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Abstract 10 

Model sampling has proven to be an interesting approach to optimize the sampling of an agronomic 11 

variable of interest at the field level. The use of a model improves the quality of the estimates by 12 

making it possible to integrate the information provided by one or more auxiliary data. It has been 13 

shown that such an approach gives better estimations compared to more traditional approaches. 14 

Through a statistical work describing the properties of model sampling variance, this paper details how 15 

the different factors either related to sample characteristics or to the correlation between the auxiliary 16 

data and the variable of interest, affect estimation error. The resulting equations show that the use of 17 

samples with a mean close to the field mean and with a substantial dispersion reduces the estimation 18 

variance. On the basis of these statistical considerations, a variance criterion is defined to compare 19 

sample properties. The lower the value of the criterion of a sample, the lower the variance of the 20 

estimate and the expected errors. These theoretical insights were applied to real commercial vine 21 

fields in order to validate the demonstration.  22 

Nine vine fields were considered with the objective to provide the best yield estimation. High 23 

resolution vegetative index derived from airborne multispectral image was used to drive the sampling 24 

 

Abbreviations: 

𝐶𝑆 variance criterion 
𝑁 set of potential sampling sites 
𝑛 size of the set 𝑁; 𝑛 = 𝐶𝑎𝑟𝑑(𝑁) 
NDVI normalized difference vegetation index 
𝑅 set of sites not selected in the sample 
RMSE root mean square error 
RRMSE relative root mean square error 
𝑆 set of sampled sites 
𝑠 size of the set 𝑆; 𝑠 =  𝐶𝑎𝑟𝑑(𝑆) 
𝑇  field yield 

�̂� field yield estimation 

�̃� field yield forecast (accounting for 𝑇 variance) 
𝑋𝑖 auxiliary data (NDVI) for site 𝑖 
𝑌𝑖   variable of interest (yield) for site 𝑖 
𝛽0  & 𝛽1  linear model parameters 
𝜎² variance of the residual of the model 
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and the estimation. The theoretical considerations were verified on the nine fields; as the observed 25 

estimation errors correspond quite well to the values predicted by the equations. The selection of a 26 

large number of random samples from these fields confirms that samples associated with higher values 27 

of the chosen criterion result, on average, in larger yield estimation errors. Samples with the highest 28 

criterion values are associated with mean estimation errors up to two times larger than those of 29 

average samples. Random sampling is also compared to two target sampling approaches (Clustering 30 

based on quantiles or on k-means algorithm) commonly considered in the literature, whose 31 

characteristics improve the value of the proposed criterion. It is shown that these sampling strategies 32 

produce samples associated with criterion values up to 100 times smaller than random sampling. The 33 

use of these easy-to-implement methods thus guarantees to reduce the variance of the estimation 34 

and the estimation errors. 35 

Introduction  36 

In crop production, sampling is a common practice used to estimate the agronomic variable of interests 37 

for a given field, whether it is related to crops, soil, diseases, etc. The state of the production system 38 

is strengthened by the estimation resulting from the sample and allows farmers to adjust their 39 

decision-making. During the estimation process, a sample of observations is made at a limited number 40 

of measurement sites within the field. The number of measurement sites is generally fixed by 41 

operational constraints such as available time. The quantity of interest is then characterized from this 42 

sample of observations by inference techniques based on an estimator. 43 

New methods granting fast acquisition of field data have developed with the information and 44 

communication technology in agriculture. In particular, remote sensing methods are increasingly used 45 

to characterize canopy vigour through vegetation indices (Liaghat & Balasundram, 2010; 46 

Venkataratnam, 2001; Barnes & Baker, 2000), but also allowing a wide variety of data to be collected 47 

directly from fields (Rehman et al, 2014). 48 

Despite the development of these new data collection methods, some decisions still require sampling 49 

on the field as some measurements are still inaccessible using the current sensors. However, the 50 

available new sources of information are valuable because they allow, when accessible with a high 51 

spatial resolution, to characterize the variability and the spatial structure of the fields (Kitchen et al. 52 

2020, Damian et al. 2020). Moreover, even when the desired measurement variables are not directly 53 

accessible, the observations from the sensors can be more or less related to the variable of interest. 54 

This is the case, for example, between yield and NDVI vigour observations obtained by remote sensing 55 

in viticulture (Carillo et al, 2016) or between soil parameters and soil electrical conductivity (Corwin et 56 

al. 2003). In this context, new sampling approaches based on these sources of information have 57 

emerged. For example, stratified sampling and target sampling approaches use high spatial resolution 58 

observations to drive the choice of measurement sites on the field (Miranda et al., 2018; 59 

Uribeetxebarria et al., 2019; Arnó et al., 2017). Other methods propose to go further by also mobilizing 60 

these observations when inferring the estimation of the variable of interest. The estimator is then built 61 

on the basis of a model linking the sampled quantity to the available auxiliary high spatial resolution 62 

information. These approaches, described as model sampling, have shown promising results in 63 

agriculture (Murthy et al., 1995; Araya-Alman et al., 2019). 64 

However, the methods used by the model sampling and target sampling approaches to guide the 65 

choice of measurement sites remain rather empirical. Considering that the number of sample is 66 

determined by operational constraints, this article proposes a more in-depth reflection on the choice 67 

of a fixed number of measurement sites when using a model. The study focuses on the estimation of 68 
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an expectation (field mean) or a cumulative value over the entire field. It is assumed that the quantity 69 

of interest is more or less strongly linearly related to an available auxiliary data (i.e. NDVI, soil apparent 70 

conductivity, etc.). The statistical properties of an estimator based on a linear model are then described 71 

using a matrix formalism.  72 

To support this reflection, this article proposes a rigorous formalism to describe the uncertainty 73 

associated with an estimate made with model sampling. The purpose of this statistical study is to 74 

define a criterion which can relate how the sampling site selection affects the final estimation for a 75 

given sample size. This work is supplemented by a validation case study about yield estimation in 76 

viticulture based on NDVI auxiliary data in order to evaluate the robustness of the approach and to 77 

compare different sampling methods. 78 

Material and method 79 

Hypotheses and notations 80 

In this section, bold notations represent matrices and vectors. 81 

For a given field, the objective is to estimate the total production. This field is divided in elementary 82 

sites so that the total production is the sum of production of each site. Only a limited number of these 83 

sites can be sampled in order to build an estimator of the total production. These sites are chosen from 84 

the set 𝑁 of potential measurement sites. For each potential measurement site (𝑖 ∈ 𝑁), numbered 85 

from 1 to 𝑛, there is a value for the quantity of interest noted 𝑌𝑖. This value is only known for the 𝑠 86 

sampled sites (𝑖 ∈ 𝑆). A second variable, noted 𝑋𝑖 , corresponding to an auxiliary data is available for 87 

each potential measurement site (𝑖 ∈ 𝑁). It is assumed that a linear relationship relates the quantity 88 

of interest to the auxiliary data. It is then possible to write the values of 𝑌𝑖 knowing 𝑋𝑖  as shown in 89 

equation 1. 90 

𝒀𝑵|𝑿𝑵 = 𝛽0𝟏𝒏 + 𝛽1𝑿𝑵 + 𝜺𝑵                                                        𝐸𝑞. 1 91 

