

Spacing (m) 

Vine 

Spacing (m) 

Potential 

Sampling Sites 

P22 1.72 Syrah 2.5 1 45 

P63 1.33 Syrah 2.5 1 42 

P65 0.69 Syrah 2.5 1 33 

P76 1.14 Carignan 2.25 1.5 37 

P77 1.24 Syrah 2.5 1 19 

P80 0.54 Syrah 2.5 1 40 

P82 1.15 Syrah 2.5 1 53 

P88 0.85 Syrah 2.25 1.5 21 

P104 0.81 Carignan 2.25 1.5 23 



NDVI values were derived from a 1 m. resolution multi-spectral image taken the 31th of 

August 2008 by Avion Jaune (Montpellier, Hérault, France). The spectral regions 

captured in the images were: blue (445–520 nm), green (510–600 nm), red (632–695 nm) 

and near-infrared (757–853 nm). From these, 1 m square image pixels, aggregation 

method described in Carillo et al. (2016) was used to obtain 9m square image pixels 

reducing the effect of canopy discontinuity and bare soil on measured values. NDVI was 

finally computed from processed images. Mechanical or chemical weeding was 

performed over the inter-row spacing; therefore, row cover crop did not affect NDVI 

values. 

Sampling sites were selected regularly over the fields with measurement made on each 

node of a 15m² width sampling grid. At each node, yield components [bunch number per 

vine (BuN) and bunch weight (BuW)] were measured in 2009. Each site was considered 

as 5 consecutive vines in the row. BuW was estimated at harvest by weighing 10 bunches 

(2 bunches per vine) also randomly taken from the same 5 consecutive vines. BuN was 

determined by counting all bunches of the 5 consecutive vines of each sampling point. 

Grape weight per vine (GW) was then calculated from BuW and BuN. The distance 

between vines along the row was 1m or 1.5m. Data were associated with the spatial co-

ordinates of the central vine. The final data base was a set of 313 sites over the 9 different 

fields. The number of sites per field varied from 19 to 45 sampling sites. Each site was 

then characterized by GW as field parameter and NDVI values. NDVI value was assigned 

to each site as the mean of 4 pixels corresponding to a square of 36m².  

Actual yield values measured at harvest are not available. For each field, the average of 

all available measured GW values is then used as the reference yield value (𝑌) when 

computing estimation error (Eq. 3). 

 

Implementation 

The core of the approach was written in java and used the Choco solver (Prud’homme et 

al. 2016). The calculations to obtain the distance matrix, groups of individuals classified 

according to their NDVI value, estimation errors and route distance were made with R. 

As explained in the description of the constraints, the approach presented here takes into 

account the starting point of the practitioner (𝑃0) which is included in the sampling circuit. 

Varying the starting point thus changes the sampling route. In order to increase the 

number of situations tested, this starting point was positioned on different ends of row 

across the vineyards. The approach was then applied to 86 situations instead of 9. 

 

Results and discussion 

 

Evaluation of sampling strategies 

Figure 2a and 2b show the results of estimation errors and sampling route distance 

observed for the different sampling methods. Remember that “i-quantile”, “ii-kmeans”, 

“iii-kennard β=10” and “iii-kennard β=15” refer to the constraint sampling methods (i.e. 

methods that account simultaneously for auxiliary data distribution and distance between 

sampling points) while model sampling and random sampling refers to methods that 

account only on auxiliary data distribution. “iii-kennard β=10” and “iii-kennard β=15” 

are based on the same approach with different group widths (β=10% & β=15%). Results 

for the different starting points are averaged for each field and then all together to give 

the same weight to each field.  

 



 

Figure 2a shows that all the methods follow the same trend with a decreasing error as the 

number of sampled sites increases. This result is logical, and consistent with the literature.  

As Carrillo et al (2016) have already shown, taking into account auxiliary data (model 

sampling) slightly improves the quality of yield estimation compared to a random 

sampling. Despite higher variability in the observed error, the integration of constraints 

does not increase estimation errors, the methods (i), (ii), (iii) allow, in most cases, to 

maintain lower errors than random sampling. Kennard and Stone decomposition with 

β=15 may be the best option when creating the N groups, the results could match those 

of model sampling on most of the cases. Note however that observed errors with 

constraint methods are higher than for model sampling (i.e. without constraints). This 

result may be logical considering that the addition of the constraints may lead to the 

choice of less optimal sites within the groups of potential sites. Also, the irregularity of 

the curves associated with constraint sampling can be explained by a smaller number of 

experiments. These curves are based on 86 results compared to the 1,000 repetitions 

considered for reference methods, resulting in a higher variability. 

Figure 2b clearly illustrates the gains brought by constraint sampling in terms of travel 

distance across the vineyard. Logically, the travelled distance within the plot increases 

linearly with N, the number of sampling sites visited. The four curves representing 

constraint sampling are at the same level, with a reduced distance of about 45% compared 

to model sampling and random sampling. Overall, this method offers a good compromise 

between the quality of the estimate and the travel constraint on the plot. 

Applying the approach to new data could consolidate the results presented here. It would 

also be interesting to test the method with plots of vines having different characteristics 

(shape, size), under different cultivation practices (weed management between rows) or 

with different auxiliary data available (e.g.: historical yield). 

This is a first model that can still be improved. Increasing the number of usable auxiliary 

variables or allowing the method to adjust directly as the first sites are selected for 

instance, could improve the accuracy and quality of the results. From an efficiency point 

of view, improvements in the Constraint Programming model could reduce computation 

times.  

 

 

Figure 2a. (Estimation error %) and 2b. (Sampling route distance): Results and 

comparison to reference samplings 



Computation times 

Computation times increase with the number of possible combinations. The higher K and 

N (the number of potential sampling sites and the number of sites to be selected 

respectively), the longer it will take. The way groups are created also affects the 

computational time. For instance, when using the Kennard and Stone approach to build a 

group, an increase of the β parameter (group width) can consistently increase computation 

times. In general, for plots with N<8, the computation times are in the order of a second. 

It took about a few hours in the most complex cases.  

 

Conclusions 

 

The methodology presented in this paper described a new approach for yield sampling in 

viticulture. The originality of the approach comes from the association of a previously 

published method based on auxiliary data and optimisation algorithms to propose relevant 

sampling routes in term of estimation error and travelled distance. While the model 

sampling principle guides sampling choice considering auxiliary information, 

optimisation through constraint programming ensures the relevancy of the chosen route 

in term of walking distance for the practitioner. Results presented here are of course 

preliminary results. 

As available time is often the principal constraint for growers, they tend to rely on random 

samplings limited to a small part of the vineyard. Integrating spatial aspect accounting 

for travelling constraints is a key element to propose new methods that are relevant for 

field application. Further tests should be considered to confirm these first results and 

identify the limitations of the approach. 
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