
Finding Maximum Common Connected

Subgraphs using clique detection or Constraint

Satisfaction algorithms

Philippe VISMARA1,2 and Benôıt VALERY1

1 LIRMM - 161 rue Ada - 34392 Montpellier Cedex 5 - France
2 LASB - Montpellier SupAgro - 2 place Pierre Viala - 34060 Montpellier Cedex 1
vismara@lirmm.fr - valery@lirmm.fr

Summary. This paper investigates the problem of Maximum Common Connected
Subgraph (MCCS) which is not necessarily an induced subgraph. This problem
has so far been neglected by the literature which is mainly devoted to the MCIS
problem. Two reductions of the MCCS problem to a MCCIS problem are explored:
a classic method based on linegraphs and an original approach using subdivision
graphs. Then we propose a method to solve MCCS that searchs for a maximum
clique in a compatibility graph. To compare with backtrack approach we explore
the applicability of Constraint Satisfaction framework to the MCCS problem for
both reductions.

Key words: Maximum common subgraph; linegraph; subdivision graph, compati-
bility graph; constraints satisfaction algorithm; clique detection

1 Introduction

A classic method for comparing two graphs is to find the largest pattern between
them. Most of the time, this question is interpreted as a maximum common induced
subgraph (MCIS) problem. Nevertheless, some slightly different problems can be
relevant in many areas. For instance, finding connected subgraphs can be preferred
to compare molecules in the design of organic synthesis.

In this paper we investigate the problem of Maximum Common Connected Sub-
graph (MCCS) which is not necessarily an induced subgraph. This problem has so
far been neglected by the literature which is mainly devoted to the MCIS problem.

The algorithms that solve MCIS are generally classified into two main categories:
backtrack algorithms and methods that find a maximum clique in a compatibility
graph. This latter approach is one of the most popular and is generally based on
variants of the Bron and Kerbrosch’s algorithm [3] that finds the maximal cliques of
a graph. Koch [8] has proposed an extension of the method adapted to the MCCIS
problem (connected MCIS). The non-clique based backtrack approach is symbol-
ized by McGregor’s algorithm [12]. This method has several similarities with the
framework of Constraint Satisfaction Problems.

2 Philippe VISMARA and Benôıt VALERY

Common subgraph problems for chemical structures matching are explored
in [14]. The MCIS problem is NP-hard except for almost trees of bounded degree [1].
As for the MCCIS problem, it is polynomial for partial k-tree [18].

Based on Withney’s theorem [17] on linegraphs, a reduction of the MCS problem
(neither induced nor connected) to a MCIS problem is often suggested (but never
detailed) in the literature. In this paper we explore this reduction for MCCS on
labeled graphs. We also investigate another reduction based on the subdivision graph
notion. Then we study how to solve this problem using a clique-based algorithm for
both reductions. In section 4 we explore the applicability of constraint satisfaction
algorithms to the MCCS problem. For each approach we compare the efficiency
of using linegraphs or subdivision graphs to transform the problem into a MCCIS
problem. Experimental results are reported in section 5.

2 Preliminaries

We consider connected graphs with labeled nodes and edges. Formally, a graph is
a 4-tuple, G = (V, E, µ, ν), where V is the set of vertices, E ⊆ V × V is the set of
edges, µ : V → LV is a function assigning to each vertex a label from the set of
labels LV and similarly ν : E → LE is the edge labeling function.

For any edge e = xy we define ends(e) = {x, y}.
A graph H = (V ′, E′, µ′, ν′) is a subgraph of G iff V ′ ⊆ V , µ′ and ν′ are the

restrictions of µ and ν respectively and E′ ⊆ E ∩ (V ′ × V ′). The graph H is an
induced subgraph of G if E′ = E ∩ (V ′ × V ′).

Given two graphs G1 and G2, a Common Connected Subgraphs (CCS) of G1

and G2 is a connected graph H isomorphic to both subgraphs of G1 and G2.
A Maximum Common Connected Subgraphs (MCCS) is a Common Connected

Subgraphs which size is maximum according to the number of edges. By analogy, we
can define a Maximum Common Connected Induced Subgraph (MCCIS). Generally,
MCCIS is maximum according to number of vertices. Figure 1 illustrate differences
between MCS, MCCS, MCIS, and MCCIS.

