
constraints manuscript No.
(will be inserted by the editor)

Constrained Global Optimization for Wine Blending

Philippe Vismara · Remi Coletta ·
Gilles Trombettoni

This PDF file is a pre-print version of the final publication which can be found at:
http://dx.doi.org/10.1007/s10601-015-9235-5

Abstract Assemblage consists in blending base wines in order to create target wines. Re-
cent developments in aroma analysis allow us to measure chemical compounds impacting
the taste of wines. This chemical analysis makes it possible to design a decision tool for the
following problem: given a set of target wines, determine which volumes must be extracted
from each base wine to produce wines that satisfy constraints on aroma concentration, vol-
umes, alcohol contents and price. This paper describes the modeling of wine assemblage as
a mixed constrained optimization problem, where the main goal is to minimize the gap to
the desired concentrations for every aromatic criterion. The deterministic branch and bound
solvers Couenne and IbexOpt behave well on the wine blending problem thanks to their
interval constraint propagation/programming and polyhedral relaxation methods. We also
study the performance of other optimization goals that could be embedded in a configura-
tion tool, where the different possible interactions amount to solving the same constraints
with different objective functions. We finally show on a recent generic wine blending in-
stance that the proposed optimization process scales up well with the number of base wines.

Keywords Wine ·Wine blending · Assemblage · Interval constraint programming · Global
optimization ·Mixed numerical CSP ·Mixed integer nonlinear programming

1 Introduction

Assemblage consists in blending wines from different vineyard plots and/or different grape
varieties, each contributing its own special flavor.

Wine blending is generally carried out by oenologists working for wineries. Oenologists
can obtain wine blendings of the highest quality, but taste saturation entails a strong limit in

P. Vismara, R. Coletta, G. Trombettoni
LIRMM, UMR5506 Université de Montpellier - CNRS, Montpellier, France
Tel.: +33-4-67418541
Fax: +33-4-67418500
E-mail: {Philippe.Vismara, Remi.Coletta, Gilles.Trombettoni}@lirmm.fr

P. Vismara
MISTEA, UMR0729 Montpellier SupAgro - INRA, Montpellier, France

http://dx.doi.org/10.1007/s10601-015-9235-5

2 Philippe Vismara et al.

the number of daily wine tasting sessions. Therefore the Nyseos company (www.nyseos.fr),
which submitted the blending problem to us, provides chemical analysis tools to avoid a
number of tasting sessions. These tools can analyze wine aromas by measuring a set of
chemical compounds that impact wine taste [10]. These tools make it possible to develop a
decision-support software for the following problem: given a set of target wines to be pro-
duced, which volumes must be taken from each base wine in order to make wines satisfying
constraints on aroma concentrations, volumes, alcohol content, price, etc.

Moore and Griffin have shown that aroma concentrations of a wine blending satisfy
linear constraints [21]. However, several other requirements lead to nonlinear constraints.
For instance, the Nyseos company works on a model able to predict the color of a wine.
The model will not be linear and the complexity of color modeling is confirmed by other
researches [12]. Another critical point is that no less than a given amount of wine can be
transferred from a tank to a target because of the loss of liquid in the pipes and the manip-
ulation cost. As we will see in this article, this requirement leads to a disjunctive constraint
that can be modeled by Boolean variables. Finally, trying to minimize the gap to the desired
concentrations for every aromatic criterion and/or minimize the volume gap between base
and target wines leads to nonlinear constraints.

Research papers about alcohol blending generally describe the chemical process and
protocol used for a given blend. For instance, [15] describes how to obtain a specific type of
Muscat. They use a manual optimization process to select the best blend among a few trials.

An interesting algorithmic research on wine blending was presented in [12]. An artificial
neural network approach was used to select the wine quantities extracted from each base in
order to elaborate a wine matching predefined aromatic criteria. In this work, aromatic crite-
ria were not chemically analyzed. Instead, a panel of students carried out tasting to quantify
predefined criteria. The neural network performed multicriteria optimization for adjusting
each aroma. The comparison with our approach is difficult in terms of quality since we resort
to monocriterion optimization. In addition, no performance (CPU time) results were shown
in [12]. In another research [11], the main objective was to find the best matching between
chromatograms of base and target wines. This problem was modeled by a non constrained
nonlinear optimization solved by a local (Nelder-Mead) optimization method.

In this article, we present a mathematical modeling of the wine assemblage problem
defined in Section 2. This allows us to design simultaneously several target wines. We build
a constrained optimization model that minimizes in each target wine the gap between desired
aromatic concentrations and obtained concentrations, while taking into account the minimal
transfer disjunctive constraint. The problem is modeled by a mixed (discrete and continuous)
constrained optimization problem (COP), from which absolute value and max operators
have been removed (see Section 3).

We use IbexOpt [9,8] and Couenne [4] solvers to solve the implemented model. Both
apply an interval Branch & Bound using mathematical programming and interval constraint
programming methods briefly described in Section 4. Couenne is endowed with integer
variables and can thus directly handle our mixed COP. In Section 5, we validate the model
on two real instances provided by the Nyseos company and on an artificial instance mixing
both instances. We also study the performance of other optimization goals that could be
embedded in a configuration tool, where the different possible interactions amount to solving
the same constraints with different objective functions.

In Section 5.4, we finally test our constrained optimization tool on the latest wine blend-
ing problem provided by Nyseos. This corresponds to a generic wine blending instance
where the number of wine bases can be significantly increased up to 20. Also, the number

Constrained Global Optimization for Wine Blending 3

of aromas is even greater (Nyseos is able to chemically analyze more and more aromas over
time). The experiment shows how Couenne performs when the problem scales up.