With: 92 

𝜺𝑵 ~ 𝑁(𝟎𝒏, 𝜎2𝑰𝒏)                                                                 𝐸𝑞. 2 93 

Where 𝒀𝑵 and 𝑿𝑵 are two vectors of length 𝑛 containing respectively the values of the quantity of 94 

interest and the auxiliary data. It should be noted that in the standard writing of the linear model in 95 

matrix form, 𝑿𝑵 represents an incidence matrix, here 𝑿𝑵 represents a vector because there is only 96 

one auxiliary data. The  𝟎𝒏 and 𝟏𝒏 vectors of length 𝑛 contain respectively only 0 and only 1. The matrix  97 

𝑰𝒏 the identity matrix of dimension 𝑛 × 𝑛. Finally, 𝛽0, 𝛽1 and 𝜎2 represents the model parameters 98 

relating 𝒀𝑵 to 𝑿𝑵.  99 

The set 𝑆, consisting of the sites selected in the sample, and the set 𝑅, consisting of the sites not 100 

selected in the sample, form a partition of the set 𝑁 : 𝑁 = 𝑆 ∪ 𝑅 and 𝑆 ∩ 𝑅 = ∅. We can thus 101 

decompose the vectors 𝒀𝑵 and 𝑿𝑵  as shown in Equations 3 and A7 in the appendix. 102 

𝒀𝑵 = [
𝒀𝑺

𝒀𝑹
]             𝑎𝑛𝑑          𝑿𝑵 = [

𝑿𝑺

𝑿𝑹
]                                             𝐸𝑞. 3 103 

Formalization of an estimator 104 

The objective is to estimate 𝑇, the sum of local yield values (𝑌𝑖) on the field. By separating the values 105 

for which an observation is available (𝑆), from the unobserved values (𝑅) as defined in Eq. 3: 106 
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𝑇 = ∑ 𝑌𝑖

𝑖∈𝑁

                                                                    𝐸𝑞. 4 107 

Which can also be written: 108 

𝑇 = 𝟏𝑵
𝑡 𝒀𝑵                                                                       𝐸𝑞. 5 109 

𝑇 = 𝟏𝑺
𝑡𝒀𝑺 + 𝟏𝑹

𝑡 𝒀𝑹 110 

�̂� is defined as the estimator of  𝑇. The values of the vector 𝒀𝑺, which correspond to the measured 111 

values of the quantity of interest, being known, the problem is to estimate the values of 𝒀𝑹. 112 

𝟏𝑹
𝑡  𝔼(𝒀𝑹|𝒀𝑺, 𝑿𝑺, 𝑿𝑺) is chosen as the estimator of 𝟏𝑹

𝑡 𝒀𝑹 because it minimizes the quadratic risk. The 113 

statistical work on the mathematical expression of this estimator is detailed in the appendix from Eq. 114 

A1 to Eq. A26. 115 

�̂� = 𝟏𝑺
𝑡𝒀𝑺 + 𝟏𝑹

𝑡  𝔼(𝒀𝑹|𝒀𝑺, 𝑿𝑺, 𝑿𝑹)                                           𝐸𝑞. 6 116 

Estimator and forecast properties 117 

For this estimator, we are interested in classical indicators such as the first and second order moments 118 

of the estimator in order to characterize its bias and the distribution around this bias: 119 

𝔼(�̂�) = ∑ 𝑌𝑖

𝑖∈𝑁

                                                                     𝐸𝑞. 7 120 

This is an unbiased estimator with variance: 121 

𝕍(�̂�) = (𝑛 − 𝑠)² × (
1

𝑠
+

(𝑋𝑅
̅̅̅̅ − 𝑋𝑆

̅̅ ̅)²

∑ (𝑋𝑖 − 𝑋𝑆
̅̅ ̅)²𝑖∈𝑆

) × 𝜎²                                  𝐸𝑞. 8 122 

The reasoning held here led to the construction of an estimator of the expectation of 𝑇. If a forecast is 123 

to be made, in the same way as for a linear regression prediction, the individual variance 𝜀𝑖 for each of 124 

the unobserved 𝑌𝑖 (𝑖 ∈ 𝑅) must be considered as 𝕍(�̂�) only represents the variance of the expectation 125 

estimator. The forecast �̃� of a single value of the quantity of interest has for variance: 126 

𝕍(�̃�) = (𝑛 − 𝑠)2 × (
1

𝑠
+

1

𝑛 − 𝑠
+

(𝑋𝑅
̅̅̅̅ − 𝑋𝑆

̅̅ ̅)²

∑ (𝑋𝑖 − 𝑋𝑆
̅̅ ̅)²𝑖∈𝑆

) × 𝜎²                       𝐸𝑞. 9 127 

The variance of the forecast thus depends on: 128 

• 𝑛, the size of the set of potential sampling sites within the field (N);  129 

• 𝑠, the number of sampling sites or the size of the set S; 130 

• 𝜎², the variance of the residual of the model; 131 

• 𝑋𝑖𝜖𝑆, the values taken individually by the measurement sites for the auxiliary data; 132 

• 𝑋𝑆
̅̅ ̅, the average value of the measurement sites for the auxiliary data; 133 

• 𝑋𝑅
̅̅̅̅ , the average value of the non-selected sites for the auxiliary data. 134 

This variance logically tends towards 0 when 𝑠 tends towards 𝑛.  135 

�̃� is a forecast of 𝑇, the sum of 𝑌𝑖. The previous reasoning is applicable to 
�̃�

𝑛
 which is an estimator of 136 

the expectation of 𝑌𝑖∈𝑁 . The variance of 
�̃�

𝑛
 is of the formula 

𝕍(�̃�)

𝑛²
 and has similar properties. 137 
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This result allows to characterize the uncertainty associated with �̃� in relation to the size 𝑠 of the 138 

sample (S) and the size 𝑛 of the set of potential sampling sites (𝑁), the values of the auxiliary data for 139 

the whole field, which are known, and the quality of the relationship between the data of interest and 140 

the auxiliary variable (𝜎). The values of 𝑛 and 𝜎 are fixed and only depend on the field characteristics. 141 

The value of 𝑠 is chosen by the practitioner and is also fixed depending on the available time and the 142 

expected quality for the estimation. Finally, the values 𝑋𝑆, 𝑋𝑆
̅̅ ̅ and potentially 𝑋𝑅