MCS MCIS MCCS MCCIS

G2

G1

Fig. 1. Differences between MCS, MCCS, MCIS, and MCCIS

Linegraph

The linegraph L(G) of a graph G = (V, E, µ, ν) is a graph that has a vertex for each
edge of G, and two vertices of L(G) are adjacent if they correspond to two edges of
G with a common extremity.

According to Withney’s theorem [17], two connected graphs with isomorphic
linegraphs are isomorphic unless one is a triangle (K3) and the other is a trinode

Finding Maximum Common Connected Subgraphs 3

(K1,3) since both graphs have their linegraph equal to K3. Hence, the MCCS prob-
lem between two unlabeled connected graphs can be solved as an MCCIS problem
between their linegraphs. Checking for triangle / trinode exchange must be done
only for solutions including less than 4 edges.

It is important to note that there is no such a direct equivalence for the MCS
problem (not necessarily connected) because a MCIS between two linegraphs can
have many connected components reduced to K3. Since solutions with triangle /
trinode exchanges can be larger than solutions without exchanges, the test for ex-
changes must be done during the search.

Now we consider the MCCS problem for labeled graphs. To insure the equiv-
alence with MCCIS for labeled graphs, the corresponding linegraphs must be la-
beled on both nodes and edges (see figure 2). We define the labeling functions of
the linegraph L(G) = (E, E , µL, νL) as follows: ∀e ∈ E, where e = xy, µL(e) =
(ν(e), µ(x), µ(y)) and ∀αβ ∈ E , νL(αβ) = µ(ends(α) ∩ ends(β)). Using this defini-
tion, Withney’s theorem can be extended to labeled graphs. To demonstrate this
result, one can adapt the proof presented in [6]. Given an isomorphism of L(G1)
onto L(G2) preserving the labels, it is easy to derive an isomorphism of G1 onto G2

that preserves the labels.

Fig. 2. Labeling linegraphs

Subdivision graph

The subdivision graph S(G) is obtained from a graph G = (V, E, µ, ν) by replacing
each edge e = xy by a new vertex e connected to both x and y.

Formally, S(G) = (V ∪ E, E , µs, f0) where E = {xα ∈ V × E | x ∈ ends(α)}, f0

is the zero function and ∀x ∈ V, µs(x) = µ(x) and ∀e ∈ E, µs(e) = ν(e).

Definition 1. A balanced subgraph of a subdivision graph S(G) = (V ∪E, E , µs, f0)
is a subgraph in which any vertex from E has an odd degree.

Then, the MCCS problem between two graphs is clearly equivalent to find maxi-
mum common connected and balanced subgraphs between their subdivision graphs.

3 Clique detection

The detection of a MCIS between two graphs (Ga and Gb) can be solved by find-
ing maximum clique in the compatibility graph (GC). A compatibility graph of two
graphs, also called modular graph, is a graph whose node set is Va × Vb. A node
(xi, xj) in GC represents a mapping between the vertex xi from Ga and the vertex
xj from Gb. An edge between two nodes in GC represents two compatible mapping.
Then a clique in GC of size k is a compatible mapping of k vertices in Ga with k

vertices of Gb.

4 Philippe VISMARA and Benôıt VALERY

Reducing the MCIS problem to the maximum clique has been discovered in-
dependently by numerous authors such as Levi [11]. Clique detection is a common
approach to compute MCIS. I. Koch [8] proposed a method to find MCCIS involving
labels on edges of the compatibility graph.

In this section we present the ways to solve MCCS using clique detection algo-
rithms on compatibility graphs constructed from linegraphs or subdivision graphs.

Clique detection based on linegraphs

According to section 2, we can reduce MCCS to MCCIS. The compatibility graph
is constructed with L(G1) and L(G2) instead of G1 and G2.