2 The wine assemblage problem

Figure 1 illustrates the definition of wine assemblage.

volb

cb,a

a

b

w

vol+w

vol−w

s−b

c+w,aa
ĉw,a

c−w,a

Vw,bVw,1

Vw

ˆvolw

Fig. 1 Wine assemblage

We consider a set of base wines numbered from 1 to B. We denote by volb the volume
of the base b ∈ 1..B.

For different reasons, it is sometimes impossible to completely empty a base tank. Let
s−b be the minimum volume that must remain in tank b. (We have: 0≤ s−b ≤ volb.) All base
wines are analyzed in order to measure the concentration of selected key aroma compounds.
These compounds are numbered from 1 to A . We denote by cb,a the concentration of aroma
a in base b.

A wine assemblage support tool should help to simultaneously build several target wines
from a given set of bases. This is one of the major benefits of our approach compared to the
traditional approach of oenologists. Hence, we consider a set of target wines, numbered from

4 Philippe Vismara et al.

1 to W . For each wine w, we aim at producing an optimal volume ˆvolw. The final volume
Vw of wine w should be as close as possible to ˆvolw and must remain greater (resp. smaller)
than a given lower bound vol−w (resp. an upper bound vol+w), i.e.:

∀w ∈ 1..W , vol−w ≤Vw ≤ vol+w (1)

These bounds are used to fulfill an order of a specific volume or to avoid producing an
excessive volume.

Each target wine w is a blend of wines extracted from several tanks. We denote by Vw,b
the volume of wine w that is pumped from base tank b. We have a direct relation with Vw:

∀w ∈ 1..W , Vw =
B

∑
b=1

Vw,b (2)

Furthermore, all the volumes extracted from the same base tank b must leave a minimum
volume s−b in the tank.

∀b ∈ 1..B, s−b ≤ volb−
W

∑
w=1

Vw,b (3)

Transferring wine between two tanks takes time and it must be underlined that a subpart
of the wine is generally wasted in the pipes. Hence it is impossible to transfer very small
volumes. If δV is the minimum volume that can be transferred between two tanks, we define
the following disjunctive constraint:

∀w ∈ 1..W ,∀b ∈ 1..B, (Vw,b = 0) ∨ (δV ≤Vw,b) (4)

In addition to volume, each target wine is described in terms of aroma compound concen-
tration. For a given wine w, we denote by ĉw,a the desired concentration of aroma a.

The actual concentrations of aroma a in target wine w (Cw,a) are to be as close as possible
to ĉw,a within an interval [c−w,a,c

+
w,a], where c−w,a (resp. c+w,a) denotes the minimum (resp.

maximum) admissible concentration of aroma a in wine w. The relation between volumes
and concentrations can be formulated as follows:

∀w ∈ 1..W , ∀a ∈ 1..A , c−w,a ≤ Cw,a =
1

Vw

B

∑
b=1

(Vw,b .cb,a) ≤ c+w,a (5)

In a similar way, we can model constraints on alcohol content or price per liter for the target
wines. These can be treated like additional aromas.

3 A mixed COP formulation for wine blending

We can model the wine blending problem as a mixed constrained optimization problem
(COP) – also known as mixed integer nonlinear program (MINLP). The bound constraints
are directly modeled below by bounded domains, i.e. intervals.

Constrained Global Optimization for Wine Blending 5

3.1 Variables

For each wine w ∈ 1..W and each base b ∈ 1..B, we create:

– a variable Vw,b with a domain D(Vw,b) = [0,Vw,b] = [0,min(vol+w ,volb)] representing the
volume coming from the base b to the wine w, and

– a 0/1 variable Pw,b. The introduction of this 0/1 variable will avoid an explicit definition
of the disjunctive constraint (4).

For each volume of a wine w∈ 1..W , we also define a variable Vw of domain [vol−w ,vol+w]
(see (1)).

3.2 Constraints

The system of constraints of our COP is described below.

– The channeling constraint (2) becomes:

∀w, Vw−
B

∑
b=1

Vw,b = 0 (2.i)

– The surplus constraint (3) also remains similar:

∀b ∈ 1..B,s−b ≤ volb−
W

∑
w=1

Vw,b (3.i)

For handling realistic volumes (due to (4)), for each wine w ∈ 1..W and each base
b ∈ 1..B, we add:

Pw,b.δV ≤Vw,b ≤ Pw,b.Vw,b (4.i)

where δV is the minimal volume that can be transferred between two tanks.
Aroma concentration requirements (see (5)) are decomposed into two constraints, and

both parts of inequalities are multiplied by the positive volume Vw. ∀w ∈ 1..W and ∀a ∈
1..A , we have:
for the lower bound,

0≤
B

∑
b=1

Vw,b .(cb,a− c−w,a) (5.i -)

and for the upper bound:

0≤
B

∑
b=1

Vw,b .(c+w,a− cb,a) (5.i +)

3.3 A Min-Max for reaching the highest quality of wines

Objective function

In this application, the significant criterion is wine quality. Bear in mind that a target wine
is defined by a set of desired concentrations ĉw,a for each of its aromas. Therefore, a way to
optimize the quality of one target wine is to minimize a weighted sum of differences between
the desired concentrations ĉw,a and the obtained concentrations Cw,a (see (5)). Another goal

6 Philippe Vismara et al.

is to reach the desired volume of each target wine to produce, i.e. to minimize a difference
between the desired volume ˆvolw and the actual one Vw. Note that we could aggregate other
criteria by weighted sums, such as errors on alcohol content or price.

Finally, we want to minimize the maximal error on the set of target wines. Thus, we
obtain the following objective function:

max
w∈1..W

Ωw(λvolw .evolw + ∑
a∈1..A

(λw,a .ew,a)) (6)

where:

– Ωw is a parameter reflecting how important is a given wine w (Ωw is assumed to be
in [0,1]). This weight ensures a more accurate blending to the best wines among the
targets.