̅̅̅̅  which have an 143 

incidence on the variance can direct the choice of sampling sites. The following section will therefore 144 

focus on the part of the variance that depends on the auxiliary data chosen for the sample. 145 

Variance criterion for the selection of measurement sites 146 

The variance criterion 𝐶𝑆   is defined as the part of the variance of the estimator (Eq. 8) or the prediction 147 

(Eq. 9) associated with the auxiliary data values of the measurement sites: 148 

𝐶𝑆 = 
(𝑋𝑅
̅̅̅̅ − 𝑋𝑆

̅̅ ̅)²

∑ (𝑋𝑖 − 𝑋𝑆
̅̅ ̅)²𝑖∈𝑆

                                                           𝐸𝑞. 10 149 

For a given sample size 𝑠, the variance criterion defines the fraction of variance that depends on the 150 

choice of measurement sites. In a situation where s is fixed by operational constraints (available time, 151 

destructive measurements ...), the sampling plan leading to the lowest estimation variance will be the 152 

one with the lowest value of 𝐶𝑆. 153 

In the numerator, (𝑋𝑅
̅̅̅̅ − 𝑋𝑆

̅̅ ̅)² , is the quadratic difference between the sample mean and the mean of 154 

the whole population. This can be understood as the representativeness of the auxiliary values on the 155 

sample sites. For a given sampling size, the closer the mean value of sample sites to the mean of the 156 

field the lower the 𝐶𝑠  value. 157 

In the denominator ∑ (𝑋𝑖 − 𝑋𝑆
̅̅ ̅)²𝑖∈𝑆 , is the sum of the squared deviations between the measurement 158 

sites and their own mean, it represents the dispersion of the sample values. Indeed, the higher 159 

variability of sample values around their mean, the lower the 𝐶𝑆  value.  160 

General method for the case study 161 

The first objective is to verify the relevance of the assumptions made (linear model, independent 162 

measurement sites) on a real dataset. To do so, experimental errors are compared with expected 163 

errors derived from the theoretical variance.  164 

The second objective is to validate, through experimentation, the relevance of the variance criterion 165 

𝐶𝑆. The idea is to establish a link between the value of the variance criterion (𝐶𝑆) and the quality of the 166 

estimate produced. To this aim, the 𝐶𝑆  value is computed and compared with the quality of the 167 

estimate produced for a large number of samples.  168 

Three sampling methods are tested and compared, two of them mobilizing the auxiliary data. 169 

Sampling methods 170 

The first method implemented for selecting the 𝑠 measurement sites is random sampling (Wulfsohn, 171 

2010). In this approach, the set of 𝑆 sampled sites is drawn from the set of 𝑁 available sites by a random 172 

draw. 173 

The second method is based on the principle of target sampling. This partitions the set 𝑁 into 𝑠 subsets 174 

according to the values for the auxiliary data (defined as variable 𝑋). A single measurement site is then 175 
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randomly selected in each of the 𝑠 subsets (Carillo et al., 2016; Oger et al. 2019). Two partitioning 176 

methods are tested: 177 

• The quantile method where the set 𝑁 is cut according to the percentiles in order to obtain 𝑠 178 

subsets of the same size. 179 

• The k-means algorithm (MacQueen, 1967). 180 

These approaches naturally tend to favour a dispersion of the sampled values and thus to minimize 181 

the variance criterion 𝐶𝑆. 182 

For all three methods (random sampling, quantile and k-means), 1000 samples of size 𝑛 ranging from 183 

4 to 15 are drawn for each field (see next sections for the presentation of the fields). 184 

Measurement of the quality of the estimate 185 

The quality of the estimation is measured by the estimation error. This is defined as the absolute value 186 

of the relative difference between the value taken by the estimator and the estimated quantity. Its 187 

value is expressed as a percentage of the estimated quantity: 188 

𝐸𝑟𝑟𝑜𝑟 (%) =  
|�̃� − 𝑇|

𝑇
                                                         𝐸𝑞. 11 189 

The root mean square error (RMSE) is a measure of the quality of an estimate over a large number of 190 

estimates. Defining Samples as a set of samples, it is calculated as follows: 191 

𝑅𝑀𝑆𝐸 =  √ ∑
(�̃�𝑖 − 𝑇)²

𝐶𝑎𝑟𝑑𝑖𝑛𝑎𝑙(𝑆𝑎𝑚𝑝𝑙𝑒𝑠)
𝑖∈𝑆𝑎𝑚𝑝𝑙𝑒𝑠

                                        𝐸𝑞. 12 192 

In theory, RMSE is also defined as the sum of the squared bias and the variance (Wasserman, 2004): 193 

𝑅𝑀𝑆𝐸 =  √(𝔼(�̃�) − 𝑇)
2
+ 𝕍(�̃�)                                                   𝐸𝑞. 13 194 

And as bias is nul (Eq. 14): 195 

𝑅𝑀𝑆𝐸 =  √𝕍(�̃�)                                                                  𝐸𝑞. 14 196 

For standardisation purpose, the Relative Root Mean Square Error (RRMSE) is computed from 197 

experimental and theoretical RMSE as Eq. 15: 198 

𝑅𝑅𝑀𝑆𝐸 (%) =  
𝑅𝑀𝑆𝐸

𝑇
× 100                                                     𝐸𝑞. 15 199 

Data 200 

The fields used to test the method belong to INRAE Pech-Rouge (Narbonne, France - co-ordinates: 201 
E:709800, N:6226840, RGF93 datum, Lambert93) (Figure 1). The experiment and the resulting data are 202 
detailed in Carrillo et al. (2016). They are briefly summarized hereafter. The auxiliary data corresponds 203 
to a vegetation index: the NDVI. Nine fields were represented in this dataset. All were non-irrigated 204 
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and exposed to the Mediterranean climate with precipitation occurring in spring and a hot and dry 205 
summer.  206 

 207 

Figure 1: Representation of the plots on the INRAE Pech-Rouge domain. Field colour represent local NDVI from low (red) to 208 
high (green) computed with Avion Jaune multispectral images. P104 is further north. Background: Google maps.  209 

NDVI values were derived from a multispectral image with a resolution of 1 pixel = 1m² taken on August 210 

31, 2008 by Avion Jaune (Narbonne, Hérault, France). The spectral regions captured in the images 211 

were: blue (445-520 nm), green (510-600 nm), red (632-695 nm) and near infrared (757-853 nm). From 212 

this image, the aggregation method described by Acevedo-Opazo et al. (2008) was used to obtain 9 m² 213 

image pixels, reducing the effect of canopy and bare ground discontinuity on the measured values. 214 