Given two labeled linegraphs L(G1) = (E1, E1, µ1, ν1) and L(G2) = (E2, E2, µ2, ν2),
the compatibility graph GC = (VC , EC , f0, νC) is defined as :

• VC = {(x1, xa) ∈ E1 × E2 | µ1(x1) = µ2(xa)}
• EC = {(x1, xa)(x2, xb) ∈ VC × VC} such that :

– x1 6= x2 and xa 6= xb and
– (x1x2 ∈ E1 and xaxb ∈ E2) or (x1x2 6∈ E1 and xaxb 6∈ E2)

• νC : EC → {strong, weak} such that :

– νC((x1, xa)(x2, xb)) =
{

strong if (x1x2 ∈ E1 and xaxb ∈ E2)
weak otherwise

A clique is a subset of nodes such that each pair of nodes is connected by an edge.
An edge e is a strong edge iff νC(e) = strong. Two nodes a and b in GC are said
strongly (resp. weakly) connected iff ab is a strong edge (resp. weak). A clique is a
strong clique if it contains a covering tree that consists of strong edges. Hence, the
common subgraph corresponding to a strong clique is necessarily connected.

Once the compatibility graph is constructed (in O(|E1| × |E2|)), a clique detec-
tion algorithm is used to find maximum cliques. The maximum clique problem is
a classical problem in combinatorial optimization and has been widely studied [2].
The Bron and Kerbrosch’s algorithm[3] is one of the first and most popular. This
algorithm computes all maximal cliques but is often used for finding the maximum
clique. The benefit of the backtracking method in [3] is that it avoids generating
non-maximal cliques.

This algorithm has known several modifications such as Johnston’s heuristic [7].
During the backtrack search, once the current clique K has been extended with z,
K must be extended without z. [7] showed that the next node y to extend K can
be taken within nodes disconnected to z since any maximal clique without z must
include such a node.

Koch’s algorithm [8] is based on [3] and computes all maximal strong cliques.
The current clique K is extended with a node z strongly connected to K. Unfor-
tunately, Johnston’s heuristic[7] cannot be applied since nodes disconnected to z

aren’t necessarily strongly connected to K (see fig. 3). We propose to modify the
heuristic such that the next node y (strongly connected to K) is added to K if either
y is disconnected to z or y is strongly connected to a node t weakly connected to K

and such that t is disconnected to z. In this way, the maximum strong clique found
represents a MCCIS of L(G1) and L(G2) and therefore a MCCS of G1 and G2.

Finding Maximum Common Connected Subgraphs 5

���������������������������������
�������
�������

�������
�������
�������

z

y
tK

Fig. 3. Extending the current strong clique

Clique detection based on subdivision graphs

The compatibility graph can be created upon S(G1) and S(G2). As far as we know,
subdivision graphs have not been used to reduce the MC(C)S problems to the
MC(C)IS problems. Since a subdivision graph has two different kinds of nodes,
the construction of the compatibility graph is more tricky.

The construction of the compatibility graph must ensure that a maximal clique
corresponds to a balanced subgraph in S(G1) and S(G2).

Given two subdivision graphs S(G1) = (V1 ∪ E1, E1, µ1, f0) and S(G2) = (V2 ∪
E2, E2, µ2, f0), the compatibility graph GC = (VC ∪ EC , EC , f0, νC) is defined as
follows:

• VC = {(x1, xa) ∈ V1 × V2 | µ1(x1) = µ2(xa)}
EC = {(e1, ea) ∈ E1 × E2 | ν1(e1) = ν2(ea) and µ1(ends(e1)) = µ2(ends(e2))}

• EC =
1. {(x1, xa)(e1, ea) ∈ VC × EC | (x1 ∈ ends(e1) and xa ∈ ends(ea)) or (x1 6∈

ends(e1) and xa 6∈ ends(ea))} ∪
2. {(x1, xa)(x2, xb) ∈ VC × VC | x1 6= x2 and xa 6= xb} ∪
3. {(e1, ea)(e2, eb) ∈ EC × EC} such that :

– e1 6= e2 and ea 6= eb and
– |ends(e1) ∩ ends(e2)| = |ends(eb) ∩ ends(eb)|

• νC : EC → {strong, weak} such that :

– νC((x1, xa)(e1, ea)) =
{

strong if x1 ∈ ends(e1) and xa ∈ ends(ea)
weak otherwise

– νC((x1, xa)(x2, xb)) = νC((e1, ea)(e2, eb)) = weak

The time complexity of the construction is O((|V1| + |E1|) × (|V2| + |E2|)).