– ew,a denotes the discrepancy between ĉw,a and Cw,a.
– evolw denotes the discrepancy between the volume ˆvolw of wine w desired and the volume

Vw obtained.
– λw,a ∈ [0,1] defines the weight of aroma a in the wine w. λvolw ∈ [0,1] weights the sat-

isfaction of the volume requirement of the target wine w compared to the satisfaction of
aroma concentrations. For a given target wine w, we assume that λvolw +∑a∈1..A λw,a =
1.

Remarks

A natural question that arises is who determines these weights. The Ωw weights reflecting
the importance of a given target wine are fixed by the winery/client. The user interface asks
the client a quantitative or qualitative value (e.g., a number of stars) that is translated into a
coefficient between 0 and 1. The weights λw,a are chosen by Nyseos or by the oenologists
working in the wineries, provided they have a knowledge of the impact of such or such
chemical component (aroma) on the final taste of a given wine. These weights can be tuned
individually or by family of aromas.

Eq.(6) is one way to resort to monocriterion optimization based on the multiple criteria
we have to take into account. For a given target wine, the weighted error on aroma con-
centrations (i.e., ∑a∈1..A λw,a .ew,a) is a fine way to obtain the desired taste. An alternative
amounts to aggregating the ew,a errors with a least-square formula (or 2-norm), minimizing
the sum of the square of the errors (that are positive in our case). This least-square variant is
studied in the experimental part (see Section 5.4).

The way of aggregating the different target wine errors also leads to interesting discus-
sions. In particular, the min-max approach could be replaced by a leximin approach [7].
That approach would order the target wines by decreasing status, stating that the first wine
is infinitely prefered to the second, itself infinitely prefered to the third one, and so on, in a
lexicographic order. Although interesting, the leximin approach does not meet the needs of
the company. Indeed, in a traditional wine blending (made by oenologists in a winery), the
target wine blendings are computed one after the other, in decreasing order of preference,
which simulates the leximin criterion. However, this approach can produce a very good first-
class wine at the price of a very bad second-class wine. Nyseos prefers a slight deterioration
of the first-class wine provided the second-class one reaches (nearly) the desired taste. The
tool proposed precisely aims at producing several wines simultaneously for this purpose.
This is obtained by the Ωw coefficients we associate to each wine and the simpler min-max
criterion we use (see Eq.(6)).

Constrained Global Optimization for Wine Blending 7

Taking into account uncertainties in measures

All the parameters, including the aroma concentrations, are measured with a given uncer-
tainty. εa denotes the measure error related to the concentration of aroma a. We thus want to
minimize the gap between ĉw,a and Cw,a within the limit given by this uncertainty εa. In other
words, if the gap between the desired and obtained concentrations remains below the uncer-
tainty, it will be considered as being null in the objective function. Thus, the variable ew,a
describes the normalized concentration error in each aroma a for each wine w, as follows:

eeew,a = max(
|Cw,a− ĉw,a|

ĉw,a
− εa,0) (7)

We can also describe the gap evolw between the volume of a target wine Vw obtained and the
volume ˆvolw desired with a similar expression:

eeevolw = max(
ˆvolw−Vw

ˆvolw
− εvol ,0) (8)

Compared to the previous formula, the removal of the absolute value simply means that no
error is taken into account if the volume Vw computed falls between the maximum volume
vol+w and the target ˆvolw. This is illustrated by Figure 2.

w

vol+w

vol−w

Vw

ˆvolw

evolw

εvol

Fig. 2 Visualization of the gap evolw

Following a usual way to define a Min-Max problem, we add a variable E ∈ [0,+∞] to
be minimized and the following constraints:

∀w ∈ 1..W , Ωw(λvolw .evolw + ∑
a∈1..A

(λw,a .ew,a))≤ E (9)

Removing max and absolute value operators

In order to enhance the portability of our model and improve the performance, we attempt
to remove max and absolute value operators. Observe that the maximum operator can be
defined by

e = max(x,y) ≡ e≥ x∧ e≥ y∧ (e = x∨ e = y).

In addition, if the quantity e must be minimal for any reason, the last conjunct can be re-
moved, thus simplifying the max operator. We can apply this simplification to (7). Indeed,
λw,a is positive so that minimizing E entails minimizing every variable ew,a. Hence:

∀w ∈ 1..W ,∀a ∈ 1..A , ((ew,a + εa) ĉw,a ≥ |Cw,a− ĉw,a|) ∧ (ew,a ≥ 0) (10)

8 Philippe Vismara et al.

The same simplification can be applied to (8), as follows:

∀w ∈ 1..W , ((evolw + εvol) ˆvolw ≥ (ˆvolw−Vw)) ∧ (evolw ≥ 0) (11)

We can also remove the absolute value operator above that can be transformed into a max
operator as follows:

e = |x| ≡ e = max(x,−x)

≡ e≥ x ∧ e≥−x ∧ (e = x∨ e =−x)

Once more, if the quantity e must be minimal for any reason, the last conjunct can be re-
moved, thus replacing the absolute value operator with two inequalities. We can apply this
simplification to (10). Indeed, remember that every variable ew,a must be minimized and
observe that ĉw,a is positive. Thus,
∀w ∈ 1..W ,∀a ∈ 1..A ,

(ew,a + εa) ĉw,a ≥
1

Vw
.

B

∑
b=1

(Vw,b.cb,a)− ĉw,a

(ew,a + εa) ĉw,a ≥−
1

Vw
.