NDVI was finally calculated from the processed images according to Rouse et al. (1973). Mechanical or 215 

chemical weed control was performed on the row spacing; therefore, weed control had extremely 216 

small effect on NDVI values. 217 

Table 1 : Characteristics of the experimental fields 218 

 219 

 220 

 221 

 222 

 223 

 224 

 225 

 226 

 227 

Local yield measurements on the fields were made locally on the nodes of a 15x15 m sampling grid. At 228 

each grid node, yield was measured on 5 consecutive vines along the row and the average yield was 229 

assigned to the coordinates of the grid node. The final database consisted of a set of 313 sites 230 

Field 
Area  

(ha) 
Variety 

Total  

Number  

of Sites (n) 

Pearson 

correlation  

coefficient  

(NDVI/yield) 

Average 

field 

yield 

(g/vine) 

Field 

yield 

standard 

deviation 

(g/vine) 

Yield 

coefficient 

of 

variation 

P22 1.72 Syrah 45 0.13 1766 992.6 56.21% 

P63 1.33 Syrah 42 0.28 1132 692.4 61,17% 

P65 0.69 Syrah 33 0.86 1183 949.6 80,27% 

P76 1.14 Carignan 37 0.39 824 661.2 80,24% 

P77 1.24 Syrah 19 0.48 1427 1025.7 71,88% 

P80 0.54 Syrah 40 0.63 1147 878.9 76,63% 

P82 1.15 Syrah 53 0.47 968 613.7 63,40% 

P88 0.85 Syrah 21 -0.04 2321 831.2 35,81% 

P104 0.81 Carignan 23 0.18 2366 1091.6 46,14% 



8 
 

distributed over the 9 different fields. For each site, an NDVI value was assigned as the mean of the 4 231 

nearest pixels. The characteristics of each field are presented in Table 1. 232 

Results 233 

Validation 234 

Figure 2 compares the theoretical and observed RRMSEs of yield estimates as a function of the number 235 

of measurement sites (s) for each of the nine fields considered (Table 1). The number of measurement 236 

sites varies from 4 to 15 for each field. The blue curve corresponds to the observed RRMSE (Eq. 12 & 237 

15). Each point represents the averaged RRMSE over the 1000 samples. The red curve gives the average 238 

of the theoretical RRMSEs calculated with the theoretical variance equation of the forecast as 239 

proposed (Eq. 9, 14 & 15). 240 

 241 

Figure 2: Observed (blue) and theoretical (red) RRMSEs; averaged for 9 vineyard fields (from left to right and top to bottom: 242 
P22, P63, P65, P76, P77, P80, P82, P88, P104) with a variable number of sample sites. Observed RRMSEs are computed from 243 
Eq. 12 and Eq. 15 and correspond to the relative error between field yields and sampling estimation using a model-based 244 
estimator (Eq. 6 and Eq. A26) with random samples. Theoretical RRMSEs are deduced from Eq. 14, Eq. 15 with the NDVI values 245 
of the sampled sites. 246 
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Variance criterion and random sampling 247 

Figure 3 shows the result of 9,000 random samplings on the available data, all fields combined (1,000 248 

random samplings per field). Each random sample is composed of 8 measurement sites (𝑠 = 8) and is 249 

associated to a yield estimate based on the model estimator (Eq. 6). The estimation error results for 250 

each of the 9000 samples are represented in Figure 3 as a function of the value of the variance 251 

criterion. The coloured areas represent the sample density according to their estimation error and 252 

variance criteria values. 253 

The values of the variance criterion taken for these random samples are concentrated around the 254 

median (0.012) with 45% of the values between 10−2 and 10−1 and a dispersion ranging from 10−10 255 

to 101. The red curve shows a local regression (Jacoby 2000) of the evolution of the mean estimation 256 

error as a function of the observed variance criterion. The 95% confidence interval of the curve is 257 

represented by a gray shading. For low values of variance criterion, the estimation error corresponds 258 

to a plateau with error values close to 15%, and then the estimation error starts to increase when the 259 

variance criterion exceeds 10−1.  260 

 261 
Figure 3: Relationship between variance criterion (𝐶𝑆) and estimation error. The average estimation error (in red) increases 262 
when the estimates are made with a sample that has a high variance criterion. 263 

For these fields, an increase in the estimation error as a function of the variance criterion is observed. 264 

This increase is slow at first and then accelerates. This observation is consistent with the theoretical 265 

equation for the variance of the estimate (Eq. 9). Indeed, in equation 9, the variance criterion is added 266 

to the terms 
1

𝑠
 and 

1

𝑛−𝑠
. For the lowest values (less than 10−2), the value of the variance criterion 267 

remains very small compared to the sum of terms 
1

𝑠
 and 

1

𝑛−𝑠
 and variation of variance criterion then 268 

have almost no impact on the variance of the estimate. When the variance criterion reaches values of 269 
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the order of  
1

𝑠
 , its variations significantly affect the variance of the estimate. An increase in the 270 

variance criterion then has an impact on the variance of the estimate, which increases the estimation 271 

error. 272 

 273 
Figure 4: Evolution of the mean estimation error as a function of the variance criterion for all nine fields. 274 

Using a similar procedure as in Figure 3, the nine graphs in Figure 4 show the individual results obtained 275 

on all fields. The results for each field are very similar to those presented in Figure 3: a high proportion 276 

of samples with a variance criterion value between 10−2 and 10−1 and an increase in estimation error 277 

for samples with a variance criterion exceeding 10−1.  278 

However, the plots have different error profiles represented by the flattening of the density of 279 

estimation errors and the value of the plateau of the red curve. These differences can be partly 280 

interpreted using the properties of the fields (Table 1). Fields with similar properties such as P88 and 281 

P104 (low) or P82 and P63 have similar error profiles. In particular, fields P88 and P104 correspond to 282 

the lowest errors of estimation compared to other fields. This can be explained by i) their low values 283 

of 𝑛 which tends to minimize the difference (𝑛 − 𝑠) in the expression of the variance ii) their low 284 

coefficients of variation (low within field yield variability) due to the very high average yields observed 285 

on these fields. It should be noted that these two fields show low correlations between NDVI and yield, 286 

but that this does not counterbalance the effect of the other factors. 287 
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The effect of the correlation between NDVI and yield can be deduced from fields P65 and P76 which 288 

have very similar CVs and similar sizes (𝑛 values). Field P65, which shows a very good correlation 289 

between NDVI and yield, gives better results than field P82. Field 80 (𝑛 = 40) also hints the importance 290 

of the correlation since it presents similar results to those of field 77, although the value of 𝑛 is twice 291 

as small (𝑛 = 19). 292 

Additional simulations (result not shown) tend to confirm that i) a decrease of 𝑛 (by only considering 293 

part of the fields) where reducing estimation error while ii) increasing the yield variance and iii) 294 

decreasing the correlation between yield and NDVI (by adding a random noise to either NDVI or yield) 295 

was increasing estimation errors. However, these effects vary substantially from one plot to another. 296 