Theorem 1. A maximal strong clique K of the compatibility graph GC defines a
balanced connected subgraph in the subdivision graphs S(G1) and S(G2).

Proof. The main result is to prove that for any (a, b) ∈ EC , if (a, b) ∈ K then K must
include a couple of nodes in VC that maps the ends of a and b. Let (a, b) ∈ EC ∩ K

such that ends(a) = {x, y} and ends(b) = {i, j}. By construction (1) of EC , (a, b)
is strongly connected to (x, i), (x, j), (y, j) and (y, i). By (2), (x, i) is adjacent to
(y, j) and (x, j) is adjacent to (y, i). For any node (z, k) ∈ VC ∩K where z 6∈ ends(a)
or k 6∈ ends(b), since (z, k) is adjacent to (a, b) we have by (1) (z, k) is adjacent
to (x, i), (x, j), (y, j) and (y, i). Now let’s assume that K includes another node
(c, d) ∈ EC . By (3), let α = |ends(a)∩ ends(c)| = |ends(b)∩ ends(d)|. If α = 0, then
(c, d) is necessarily adjacent to (x, i), (x, j), (y, j) and (y, i). If α = 1, without loss
of generality, suppose that ends(a) ∩ ends(c) = {x} and ends(b) ∩ ends(d) = {i}.
Thus (c, d) is strongly connected to (x, i). Since y 6∈ ends(c) and j 6∈ ends(d) the
nodes (y, j) and (c, d) must be connected. Hence, K must include (x, i) and (y, j)
to be maximal.

6 Philippe VISMARA and Benôıt VALERY

4 Constraint satisfaction problems

In [12], McGregor presents one of the rare algorithms specially intended for MCS
problems. Even so, this method has often been used to solve MCIS problems. The
method is based on a backtrack algorithm but the way the method is implemented
has some analogy with the general framework of Constraint Satisfaction Problems
(CSP). Constraint satisfaction algorithms have been applied to several problems
in Graph Theory [10, 5] but the MCCS problem has not yet been formulated as
a constraint satisfaction problem. Since CSP research finding can benefit such an
approach, we chose to study the applicability of backtrack methods to MCCS in the
scope of CSP.

From induced subgraph problem to MCCIS

A constraint satisfaction problem (CSP) is described by a constraint network defined
as a triple whose elements are a set of variables X = {x1, x2, ..., xk}, a set of values
for each variable, and a set of constraints among variables to specify which tuples of
values can be assigned to tuples of variables. A solution of the CSP is an instantiation
I of the variables that satisfies all the constraints.

For instance, a CSP for checking whether a graph G1 is an induced subgraph of
a graph G2 could be defined as follows: (i) a variable Xi is defined for each vertex
i of G1; (ii) a variable Xi can be assigned to any vertex of G2 whose label is the
same as that of i; the set of values that Xi can take is called the domain of Xi and
denoted by D(Xi); (iii) a binary constraint C(Xi, Xj) is defined between each pair
of variables Xi, Xj to insure that the connectivity and the labeling are preserved by
the mapping. A pair of values (yi, yj) ∈ D(Xi)×D(Xj) is allowed by the constraint
if ij ∈ E1 ⇔ yiyj ∈ E2 and when ij ∈ E1, ν1(ij) = ν2(yiyj); (iv) a constraint of
difference[15] is defined on variables to ensure that they all take different values.
Any solution for this constraint network is a matching of G1 to G2.

Although the standard approach to solve a CSP is based on backtracking, the
reader interested in algorithms to solve CSP should refer to the vast literature on
this domain [16]. In this paper we focus on the classical constraint network frame-
work which is oriented towards the satisfaction of all constraints. This framework
is widely used and has been implemented in many constraint programming toolkits
as JChoco [9] a Java library for constraint programming. In the last decade, several
extensions of the classical CSP framework have been proposed. Some of them, like
soft constraints, could be interesting to solve the MCCS problem. But most of the
CSP solvers do not implement these extensions. Hence, they have not been studied
yet in the context of the present work.