B

∑
b=1

(Vw,b.cb,a)+ ĉw,a

Multiplying both parts of these inequalities by the positive volume Vw, we finally obtain the
following three categories of constraints: ∀w ∈ 1..W ,∀a ∈ 1..A ,

ew,a ≥ 0 (12)

Vw.(ew,a + εa +1) . ĉw,a−
B

∑
b=1

(Vw,b.cb,a)≥ 0 (13)

Vw.(ew,a + εa−1) . ĉw,a +
B

∑
b=1

(Vw,b.cb,a)≥ 0 (14)

As a result, we have succeeded in suppressing from our initial model all the absolute value
and max operators. Although some interval nonlinear constraint solvers like IbexOpt can
handle these operators,1 the performance is thus increased and the simplified model can also
be implemented in most of the solvers.

3.4 Summary

In addition to the variables Pw,b, Vw,b and Vw defined in Section 3.1, we define new variables
for the objective function: one variable E ∈ [0,+∞], W .A variables ew,a ∈ [0,1] (that absorb
the unary constraints (12)) and W variables evolw ∈ [0,1] that absorb the unary constraints
of (11).

In addition to the constraints (2.i), (3.i), (4.i), (5.i-), (5.i+) defined in Section 3.2, we
define new constraints for the Min-Max: (9), (11), (13), (14). The objective function simply
consists in minimizing the value of the variable E.

1 Inverse operations of abs and max must be implemented for the constraint propagation (second phase of
HC4-Revise [6]) and generalized gradients must be developed for the polyhedral relaxation.

Constrained Global Optimization for Wine Blending 9

Recall that the aroma concentrations of a wine blending satisfy linear constraints [21].
However, the disjunctive constraint (4) satisfying the minimum volume transfer requirement
makes appear Boolean variables and the problem becomes a mixed integer program (MIP).
Furthermore, the optimization part mixes error variables and volumes in bilinear constraints
(see (13) and (14)) that make the problem nonlinear. These bilinear constraints make the
problem nonconvex. Therefore, MIP solvers like IBM Ilog CPLEX cannot handle this prob-
lem since they do not accept quadratic constrained programs that are not convex [1].

4 Solving the COP with B&B

4.1 Constrained global optimization

A mixed constrained optimization problem (COP), is defined as follows.

Definition 1 (Constrained optimization problem)
Consider vectors of real X = (x1, ...,x|X |) and integer Y = (y1, ...,y|Y |) variables, varying

in a domain D(X)×D(Y) = D(x1)× ·· ·×D(x|X |)×D(y1)× ·· ·×D(y|Y |), a function f :
R|X |×N|Y |→ R, vector-valued functions G : R|X |×N|Y |→ Rm and H : R|X |×N|Y |→ Rp.
(We have G = (g1, ...,gm) and H = (h1, ...,hp).)

Given the system S = (f ,G,H,X ,Y,D(X),D(Y)), the constrained optimization problem
consists in finding:

min
X∈D(X),Y∈D(Y)

f (X ,Y) sub ject to G(X ,Y)≤ 0∧H(X ,Y) = 0

where f denotes the objective function; G and H are inequality and equality constraints
respectively.

We have used two constrained global optimizers for handling our wine blending prob-
lem: Couenne [5] and IbexOpt [22]. They compute a floating-point vector (X ,Y) εob j-
minimizing2:

f (X ,Y) s.t. G(X ,Y)≤ 0∧ (−εeq ≤ H(X ,Y)≤+εeq).

Note that equalities h j(X ,Y) = 0 are relaxed by “thick” equations h j(X ,Y) ∈ [−εeq, +εeq],
i.e. two inequalities: −εeq ≤ h j(X ,Y)≤+εeq.

In our wine blending problem, εeq is set to 1e-1 in the equality constraints (2.i). This
corresponds to 100 ml, i.e. less than 0.1% of the target volumes (at least 500 liters). This
means that the volumes are computed with an approximation significantly better than the
ineluctable errors made during the actual blending, i.e. the errors induced by measures and
loss of residual matter during the wine transfer from a base to a target tank.

Interval/spatial B&B

The COP is handled by an interval Branch & Contract & Bound schema, called spatial B&B
in Couenne. The process starts with an initial domain D(x)×D(y) that is recursively subdi-
vided by a branching operator. The domains D(xi) are intervals of real values (bounded by
floating-point numbers) for real variables xi and the domains D(y j) are intervals of integers

2 εob j-minimize f (X ,Y) means minimize f (X ,Y) with a precision εob j on the objective, i.e. find (X ,Y)
such that for all Z1, Z2 we have f (Z1,Z2)≥ f (X ,Y)− εob j .

10 Philippe Vismara et al.

for integer variables y j. Following the vocabulary used in interval analysis, we call box an
n-dimensional domain made of n = |X |+ |Y | real and integer intervals.

The search tree of the B&B is traversed in best first order, where a node/box with a
smallest minimum cost (i.e., a smallest lower bound as explained below) is selected first.
The following operators are run at each node of the B&B:

Branch: A variable is chosen and its domain is split into two sub-domains. This makes the
overall process combinatorial.

Contract: A filtering process contracts the studied box, i.e. improves the bounds of its
intervals, without loss of solutions.

Bound: Lower bounding guarantees that no feasible solution exists below a computed lower
bound (of the optimum). The improvement of the lower bound is similar to a contraction,
considering a cost variable corresponding to the objective cost is added in the system.

Improving the upper bound amounts to finding a good (although generally not the best)
feasible point, so as to cut branches in the search tree with a higher cost.

The process starts with an initial box and ends when the difference between the upper
and lower bounds reaches a given precision εob j or when all the explored nodes reach a size
inferior to a given precision.