Variance criterion and targeted sampling 297 

 298 

Figure 5: The target sampling approaches are associated to smaller variance criterion values, thus limiting the estimation 299 
error. The figure compares target sampling based on the quantile approach (4A) and the k-means approach (4B) to random 300 
sampling (4C). 301 

Figure 5 highlights the value of target sampling approaches. For the record, these sampling strategies 302 

forced the samples to be taken from several classes representing the distribution of auxiliary values 303 

which aims at favouring the dispersion of sample values. Figure 5A presents the results obtained by 304 

the quantile method while the Figure 5B presents the results obtained by the k-means method. Both 305 
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results are obtained with 9,000 target samplings (1,000 per field) with samples from 8 measurement 306 

sites. For comparison, Figure 5C reproduces the results of Figure 3 obtained by random sampling. 307 

The comparison of figures 5A and 5B with figure 5C shows that the estimation errors with the target 308 

sampling approaches are lower than those obtained with the random sampling. Contrary to random 309 

sampling, the regression between the mean estimation error and the observed variance criterion does 310 

not present a minimum at which the estimation errors increase rapidly. For both approaches, the 311 

average estimation error is around 13% and don’t depend on the values taken for the variance 312 

criterion. 313 

This result can be explained by the way target sampling approaches constrain the values taken by the 314 

variance criterion. For quantile-based target sampling, these values ranged from  10−10 to 10−2 , and 315 

from  10−9 to 10−1 for the k-means approach. For both, the maximum values of the variance criterion 316 

(𝐶𝑆) remain low enough to avoid high-variance estimations. This is illustrated by the red curve which 317 

only presents a slight increase for these two approaches compared to random sampling. 318 

This result explains from a theoretical point of view, the interest of approaches implemented more or 319 

less empirically in the existing literature (Carillo et al., 2016; Araya-Alman et al., 2017; Meyers et al., 320 

2020; Oger et al. 2020). These later propose sampling methods based on auxiliary data which aimed 321 

at driving the selection of measurement sites such as quantile intervals. Indeed, by constraining the 322 

attribute values of the measurement sites taking into account the distribution values of auxiliary 323 

variable, these approaches tend to (i) reduce the difference between the sample mean and the 324 

population mean, which is the numerator of the variance criterion (𝑋𝑅
̅̅̅̅ − 𝑋𝑆

̅̅ ̅)², and (ii) increase the 325 

dispersion of sample values, which is the denominator of the variance criterion ∑ (𝑋𝑖 − 𝑋𝑆
̅̅ ̅)²𝑖∈𝑆 . These 326 

two associated phenomena limit the values of the variance criterion and thus the variance of the 327 

estimate. 328 

Further thought 329 

The results presented in figure 3 show that, for a fixed number of sampling size, the estimation errors 330 

can be related to the variance criterion in the case of a linear model sampling. The choice of 331 

measurement sites according to their auxiliary data values thus appears to be a suitable tool to control 332 

a large proportion of the estimation error. Figure 4 shows that field properties – such as field size, yield 333 

variability or its correlation to auxiliary data – affect estimation error. Figure 5 shows that the selection 334 

of the measurement sites should be performed using target sampling approaches with quantile or k-335 

means clustering. Also, new sampling approaches seeking to directly minimize the variance criterion 336 

could be promising. 337 

The variance criterion defined in this paper makes it possible to compare two samples of the same size 338 

even before the measurements have been made or the estimate has been inferred. On the studied 339 

fields, up to 9 measurement sites are necessary to guarantee an estimation error lower than 10%. This 340 

number could be a little larger in real conditions as it is assumed here that there is no measurement 341 

error. Further work could be performed to try to characterize the interactions between the variance 342 

criterion and the number of sampling sites. However, these interactions would be field specific as they 343 

also depend on the size of the field and the correlation between the auxiliary data and the variable of 344 

interest. For a given sampling size, the direct use of the variance criterion equation allows to estimate 345 

the expected precision of the estimation from the value of auxiliary variable of the sample. The 346 

confidence that can be placed in an estimate is thus made quantifiable. This is a major issue in sampling 347 

problems in plant production. This information could be used to support the professional in defining 348 

the number of samples based on available sampling time and the expected quality of estimate to 349 
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achieve better trade-offs between operational constraints (time) and accuracy in yield estimation. 350 

However, the characterization of this variability remains dependent on the knowledge of the standard 351 

deviation of the model's residuals. This standard deviation may be specific to local conditions, the 352 

considered auxiliary information and its relation with the variable of interest. It may therefore be 353 

difficult to estimate, depending on the crops and the variables considered. The establishment of 354 

references to know the expected values for such model parameters in crop production represents a 355 

challenge for the development of model sampling approaches. 356 

The proposed criterion is based on relatively simple hypotheses which, even if they are not always fully 357 

verified on real data, ensure that its use is applicable to real fields. The tests presented on a limited 358 

number of fields corresponding to different conditions confirms the relevance of the proposed 359 

formalisation and the potentiality for its practical use. However, the robustness of the method and the 360 

validity of the hypotheses on which it is based need to be tested in a wider range of situations and case 361 

studies. In particular, the linear model is based on the assumption of independence of the residuals, 362 

which means that the spatial structure of the variable of interest is entirely explained by the auxiliary 363 

data. This work could be extended to a more general framework adapting the expression of the 364 

variance of the residual of the model integrating a spatial structure. Furthermore, the approach and 365 

the theoretical considerations could also be extended to other types of models or to higher 366 

dimensional data to make it more adaptable to the diversity of plant production systems. 367 

Conclusion 368 

This paper proposes a statistical formalization of uncertainty for sampling methods based on auxiliary 369 

data and a linear model. It is shown that the quality of the estimates resulting from these methods 370 

depends on external factors but also on the choice of the measurement sites. The article thus proposes 371 

a criterion based on the selected measurement sites in order to control the expected quality of the 372 

estimation. A such criterion seems relevant to compare samples or sampling methods. This work shows 373 

that for a fixed number of measurements, samples with the best representativeness and the best 374 

dispersion allow to reach lower estimation variance. In practice, it is therefore interesting to balance 375 

the measurement sites between sites for which rather low values are expected and others for which 376 

rather high values are expected. It also shows that target sampling approaches based on classification 377 

algorithms as proposed in the literature tend to select samples with interesting properties with respect 378 

to this criterion and are therefore more likely to produce limited estimation errors. This work opens 379 

up new perspectives for sampling approaches based on auxiliary data such as variables obtained by 380 

remote sensing. 381 
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Appendix 386 