In the previous example we have defined a constraint network to solve the in-
duced subgraph isomorphism problem. Representing an MCIS problem should differ
in the way that some vertices of graph G1 are not mapped to any vertex of G2. Hence,
the corresponding variables of the CSP cannot be assigned to values in X2. A usual
solution in such a case is to add an extra value (we denote ?) to the domain of
the variables. Note that the constraint of difference must be weakened since many
variables can be assigned to the ? value. Then, for any solution of the CSP, the
common induced subgraph will correspond to the variables assigned to values in X2

only. The size of the common induced subgraph is the number of variables whose

Finding Maximum Common Connected Subgraphs 7

value differs from ?. Solving the MCIS problem is then equivalent to find a solution
of the constraint network that minimize the number of ? values.

To solve the MCCIS problem we add a new global constraint to the previous
CSP. This connectivity constraint checks the connectivity of all the vertices whose
corresponding variable is not assigned to ?.

In the following sections we detail the constraint networks to solve the MCCS
problem using linegraph or subdivision graph respectively.

A constraint network based on linegraphs

Given two linegraphs L(G1) = (E1, E1, µ1, ν1) and L(G2) = (E2, E2, µ2, ν2), we pro-
pose to define a network constraint as follows:

• a set of variables X = {Xi | i ∈ E1}
• a domain for each variable: ∀i ∈ E1, D(Xi) = {y ∈ E2 | µ2(y) = µ1(i)} ∪ {?}
• a binary constraint C(Xi, Xj) between each pair of variables that allows the set

of couples: {(k, l) | k, l ∈ E2 and k 6= l and (k, l) ∈ E2 ⇔ (i, j) ∈ E1}
∪ {(t, ?), (?, t) | t ∈ E2} ∪ {(?, ?)}

• a global constraint of connectivity on X to insure that the subgraph induced by
{i ∈ E1 | I(Xi) 6= ?} is connected, where I is an instantiation of the variables.

The main difficulty lies in the implementation of the constraint of connectivity.
We maintain two sets during the search. CComp is the set of variables already
instancied to a non-? value and such that the subgraph {i ∈ E1 | Xi ∈ CComp}
is connected. The set Candidates includes uninstanciated variables connected to at
least one variable in CComp. Only variables in Candidates can be assigned to non-?
values. The sets are updated after each assignment.

Finally, to minimize the number of ? values a new variable X#? is usually added
to the constraint network that counts the number of variables assigned to this value.
Hence, D(X#?) = {0 . . . |E1|} and a global constraint is defined on {Xi}i∈E1∪{X#?}
to ensure that I(X#?) = |{i ∈ E1 | I(Xi) = ?}|

A constraint network based on subdivision graphs

The constraint network based on subdivision graphs is quite similar to that de-
fined in the previous section. Given two graphs G1 = (V1, E1, µ1, ν1) and G2 =
(V2, E2, µ2, ν2) and their subdivision graphs S(G1) = (V1 ∪ E1, E1, µs1, f0) and
S(G2) = (V2∪E2, E2, µs2, f0), we propose to define the network constraint as follows:

1. a set of variables X = {Xi | i ∈ V1 ∪ E1}
2. ∀i ∈ V1, D(Xi) = {y ∈ V2 | µ2(y) = µ1(i)} ∪ {?} and

∀j ∈ E1, D(Xj) = {y ∈ E2 | ν2(y) = ν1(j)} ∪ {?}
3. a binary constraint C(Xi, Xj) for each couple i, j ∈ V1 ×E1 that allows the set

{(k, l) ∈ V2 × E2 | (k, l) ∈ E2 ⇔ (i, j) ∈ E1} ∪ {(t, ?), | t ∈ V2} ∪ {(?, ?)}
4. a binary constraint between each pair of variables in {Xi}i∈V1 (resp. {Xj}j∈E1)

that forbids equals values except of ?.
5. a global constraint of connectivity on X to insure that the subgraph induced by

{i ∈ E1 | I(Xi) 6= ?} is connected, where I is an instanciation of the variables.