Algorithmic operators

Several algorithmic operators are used in the nodes of the B&B tree to reduce the search
space and improve the lower bound of the objective function:

– Constraint propagation. The state-of-the-art HC4 [6,20,5] continuous constraint prop-
agation algorithm (HC stands for Hull-Consistency) is used to contract the handled box.
The constraints are revised/handled one by one using an AC3-like progagation loop until
a quasi-fixed point is obtained in terms of filtering. Each constraint is revised by a pro-
cedure called HC4-Revise that traverses twice the expression tree of the function. The
first bottom-up phase evaluates the expression using interval arithmetic [14,16] (leaves
are intervals); the second top-down phase uses inverse functions of the operators to filter
the domains.3

– Polyhedral convex relaxation. Different strategies can produce a linear approximation
of the system, i.e. of the numeric constraints and the objective function. The polytope
obtained allows one to contract the box by calling a linear programming solver for im-
proving the lower bound and/or the bounds of the n variable intervals. Let us mention
three of these polyhedral convex relaxation strategies.
Like HC4, Affine arithmetic [13,19] works with the expression tree of each function.
Traversing the expression tree in a bottom-up and recursive way, for each mathematical
operator, affine arithmetic combines the affine forms of the children/operands to build
a new affine form. This interval algorithm finally builds two parallel hyperplanes for
enclosing the feasible space of every constraint.
A second and simple X-Newton strategy [2] uses a specific interval Taylor to produce a
linear form for every function of the system.
Finally, the most common polyhedral relaxation is based on the reformulation of the
system (constraints and objective function). It can be achieved in a pre-processing step

3 Another interval constraint programming operator, called 3B in [17,23], is available in both solvers but
is counterproductive in this application. It is based on a refutation reasoning that removes a sub-interval at a
bound of a given domain if HC4 can prove that the corresponding sub-problem contains no solution.

Constrained Global Optimization for Wine Blending 11

to help producing a polytope during search. The reformulation roughly amounts to in-
troducing auxiliary variables for replacing nonlinear primitive operators. Hyper-planes
are then computed during search (according to the current bound/domain constraints) to
produce an outer approximation of the corresponding constraints. For instance, McCor-
mick proposed in [18] to produce four specific hyper-planes defining a convex envelope
of bilinear operators.
Affine arithmetic and X-Newton are implemented in IbexOpt while a system reformu-
lation strategy is implemented in Couenne.

– Upperbounding. Several types of algorithms can be used to find good feasible points
possibly improving the upper bound. The most standard upperbounding algorithm uses
local optimization [5]. Local optimization is not called at every iteration/node in Couenne
since it is costly. In IbexOpt, two original algorithms try to improve the upper bound
by heuristically extracting an inner (entirely feasible) region that contains only solution
points [3]. Roughly, the InHC4 algorithm is a dual algorithm of HC4 and InnerPolytope
is a dual algorithm of X-Newton.

Using IbexOpt or Couenne for wine blending

Couenne and IbexOpt are open-source deterministic branch and bound global optimizers.
Couenne is distributed on COIN-OR (COmputational INfrastructure for Operations Re-
search), a project for the development of mathematical open-source softwares for the Op-
erations Research community (see www.coin-or.org/). IbexOpt is implemented in Ibex

(Interval Based EXplorer) and enriches this C++ library devoted to interval solving [9,8].
IbexOpt is rigorous since all its operators are based on interval arithmetic and take

into account roundoff errors. Couenne is not rigorous since some operators use interval
arithmetics, but not all of them. Therefore it could sometimes miss the optimum. Also,
because of our good command of the Ibex solver, we first implemented the wine blending
solver in Ibex [24]. Unfortunately, Ibex is restricted to continuous variables for now, i.e.
it cannot handle integer variables like the Pw,b 0/1 variables. Therefore, to manage them,
we encoded the 0/1 variables as real-valued variables Pw,b of domain [0,1]. To ensure these
variables take 0/1 values, and not a value inside the domain, we simply added the following
quadratic constraints:

∀w ∈ 1..W and ∀b ∈ 1..B, 4(Pw,b−
1
2
)2 = 1 (15)

However, as shown in [24], IbexOpt gave good results on the first real instances we have
(named WineBlending1 and WineBlending2 further), but did not scale so well on more
difficult instances, i.e.:

– an artificial instance WineBlending1+2 generated by mixing the two real instances (see
Section 5.1),

– optimization processes launched in the prototypal interactive configuration tool (see
Section 5.3), and

– a new series given by the company for checking how the solver scales up with the num-
ber of base wines (see Section 5.4).

That is why we have implemented a second wine blending tool using Couenne that turns
out to be satisfactory.

12 Philippe Vismara et al.

5 Experiments

We modeled and solved several instances of wine assemblage. Section 5.1 details the results
obtained on two instances given by Nyseos. We also report in Section 5.2 a validation of our
approach in a real tasting session. Section 5.3 investigates whether our optimization algo-
rithm could be used interactively, inside a configuration tool. Finally, Section 5.4 shows how
our tool scales up with the number of base wines on a generic and difficult wine blending
instance.

For the ε-optimization, we have required an accuracy εob j (optimum precision) below
1e-4. The same precision is required for the solution (box) size: under this size, a box is not
studied (nor split) by the interval Branch & Bound. The optimum accuracy is smaller than
the errors εa made by the chemical tools when they measure the cb,a aroma concentrations.

5.1 Tests on first wine blending instances

We first modeled a small and artificial instance of wine blending. It was used to rapidly
adapt the COP model presented above until a rapid solving could be obtained. It contains 21
variables and was solved in a fraction of a second by Couenne.

The instance called WineBlending1 is the first real instance provided by the Nyseos
company. The instance consists in producing W = 2 target wines from B = 7 bases wines,
taking into account A = 11 aromas.

The global optimization problem, modeled as described in Section 3.4, contains 55 vari-
ables and 102 constraints:

– 2 volume (relaxed) channeling constraints,
– 7 base surplus constraints,
– 44 aroma concentration constraints,
– 49 constraints coming from the Min-Max encoding,

The second instance (WineBlending2) consists in assembling W = 3 target wines from
B = 6 bases, taking into account A = 7 aromas.