Abbreviations 387 

𝐶𝑆  variance criterion 388 
𝑁 set of potential sampling sites 389 
𝑛 size of the set 𝑁; 𝑛 = 𝐶𝑎𝑟𝑑(𝑁) 390 
NDVI normalized difference vegetation index 391 
𝑅 set of sites not selected in the sample 392 
RMSE root mean square error 393 
𝑆 set of sampled sites 394 
𝑠 size of the set 𝑆; 𝑠 =  𝐶𝑎𝑟𝑑(𝑆) 395 
𝑇  field yield 396 

�̂� field yield estimation 397 
�̃� field yield forecast (accounting for 𝑇 variance) 398 
𝑋𝑖  auxiliary data (NDVI) for site 𝑖 399 
𝑌𝑖  variable of interest (yield) for site 𝑖 400 
𝛽0 & 𝛽1 linear model parameters 401 
𝜎² variance of the residual of the model 402 
 403 
Hypotheses and notations 404 

Bold notations represent matrices and vectors. 405 

For a given field, the objective is to estimate the total production. This field is divided in elementary 406 

sites so that the total production is the sum of production of each site. Only a limited number of these 407 

sites can be sampled in order to build an estimator of the total production. These sites are chosen from 408 

the set 𝑁 of potential measurement sites. For each potential measurement site (𝑖 ∈ 𝑁), numbered 409 

from 1 to 𝑛, there is a value for the quantity of interest noted 𝑌𝑖. This value is only known for the 𝑠 410 

sampled sites (𝑖 ∈ 𝑆). A second variable, noted 𝑋𝑖 , corresponding to an auxiliary data which is available 411 

for each potential measurement site (𝑖 ∈ 𝑁). It is assumed that a linear relationship relates the 412 

quantity of interest to the auxiliary data. It is then possible to write the values of 𝑋𝑖  knowing 𝑌𝑖 as 413 

shown in equation A1. 414 

𝒀𝑵|𝑿𝑵 = 𝛽0𝑰𝑵 + 𝛽1𝑿𝑵 + 𝜺𝑵                                                        𝐸𝑞. 𝐴1 415 

With: 416 

𝜺𝑵 ~ 𝑁(𝟎𝑵, 𝜎2𝑰𝑵)                                                                 𝐸𝑞. 𝐴2 417 

Where 𝒀𝑵 and 𝑿𝑵 are two vectors of length 𝑛 containing respectively the values of the quantity of 418 

interest and the auxiliary data. It should be noted that in the standard writing of the linear model in 419 

matrix form, 𝑿𝑵 represents an incidence matrix, here 𝑿𝑵 represents a vector because there is only 420 

one auxiliary data. The vector 𝟎𝒏 and 𝟏𝒏 vectors of length 𝑛 containing respectively only 0 and only 421 

1.The matrix  𝑰𝒏 the identity matrix of dimension 𝑛 × 𝑛. Finally, 𝛽0, 𝛽1 and 𝜎2 represents the model 422 

parameters relating 𝒀𝑵 to 𝑿𝑵.  423 

𝑿𝑵 and 𝜺𝑵 are assumed to be multinormal vectors and independent. In particular 𝑿𝑵 follows a 424 

multinormal distribution of expectation 𝝁𝑵 and of variance 𝑽𝑵. It is possible to write the expectation 425 

and variance of the conditional distribution of the observations of 𝒀𝑵|𝑿𝑁: 426 

𝔼(𝒀𝑵|𝑿𝑵) = 𝛽0𝑰𝑵 + 𝛽1𝑿𝑵                                                       𝐸𝑞. 𝐴3 427 

𝕍(𝒀𝑵|𝑿𝑵) = 𝜎2𝑰𝑵                                                              𝐸𝑞. 𝐴4 428 
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Therefore, the deconditioned vector 𝒀𝑵, follows a multinormal distribution of expectation and 429 

variance: 430 

𝔼(𝒀𝑵) = 𝔼(𝔼(𝒀𝑵|𝑿𝑵)) = 𝔼(𝛽0𝑰𝑵 + 𝛽1𝑿𝑵) 431 

𝔼(𝒀𝑵) = 𝛽0𝑰𝑵 + 𝛽1𝝁𝑵                                                          𝐸𝑞. 𝐴5 432 

And: 433 

𝕍(𝒀𝑵) = 𝕍(𝔼(𝒀𝑵|𝑿𝑵)) + 𝔼(𝕍(𝒀𝑵|𝑿𝑵)) = 𝕍(𝔼(𝛽0𝑰𝑵 + 𝛽1𝑿𝑵)) + 𝔼(𝕍(𝜺𝑵)) 434 

𝕍(𝒀𝑵) = 𝛽1²𝑽𝑵 + 𝜎2𝑰𝑵                                                      𝐸𝑞. 𝐴6 435 

The set 𝑆, consisting of the sites selected in the sample, and the set 𝑅, consisting of the sites not 436 

selected in the sample, form a partition of the set 𝑁 : 𝑁 = 𝑆 ∪ 𝑅 and 𝑆 ∩ 𝑅 = ∅. We can thus 437 

decompose the vectors 𝒀𝑵 and 𝑿𝑵  as shown in Equations A7, A8 and A9. 438 

𝒀𝑵 = [
𝒀𝑺

𝒀𝑹
]             𝑎𝑛𝑑          𝑿𝑵 = [

𝑿𝑺

𝑿𝑹
]                                             𝐸𝑞. 𝐴7 439 

We can also decompose the parameters of the multi-normal distribution of 𝑿𝑵: 440 

𝝁𝑵 = [
𝝁𝑺

𝝁𝑹
]                                                                       𝐸𝑞. 𝐴8 441 

𝑽𝑵 = [
𝑽𝑺𝑺 𝑽𝑺𝑹

𝑽𝑹𝑺 𝑽𝑹𝑹
]                                                                𝐸𝑞. 𝐴9 442 

Estimation of the regression parameters from the sample 443 

The regression is constructed from the observations of the variables 𝑋 and 𝑌, that are chosen for 444 

sampling, these being contained in the vectors 𝒀𝑺 et 𝑿𝑆. The following equation repeats Eq. A1 for the 445 

set 𝑆: 446 

𝒀𝑺|𝑿𝑆 = 𝛽0 + 𝛽1𝑿𝑺 + 𝜺𝑺   𝑤𝑖𝑡ℎ    𝜺𝑺 ~ 𝑁(𝟎𝑺, 𝜎
2𝑰𝑺)  447 

𝒀𝑺|𝑿𝑆 = [𝟏𝑺 𝑿𝑺][𝜷] + 𝜺𝑺      𝑤𝑖𝑡ℎ         [𝜷] = [
𝛽0

𝛽1
]                                       𝐸𝑞. 𝐴10 448 

The estimation of 𝜷 from the set 𝑆 by least squares leads to the following estimator: 449 

�̂� =  ([𝟏𝑺 𝑿𝑺]
𝑡  [𝟏𝑺 𝑿𝑺])