The main difference with the CSP based on linegraphs lies in the partition of the set
of variables. By the binary constraint (3) between a “vertex variable” and an “edge
variable” we can easily prove that ∀j ∈ E1, I(Xj) 6= ? ⇒ ∀i ∈ ends(j), I(Xi) 6= ?

Hence any solution of the CSP corresponds to a balanced subgraph of the sub-
division graphs.

8 Philippe VISMARA and Benôıt VALERY

5 Experimental results

We have implemented our constraint networks with the Java constraint program-
ming library JChoco [9]. The set CComp and Candidates for the connectivity con-
straint are handled with backtrackable structures provided by JChoco.

The Bron and Kerbrosch’s algorithm [3] for clique detection has been imple-
mented in Java. We modified the program with Koch’s work [8] to find only con-
nected solutions. Then we adapted Johnston’s heuristic [7] for improving perfor-
mance.

Our database consists of three sets of graphs. The first one consists of 30 undi-
rected connected graphs without label and randomly generated. Each has at least
10 nodes and at most 20 nodes. The second set of graphs contains 30 molecules
with a size between 6 and 62 atoms. The last set of graphs are molecules taken from
5487 chemical reactions. In this set, we only compare the reactant graphs with the
product graphs without labels in the same reaction. A timeout was set to 10 minutes
for each test.

of couples average average

of graphs (m1 ∗ m2) (n1 × n2) + (m1 + ×m2)

molecules 465 475 1019

random graphs 465 835 1816

chemical reactions 8437 169 331

Table 1. Description of the database. The third column (resp. fourth) represents
the average size of the compatibility graph on linegraphs (resp. subdivisions graphs)

CSP Clique detection
Linegraph Subdivision Linegraph Subdivision

molecules without labels 73,99% 69,04% 65,6% 55,4%

molecules 98.15% 94.45% 99.2% 97.09%

random graphs 73.6% 71.7% 65.5% 48.5%

chemical reactions 99.68% 99,58% 99,79% 98,62%

Table 2. Percent of solved problems on the different graphs sets within the time
limit.

The first statement can be done about the comparison between subdivision and
the linegraph method in either CSP or clique-based approach. The subdivision
method are almost always slower than the linegraph method. Subdivision graphs
increase the number of nodes of a graph. Since the complexity of MCCS depends of
the size of the data, the size of subdivision graphs probably slows the procedure.

Finding Maximum Common Connected Subgraphs 9

For small graphs or labbeled graphs, both CSP and clique approachs solve the
same number of problems within the time limit. The difference is more important
for larger graphs.

One explanation could be that the library used to implement the CSP algorithms
is quite complex and not very efficient for small problems. Conversely, the clique
detection algorithms are easier to implement but they do not benefit of the CSP
heuristics for large problems. As long as the compatibility graph has a reasonable
size (see column 3 and 4 from Table 1), the maximum clique can be found within
the time limit. When the size of the compatibilty graph arises, finding the maximum
clique is harder and the algorithms timeout.

Even with a preliminary benchmark and a different problem, we have a simi-
lar conclusion than [4] that deals with MCIS on directed graphs: we cannot point
clearly a faster method in general. Meanwhile, its seems that the size of the com-
patibility graph could be a threshold where the clique detection algorithms become
less effective than constraints satisfaction algorithms.

6 Conclusion

We have presented two methods to reduce the MCCS problem to an MCCIS prob-
lem. The first one is an adaptation of the reduction based on linegraphs for the
“induced” versions of the problems. The second method is a new approach that
involves subdivision graphs. As far as we know, this reduction have not been yet
applied even for the MCIS problem.

These methods have been formalized in the general scope of labeled graphs.

We have adapted Koch’s algorithm [8] that computes an MCCIS by searching
a clique in a labeled compatibility graph. We proposed an heuristic for the choice
of the next vertex to add to the strong clique. We have extended the model of
compatibility graph in order to solve the MCCS problem for both linegraph and
subdivision graph reductions.

To investigate backtrack algorithms as McGregor’s algorithm[12] we have cho-
sen the general framework of Constraint Satisfaction Problems. We have studied
the applicability of constraint satisfaction techniques for linegraphs and subdivision
graphs reductions. The constraints we propose are quite simple and may be im-
proved. We have implemented both constraint networks using the JChoco[9], a open
source constraint programming toolkit, using the Java programming language.