The Min-Max problem contains 64 variables and 100 constraints:

– 3 volume (relaxed) channeling constraints,
– 6 base surplus constraints,
– 42 aroma concentration constraints,
– 49 constraints coming from the Min-Max encoding,

We have also generated an artificial instance in order to check how our B&Bs scale up.
The instance was generated by mixing the two real instances. It consists in assembling W =
5 target wines from B = 13 bases, taking into account A = 7 aromas (those in common
between both instances). It contains 176 variables and 169 constraints.

Performance results using Couenne

All the experiments have been run using Couenne on a Dell Power Edge R610 computer
(with a 3.46 Ghz X5690 processor, 6 cores, 36 Go of RAM). Note that the solver cannot
exploit the multicore architecture.

Constrained Global Optimization for Wine Blending 13

WineBlending1 WineBlending2 WineBlending1+2

CPU time (sec.) 0.71 1.08 15.22
#nodes (#iterations) 16 (763) 62 (1516) 1331 (159631)

Optimum 0 1.12e-16 0

Table 1 Performance results obtained by the Couenne MINLP optimizer. The second line indicates the CPU
time in seconds, the third line indicates the number of branching nodes (number of iterations), the last line
gives the error obtained at the end: a value even less than the required precision 1e-4 means that a solution
(with no error) has actually been found, as shown in Figure 4.

To enhance the performance of Couenne, we removed the 3B filtering procedure from
the B&B strategy (i.e., aggressive fbbt was set to no).

The results obtained on the 3 instances are good, as shown in Table 1.
Observe that a solution with no error can be obtained in less than one minute in the three

instances. This performance range is very satisfactory in that it would enable oenologists to
choose between several blendings elaborated with different constraints.

Performance results using IbexOpt

The performance results obtained by IbexOpt on the first two real instances are detailed in
[24]. The article also details with which algorithmic features of IbexOpt the results were im-
proved. The performance results are good on WineBlending1 and WineBlending2. Nev-
ertheless, we obtained no satisfactory answer on the bigger instance WineBlending1+2

within the timeout. We found only some feasible points and the εob j precision on the opti-
mum remained bad: the difference between the upper bound and the lower bound of the opti-
mum obtained in 5 minutes was about 0.05 (recall that εob j=1e-4 is required). The IbexOpt
strategy did not scale up well either to the configuration queries studied in Section 5.3 (de-
creasing the admissible errors ew,a). For the first wine blending, the hardest instance (e1,8)
could not be solved within the timeout; the same is observed for the second wine blending
in all the instances.

We finally analyzed whether these mitigate performance results came from the artifi-
cial encoding of Boolean variables or from the solver itself. We observed that Couenne
solves the difficult WineBlending1+2 instance in 24 seconds (instead of 15 seconds) when
it is encoded as a pure continuous system, which is satisfactory. The good results obtained
by Couenne suggest that the polyhedral relaxation of the bilinear terms, proposed by Mc-
Cormick [18] and implemented in Couenne, performs well in our wine blending instances.

The wines produced

The layout of the solution computed for WineBlending1 is shown in Figure 3.
The details of the aroma concentrations (Cw,a) in the target wines are illustrated by W =

2 (resp. W = 3) radar graphs for WineBlending1 (resp. WineBlending2) in Figure 4.
The fact that the blue thick lines (Cw,a) fall between the green dashed lines (ĉw,a− εa and
ĉw,a + εa) highlights visually that the best solution has been obtained within εa tolerances,
i.e. the total error is null.

14 Philippe Vismara et al.

Fig. 3 Layout of the results for WineBlending1: volumes of the target wines (below) obtained by blending
the bases (above).

5.2 Tasting session

An interesting (qualitative) validation of our tool was carried out in collaboration with an
oenologist. He was asked by the Nyseos company to elaborate a (target) wine by blending
several given base wines. Nyseos wrote down the volumes the oenologist selected for the
assemblage and carried out a chemical analysis of the final blend to measure its aromatic
criteria. Then, using our tool, Nyseos created a similar blend with the same base wines.
Although the same concentrations of aroma in the target wine were obtained, the volumes
extracted from each base wine were quite different. Nyseos finally compared the blendings
used to obtain the human-made wine with the computer-made wine and asked the oenologist
to carry out a blind-test on the two wines.

As a result, despite the blendings being significantly different, the oenologist could not
distinguish between the two wines.

This one experiment is of course far from being representative, but is nonetheless a
promising indication of the relevance of our tool.

5.3 Towards a configuration tool for wine assemblage

To better fit the wishes of the client, we can imagine using our optimization algorithm in-
teractively, inside a configuration tool. The user would be able to interact with the system
via radar graphs corresponding to the different target wines, such as shown in Fig. 4. This
would be particularly useful if a first optimization process failed in finding a perfect solution
(with error E equal to 0).

A way to modify the blending is to increase (or decrease) the importance (weight) Ωw
of a wine. A slider under each radar graph could for instance be used for this purpose. An
optimization process could then recompute a new solution with this specification. Following
the same idea, the user could modify the weight λw,a of a given aroma in a wine (e.g., with
a popup menu appearing when the mouse cursor position is on the corresponding axis of a
radar graph), and the tool would run a new optimization.