−1. [𝟏𝑺 𝑿𝑺]
𝑡𝒀𝑺                                      𝐸𝑞. 𝐴11 450 

By defining  𝑋𝑆
̅̅ ̅ = ∑

𝑋𝑖

𝑠𝑖∈𝑆 , 𝑌�̅� = ∑
𝑌𝑖

𝑠𝑖∈𝑆  and 𝑋𝑆𝑌𝑆
̅̅ ̅̅ ̅̅ = ∑

𝑋𝑖×𝑌𝑖

𝑠𝑖∈𝑆 , it becomes possible to rewrite the 451 

expression of �̂� as follow (Equation A12) : 452 

�̂� =  
𝑠

∑ (𝑋𝑖 − 𝑋𝑆
̅̅ ̅)²𝑖∈𝑆

[

1

𝑠
× ∑(𝑋𝑖 − 𝑋𝑆

̅̅ ̅)2

𝑖∈𝑆

+ 𝑋𝑆
̅̅ ̅² −𝑋𝑆

̅̅ ̅

−𝑋𝑆
̅̅ ̅ 1

] [
𝑌�̅�

𝑋𝑆𝑌𝑆
̅̅ ̅̅ ̅̅

]                𝐸𝑞. 𝐴12 453 

We can then establish that the vector �̂� follows a bi-normal distribution of expectation (Equation A13) 454 

and variance (Equation A14) : 455 

𝔼(�̂�) = [
𝛽0

𝛽1
]                                                              𝐸𝑞. 𝐴13 456 
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𝕍(�̂�) =
𝜎²

∑ (𝑋𝑖 − 𝑋𝑆
̅̅ ̅)²𝑖∈𝑆

[

1

𝑠
× ∑(𝑋𝑖 − 𝑋𝑆

̅̅ ̅)2

𝑖∈𝑆

+ 𝑋𝑆
̅̅ ̅² −𝑋𝑆

̅̅ ̅

−𝑋𝑆
̅̅ ̅ 1

]                       𝐸𝑞. 𝐴14 457 

Finally, we are interested in the estimator of 𝜎², the last parameter of the linear model. This estimation 458 

is done with 𝑠 − 2 degrees of freedom: 459 

𝜎²̂ =
(𝒀𝑺 − [𝟏𝑺 𝑿𝑺]. �̂�)

𝑡
(𝒀𝑺 − [𝟏𝑺 𝑿𝑺]. �̂�)

𝑠 − 2
                                  𝐸𝑞. 𝐴15 460 

Conditional law 461 

In this part, we are interested in the joint vector [
𝑿
𝒀
] which we wish to decompose using the notations 462 

presented in Eq. A7. We then obtain: 463 

[
𝑿
𝒀
] = [

𝑿𝑺

𝑿𝑹

𝒀𝑺

𝒀𝑹

]                                                             𝐸𝑞. 𝐴16 464 

From Eq. A5 and A8, it is possible to describe the expectation of the joint distribution: 465 

𝔼 [

𝑿𝑺

𝑿𝑹

𝒀𝑺

𝒀𝑹

]  = [

𝝁𝑺

𝝁𝑹

𝛽0𝟏𝑺 + 𝛽1𝝁𝑺

𝛽0𝟏𝑹 + 𝛽1𝝁𝑹

]                                                  𝐸𝑞. 𝐴17 466 

Similarly, from Eq. A6 and A9, it is possible to describe the variance of the joint distribution: 467 

𝕍 [

𝑿𝑺

𝑿𝑹

𝒀𝑺

𝒀𝑹

]  =

[
 
 
 

𝑽𝑺 𝑽𝑺𝑹

𝑽𝑹𝑺 𝑽𝑹

𝛽1𝑽𝑺 𝛽1𝑽𝑺𝑹

𝛽1𝑽𝑹𝑺 𝛽1𝑽𝑹

𝛽1𝑽𝑺 𝛽1𝑽𝑺𝑹

𝛽1𝑽𝑹𝑺 𝛽1𝑽𝑹

𝛽1²𝑽𝑺 + 𝜎2𝑰𝑺 𝛽1²𝑽𝑺𝑹

𝛽1²𝑽𝑹𝑺 𝛽1²𝑽𝑹+𝜎2𝑰𝑹]
 
 
 

                 𝐸𝑞. 𝐴18 468 

It should be noted that the matrices 𝑽𝑺 and 𝑽𝑹 are symmetrical and that matrices 𝑽𝑺𝑹 and 𝑽𝑹𝑺 are 469 

the transposed matrices of each other. 470 

By distinguishing the values of 𝑿𝑺, 𝑿𝑹 et 𝒀𝑺 which are known (1) from those of 𝒀𝑹 which are unknown 471 

(2), the notations 𝒎𝟏, 𝒎𝟐, 𝜮𝟏𝟏, 𝜮𝟏𝟐, 𝜮𝟐𝟏 et 𝜮𝟐𝟐 are introduced: 472 

𝔼 [

𝑿𝑺

𝑿𝑹

𝒀𝑆

𝒀𝑹

]  = [
𝒎𝟏

𝒎𝟐
] 473 

With: 474 

𝒎𝟏 = [

𝝁𝑺

𝝁𝑹

𝛽0𝟏𝑺 + 𝛽1𝝁𝑺

]       𝑎𝑛𝑑      𝒎𝟐 = [𝛽0𝟏𝑹 + 𝛽1𝝁𝑹]                                   𝐸𝑞. 𝐴19 475 

And: 476 
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𝕍 [

𝑿𝑺

𝑿𝑹

𝒀𝑺

𝒀𝑹

]  = [
  𝜮𝟏𝟏 𝜮𝟏𝟐

𝜮𝟐𝟏 𝜮𝟐𝟐
] 477 

With: 478 

𝜮𝟏𝟏 = [

𝑽𝑺 𝑽𝑺𝑹

𝑽𝑹𝑺 𝑽𝑹

𝛽1𝑽𝑺

𝛽1𝑽𝑹𝑺

𝛽1𝑽𝑺 𝛽1𝑽𝑺𝑹 𝛽1²𝑽𝑺 + 𝜎2𝑰𝑺

]      𝑎𝑛𝑑     𝜮𝟏𝟐 = [

𝛽1𝑽𝑺𝑹

𝛽1𝑽𝑹

𝛽1²𝑽𝑺𝑹

]                  𝐸𝑞. 𝐴20 479 

𝜮𝟐𝟏 = [𝛽1𝑽𝑹𝑺 𝛽1𝑽𝑹 𝛽1²𝑽𝑹𝑺]     𝑎𝑛𝑑     𝜮𝟐𝟐 = [𝛽1²𝑽𝑹+𝜎2𝑰𝑹] 480 

Formalization of an estimator 481 

The objective is to estimate 𝑇, the sum of local yield  values (𝑌𝑖) on the field. By separating the values 482 

for which an observation is available (𝑆), from the unobserved values (𝑅) as defined in Eq. A7: 483 