The four methods we have investigated to solve the MCCS have been imple-
mented in Java. We have experimented these algorithms on molecular labeled graphs
and unlabeled random graphs. The first results show that a linegraph approach is
generally faster than methods using subdivision graphs. One explanation could be
that subdivision graphs include more nodes than the corresponding linegraphs. This
drawback could be reduced with heuristics that exploit the specific structure of sub-
division graphs. For small or very labelled graphs there is no significant difference
between CSP and clique approachs. For more complex graphs, it seems that the
clique detection algorithms become less effective than constraint algorithms.

Since the constraint networks we have proposed are based on quite simple con-
straints, it would be interesting to optimize them. Another solution would be to use
extensions of the classical constraint network framework as soft constraints[13].

10 Philippe VISMARA and Benôıt VALERY

Nevertheless, the MCCS problem itself has many variants for real word problems.
For instance we can use different criteria to calculate the size of a common subgraph
(number of nodes and edges, ...). It should be interesting to compare the different
methods according to their adaptability to these variations.

References

1. T. Akutsu. A polynomial time algorithm for finding a largest common subgraph
of almost trees of bounded degree. IEICE Transactions on Fundamentals of
Electronics, Communications and Computer Sciences, E76-A(9), 1993.

2. I. M. Bomze, M. Budinich, P. M. Pardalos, and M. Pelillo. The maximum clique
problem. In D.-Z. Du and P. M. Pardalos, editors, Handbook of Combinatorial
Optimization (Supplement Volume A), pages 1–74. Kluwer Academic, 1999.

3. C. Bron and J. Kerbosch. Finding all cliques of an undirected graph. Commu-
nication of the ACM, 16(9):575–579, 1973.

4. D. Conte, P. Foggia, C. Sansone, and M. Vento. Thirty years of graph matching
in pattern recognition. IJPRAI, 18(3):265–298, 2004.

5. G. Dooms, Y. Deville, and P. Dupont. Cp(graph): Introducing a graph compu-
tation domain in constraint programming. In Proc CP 2005. Springer Verlag,
2005.

6. F. Harary. Graph Theory. Addison-Wesley, 1969.
7. H.C. Johnston. Cliques of a graph-variations on the bron-kerbosch algorithm.

International Journal of Computer and Information Sciences, 5(3):209–238,
1976.

8. I. Koch. Enumerating all connected maximal common subgraphs in two graphs.
Theoretical Computer Science, 250:1–30, 2001.

9. F. Laburthe and N. Jussien. Jchoco: A java library for constraint satisfaction
problems. http://choco.sourceforge.net.

10. J. Larossa and G. Valiente. Constraint satisfaction algorithms for graph pattern
matching. Math. Struct. Comput. Sci., 12(4):403–422, 2002.

11. G. Levi. A note on the derivation of maximal common subgraphs of two directed
or undirected graphs. Calcolo, 9(4):341–352, 1972.

12. J. J. McGregor. Backtrack search algorithms and the maximal common sub-
graph problem. Software Practice and Experience, 12:23–34, 1982.

13. P. Meseguer, F. Rossi, and T. Schiex. Soft constraints. In Rossi et al. [16], pages
281–328.

14. J. W. Raymond and P. Willett. Maximum common subgraph isomorphism
algorithms for the matching of chemical structures. Journal of Computer-Aided
Molecular Design, 16(7):521–533, 2002.

15. J.-C. Régin. a filtering algorithm for constraints of difference in CSPs. In AAAI-
94, Proceedings of the National Conference on Artificial Intelligence, pages 362–
367, Seattle, Washington, 1994.

16. F. Rossi, P. van Beek, and T. Walsh, editors. Handbook of Constraint Program-
ming. Elsevier, 2006.

17. H. Whitney. Congruent graphs and the connectivity of graphs. Am. J. Math.,
54:150–168, 1932.

18. A. Yamaguchi and H. Mamitsuka K. F. Aoki. Finding the maximum common
subgraph of a partial k-tree and a graph with a polynomially bounded number
of spanning trees. Information Processing Letters, 92(2):57–63, 2004.