Another interesting interaction would allow the tool to show to the client a new solution
improving the concentration of an aroma a in a target wine w. More precisely, as shown in

Constrained Global Optimization for Wine Blending 15

3MH

A3MH

4MMP

2-

phenylethanol

hexyl

acetate

isoamyl

acetate

b-

phenylethyl

acetate

ethyl

decanoate

ethyl

hexanoate

ethyl

octanoate

IBMP

(a) WineBlending 1, target 1

2-

phenylethanol

hexyl

acetate

isoamyl

acetate

b-

phenylethyle

acetate

ethyl

decanoate

ethyl

hexanoate

ethyl

octanoate

(b) WineBlending 2 target 1

3MH

A3MH

4MMP

2-

phenylethanol

hexyl

acetate

isoamyl

acetate

b-

phenylethyl

acetate

ethyl

decanoate

ethyl

hexanoate

ethyl

octanoate

IBMP

(c) WineBlending 1, target 2

2-

phenylethanol

hexyl

acetate

isoamyl

acetate

b-

phenylethyl

acetate

ethyl

decanoate

ethyl

hexanoate

ethyl

octanoate

(d) WineBlending 2, target 2

2-

phenylethanol

hexyl

acetate

isoamyl

acetate

b-

phenylethyle

acetate

ethyl

decanoate

ethyl

hexanoate

ethyl

octanoate

(e) WineBlending 2, target 3

Fig. 4 Solutions obtained by our solver in instances WineBlending1 (subfigures (a) and (c)) and
WineBlending2 (subfigures (b), (d), (e)). Every axis in a radar graph shows a computed aroma concen-
tration Cw,a (shown in thick line with balls), comprised within the imposed limits (c−w,a and c+w,a) represented
by solid lines, and as close as possible to the desired concentration ĉw,a. The 2 dashed curves represent the
tolerances ĉw,a− εa and ĉw,a + εa on the desired concentration of aroma a in wine w.

16 Philippe Vismara et al.

Figure 5, the tool could be able to compute new solutions minimizing any error ew,a such
that:

– the solution remains of course feasible, and
– the global error remains the same (or slightly worse) or,

alternatively, the global error is not taken into account anymore.

ĉw,ac−w,a

Cw,a CF ,E
w,a

CF
w,a

Fig. 5 Configuration tool: Given an optimized concentration Cw,a obtained with global error E, we can com-
pute the feasible concentrations CF ,E

w,a and CF
w,a which are the closest to ĉw,a. CF

w,a is computed with any global

error while CF ,E
w,a respects the global error E.

We have carried out experiments to study the feasibility of such a configuration tool.
The protocol was the following. First, we took the instances and modified them for

finding a best solution entailing a global error. These harder instances were simply obtained
by artificially decreasing the admissible measure errors εa related to the concentration of
aroma a. Second, we stored the global error E obtained by optimization and injected it
(slightly relaxing it) in new instances where the global error was a constraint to be fulfilled
and the ew,a’s became the new goal to be minimized. Third, we ran the new instances with
the new goals and checked whether Couenne was able to find a new solution and measured
the performance.

The results for the first wine blending are the following. The artificial harder instance
is solved in 69.8 seconds, 25,835 nodes and 859,955 iterations for finding a global error E
equal to 0.003239. A brief analysis shows that this global error comes from 7 of 11 ew,a er-
ror terms. Minimizing the 7 corresponding ew,a errors while keeping the global error below
0.00324 (i.e., computing CF ,E

w,a) requires the following CPU times (in second): 2.76, 2.67,
5.68, 3.76, 3.64, 3.62, 55.76. The performance is satisfactory except for the last minimiza-
tion process of e1,8 that reaches about one minute.

The results for the second wine are the following. The artificial harder instance is solved
in 2.23 seconds, 450 nodes and 8856 iterations for finding a global error E equal to 0.003085.
A brief analysis shows that this global error comes from 6 ew,a errors. Minimizing the 6 cor-
responding ew,a errors while keeping the global error below 0.0031 requires the following
CPU times (in second): 0.43, 0.36, 0.48, 0.82, 0.46, 0.79. The performance is very satisfac-
tory since all CPU times remain under one second.

Concluding remarks

It appears that the CPU times fall down to a fraction of a second if the constraint on the
global error is removed (i.e., when computing CF

w,a). The same picture is observed if the
global error is slightly more relaxed (more than 1%). This suggests to embed in our future
configuration tool a relaxation percentage that would allow a reasonable computation of the
alternative solutions. An empirical study on more instances must be conducted to select a
“robust” relaxation percentage of E.

Constrained Global Optimization for Wine Blending 17

5.4 Scaling issue with L1-norm and L2-norm

The Nyseos company recently provided a generic wine blending instance producing 3 target
wines by blending up to 20 base wines. Let us call this generic instance WineBlending3.
The number of aromas that can be measured has also significantly increased up to 25. For
the wineries, the number of target wines is not an issue and is typically one, two or three. On
the contrary, increasing the number of base wines is very interesting for numerous wineries.

This generic instance allowed us to test how our optimization tool scales up. Based on
this generic instance, we could generate instances with different numbers of wine bases: we
tested 10, 15 and 20 bases.

Table 2 Performance results obtained with Couenne on the WineBlending3 instance. The maximum error
corresponds to the maximum value of an ew,a in the optimal solution.

L1 norm L2 norm
bases cpu (sec.) max error cpu (sec.) max error

10 5.03 0% 9.32 0%
15 11.91 40% 54.88 30%
20 113.66 41% 33.96 30%

Table 2 reports results obtained on 3 instances. They differ in the number of base wines.
We also tested these instances using two different objective functions: the one described by
(6), labeled L1-norm in the table, and the variant where the errors ew,a (see (7)) are squared
in the formula, minimizing a least square criterion for each target wine (L2-norm).

Concluding remarks

The main conclusion is that our wine blending optimization tool seems to scale up well with
the number of bases. Also, the least-square criterion used for a target wine seems to lower
the maximal error over aromatic concentrations. This suggests to compare these two criteria
on other instances before choosing one of them for the tool.

6 Conclusion

We have reported in this paper a first attempt to handle the wine assemblage problem with
constraint programming and mathematical programming techniques. This approach helps
the oenologist to blend a set of target wines while limiting taste saturation.

Automatic wine blending can be modeled as a constrained optimization problem ac-
cepting disjunctive constraints that are critical in practice. These constraints ensure that a
minimal amount of wines is transferred from a base tank to a target wine tank. We have
resorted to mono-criterion optimization and worked to obtain a model with no max and no
absolute value operators.