𝑇 = ∑𝑌𝑖

𝑖∈𝑁

                                                                    𝐸𝑞. 𝐴21 484 

Which can also be written: 485 

𝑇 = 𝟏𝑵
𝑡 𝒀𝑵                                                                       𝐸𝑞. 𝐴22 486 

𝑇 = 𝟏𝑺
𝑡𝒀𝑺 + 𝟏𝑹

𝑡 𝒀𝑹 487 

�̂� is defined as the estimator of  𝑇. The values of the vector 𝒀𝑺, which correspond to the measured 488 

values of the quantity of interest, being known, the problem is to estimate the values of 𝒀𝑹. 489 

𝟏𝑹
𝑡  𝔼(𝒀𝑹|𝒀𝑺, 𝑿𝑺, 𝑿𝑺) is chosen as the estimator of 𝟏𝑹

𝑡 𝒀𝑹 because it minimizes the quadratic risk. 490 

�̂� = 𝟏𝑺
𝑡 𝒀𝑺 + 𝟏𝑹

𝑡  𝔼(𝒀𝑹|𝒀𝑺, 𝑿𝑺, 𝑿𝑹)                                           𝐸𝑞. 𝐴23 491 

By decomposing 𝔼(𝒀𝑹|𝒀𝑺, 𝑿𝑺 , 𝑿𝑺) using the conditional distribution of a multinormal distribution and 492 

the notations introduced in the previous subsection, �̂� can be derived as expressed in equation A24. 493 

�̂� = 𝟏𝑺
𝑡𝒀𝑺 + 𝟏𝑹

𝑡 (𝒎𝟐 + 𝜮𝟐𝟏 . 𝜮𝟏𝟏
−𝟏. [

𝑿𝑺 − 𝝁𝑺

𝑿𝑹 − 𝝁𝑹

𝒀𝑺 − 𝛽0𝑰𝑺 − 𝛽1𝝁𝑺

])                           𝐸𝑞. 𝐴24 494 

It is possible to rewrite the expression for �̂� as in equation A25 to make the size 𝑠 of the sample (𝑆) 495 

and the size 𝑛 of the of potential measurement sites (𝑁) appear. 496 

�̂� = 𝑠𝑌�̅� + (𝑛 − 𝑠)𝛽0 + 𝛽1𝟏𝑹
𝒕 𝑿𝑹                                              𝐸𝑞. 𝐴25 497 

This formulation involves the coefficients 𝛽0 and 𝛽1. In practice, these are not known and replaced by 498 

their respective estimators: 499 

�̂� = 𝑠𝑌�̅� + (𝑛 − 𝑠)𝛽0̂ + 𝛽1̂𝟏𝑹
𝒕 𝑿𝑹                                             𝐸𝑞. 𝐴26 500 

Estimator properties 501 

For this estimator, we are interested in classical indicators such as the first and second order moments 502 

of the estimator in order to characterize its bias and the distribution around this bias: 503 

𝔼(�̂�) = 𝔼(𝑠𝑌�̅� + (𝑛 − 𝑠)𝛽0̂ + 𝛽1̂𝟏𝑹
𝒕 𝑿𝑹) = 𝑠𝑌�̅� + (𝑛 − 𝑠)𝛽0 + 𝛽1𝟏𝑹

𝒕 𝑿𝑹             𝐸𝑞. 𝐴27 504 
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𝔼(�̂�) = 𝑠𝑌�̅� + (𝑛 − 𝑠)𝑌𝑅
̅̅ ̅ = 𝑛𝑌𝑁

̅̅ ̅ 505 

𝔼(�̂�) = ∑𝑌𝑖

𝑖∈𝑁

 506 

This is an unbiased estimator with variance: 507 

𝕍(�̂�) = 𝕍(𝑠𝑌�̅� + (𝑛 − 𝑠)𝛽0̂ + 𝛽1̂𝟏𝑹
𝒕 𝑿𝑹) 508 

𝕍(�̂�) = [(𝑛 − 𝑠) ∑𝑋𝑖

𝑖∈𝑅

] . 𝕍(�̂�). [

(𝑛 − 𝑠)

∑𝑋𝑖

𝑖∈𝑅

]                                       𝐸𝑞. 𝐴28 509 

This variance can be written: 510 

𝕍(�̂�) = (𝑛 − 𝑠)² × (
1

𝑠
+

(𝑋𝑅
̅̅̅̅ − 𝑋𝑆

̅̅ ̅)²

∑ (𝑋𝑖 − 𝑋𝑆
̅̅ ̅)²𝑖∈𝑆

) × 𝜎²                                  𝐸𝑞. 𝐴29 511 

The variance of the estimator thus depends on: 512 

• 𝑛, the size of the set of potential sampling sites within the field (N);  513 

• 𝑠, the number of sampling sites or the size of the set S; 514 

• 𝜎², the variance of the residual of the model; 515 

• 𝑋𝑖𝜖𝑆, the values taken individually by the measurement sites for the auxiliary data; 516 

• 𝑋𝑆
̅̅ ̅, the average value of the measurement sites for the auxiliary data; 517 

• 𝑋𝑅
̅̅̅̅ , the average value of the non-selected sites for the auxiliary data. 518 

This variance logically tends towards 0 when 𝑠 tends towards 𝑛.  519 

The reasoning held here led to the construction of an estimator of the expectation of 𝑇. If a prediction 520 

is to be made, in the same way as for a linear regression prediction, the individual variance 𝜀𝑖 for each 521 

of the unobserved 𝑌𝑖 (𝑖 ∈ 𝑅) must be considered. If  �̃� is the forecast, it has for variance: 522 

𝕍(�̃�) = 𝕍(�̂�) + (𝑛 − 𝑠). 𝕍(𝟏𝑹
𝑡 𝜀𝑅) = 𝕍(�̂�) + (𝑛 − 𝑠) × 𝜎² 523 

𝕍(�̃�) = (𝑛 − 𝑠)2 × (
1

𝑠
+

1

𝑛 − 𝑠
+

(𝑋𝑅
̅̅̅̅ − 𝑋𝑆

̅̅ ̅)²

∑ (𝑋𝑖 − 𝑋𝑆
̅̅ ̅)²𝑖∈𝑆

) × 𝜎²                       𝐸𝑞. 𝐴30 524 

�̃� is a forecast of 𝑇, the sum of 𝑌𝑖. The previous reasoning is applicable to 
�̃�

𝑛
 which is an estimator of 525 

the expectation of 𝑌𝑖∈𝑁 . The variance of 
�̃�

𝑛
 is of the formula 

𝕍(�̃�)

𝑛²
 and has similar properties.  526 
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