The Couenne interval/spatial B&B has allowed us to find in reasonable CPU time the
best solution to several real and realistic instances4 given by the Nyseos company. In par-
ticular, we have shown on a recent generic instance that our constrained optimization tool

4 Wineblending1, Wineblending2, Wineblending1+2 and the six Wineblending3 instances can be
downloaded from the web page of the first author.

18 Philippe Vismara et al.

scales up well with the number of base wines. A tasting session carried out by an oenologist
has qualitatively validated our approach.

Other encouraging results suggest the possibility to use our approach within an interac-
tive configuration tool dedicated to wine assemblage.

References

1. IBM ILOG CPLEX Optimization Studio V12.6.0 documentation (2015)
2. Araya, I., Trombettoni, G., Neveu, B.: A Contractor Based on Convex Interval Taylor. In: Proc. CPAIOR,

pp. 1–16. LNCS 7298 (2012)
3. Araya, I., Trombettoni, G., Neveu, B., Chabert, G.: Upper Bounding in Inner Regions for Global Opti-

mization under Inequality Constraints. J. Global Optimization (JOGO) 60(2), 145–164 (2014)
4. Belotti, P.: Couenne, a user’s manual (2013). www.coin-or.org/Couenne/
5. Belotti, P., Lee, J., Liberti, L., Margot, F., Wächter, A.: Branch and Bounds Tightening Techniques for

Non-convex MINLP. Optimization Methods and Software 24(4–5), 597–634 (2009)
6. Benhamou, F., Goualard, F., Granvilliers, L., Puget, J.F.: Revising Hull and Box Consistency. In: Proc.

ICLP, pp. 230–244 (1999)
7. Bouveret, S., Lemaitre, M.: Computing leximin-optimal solutions in constraint networks. Artificial In-

telligence J. 173, 343–364 (2009)
8. Chabert, G.: Interval-Based EXplorer (2013). www.ibex-lib.org
9. Chabert, G., Jaulin, L.: Contractor Programming. Artificial Intelligence 173, 1079–1100 (2009)

10. Dagan, L.: Potentiel aromatique des raisins de Vitis vinifera L. cv. Petit Manseng et Gros Manseng.
Contribution à l’arôme des vins de pays Côtes de Gascogne. Ph.D. thesis, École nationale supérieure
agronomique (Montpellier) (2006)

11. Datta, S., Nakai, S.: Computer-aided optimization of wine blending. Journal of Food Science 57(1),
178–182 (1992). DOI 10.1111/j.1365-2621.1992.tb05450.x. URL http://dx.doi.org/10.1111/
j.1365-2621.1992.tb05450.x

12. Ferrier, J.G., Block, D.E.: Neural-network-assisted optimization of wine blending based on sensory
analysis. American Journal of Enology and Viticulture 52(4), 386–395 (2001). URL http://www.
ajevonline.org/content/52/4/386.abstract

13. de Figueiredo, L., Stolfi, J.: Affine Arithmetic: Concepts and Applications. Numerical Algorithms 37(1–
4), 147–158 (2004)

14. Knuppel, O.: Bias/profil: A fast interval library. Computing 53, 277–287 (1994)
15. Koak, J.H., Kang, B.S., Hahm, Y.T., Park, C.S., Baik, M.Y., Y., K.B.: Blending of Different Domestic

Grape Wines using Mixture Design and Optimization Technique. Food science and biotechnology 19(4),
1011–1018 (2010)

16. Lerch, M., Tischler, G., Wolff von Gudenberg, J., Hofschuster, W., Krämer, W.: filib++, a Fast Interval
Library Supporting Containment Computations. ACM TOMS 32(2), 299–324 (2006)

17. Lhomme, O.: Consistency Techniques for Numeric CSPs. In: IJCAI, pp. 232–238 (1993)
18. McCormick, G.: Computability of Global Solutions to Factorable Nonconvex Programs - part 1 - Convex

Underestimating Problems. Mathematical Programming 10, 147–175 (1976)
19. Messine, F., , Laganouelle, J.L.: Enclosure Methods for Multivariate Differentiable Functions and Ap-

plication to Global Optimization. Journal of Universal Computer Science 4(6), 589–603 (1998)
20. Messine, F.: Méthodes d’optimisation globale basées sur l’analyse d’intervalle pour la résolution des

problèmes avec contraintes. Ph.D. thesis, LIMA-IRIT-ENSEEIHT-INPT, Toulouse (1997)
21. Moore, D.B., Griffin, T.G.: Computer blending technology. American Journal of Enology and Viticulture

29(1), 50–53 (1978). URL http://www.ajevonline.org/content/29/1/50.abstract
22. Trombettoni, G., Araya, I., Neveu, B., Chabert, G.: Inner Regions and Interval Linearizations for Global

Optimization. In: AAAI, pp. 99–104 (2011)
23. Trombettoni, G., Chabert, G.: Constructive Interval Disjunction. In: Proc. CP, LNCS 4741, pp. 635–650

(2007)
24. Vismara, P., Coletta, R., Trombettoni, G.: Constrained Wine Blending. In: Proc. CP, Constraint Program-

ming, LNCS 8124, pp. 864–879. Springer (2013)

http://dx.doi.org/10.1111/j.1365-2621.1992.tb05450.x
http://dx.doi.org/10.1111/j.1365-2621.1992.tb05450.x
http://www.ajevonline.org/content/52/4/386.abstract
http://www.ajevonline.org/content/52/4/386.abstract
http://www.ajevonline.org/content/29/1/50.abstract

	Introduction
	The wine assemblage problem
	A mixed COP formulation for wine blending
	Solving the COP with B&B
	Experiments
	Conclusion

