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An abstract representation for molecular graphs

Philippe Vismara and Claude Laurenço

Abstract. The design of a synthesis strategy in Organic Chemistry rests on
the perception of the target molecule. This one has to be perceived from

several viewpoints: topology, stereochemistry, functionality... We propose an

abstract representation of molecules which describes the topological viewpoint
(cycles, carbon chains and their structural relationships). This representation

is based on a polynomial algorithm that computes the set of relevant cycles in
the molecular graph. This set is equal to the union of all the minimum cycle

bases of the graph. The abstract representation is integrated in RESYN, a

system for computer-aided organic synthesis planning.

Introduction

Since the early sixties, several computer programs have been developed in the
field of synthetic organic chemistry [ON92]. Although the synthetic chemists ex-
tensively use database systems for molecule and reaction retrieval, they have not
yet recognize any computer program as an essential tool for devising synthesis
strategies.

The synthesis of organic molecules is a problem which is solved in finding an
efficient way to construct a given target molecule, for instance a natural product,
from available simple starting materials, by applying chemical reactions in a cer-
tain sequence. These successive steps define a synthetic pathway. Retrosynthetic
analysis [CC89], a reasoning backward from the target structure, is often used to
design a synthetic pathway and to find a suitable set of starting materials. Because
thousands of transformations are known and thousands of potential starting ma-
terials are available, it is impossible to perform a systematic analysis. Therefore,
synthesis design programs have to work out strategies in order to reduce the size
of the search space.

Many factors have limited the development of computer-assisted synthesis de-
sign, whose LHASA is a representative program [CLR85]. The combinatorics
complexity of synthesis design is not the only obstacle. Most of the existing pro-
grams have been developed for several decades and they generally do not integrate
new computer technologies. These programs often produce too many results with-
out explaining them, specially when heuristics have been applied to reduce the
size of the search space. Moreover, creating and updating the knowledge bases of
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such systems remain a major difficulty and are hard tasks for experts in organic
synthesis.

The RESYN project have been developed taking the weakness of current pro-
grams into consideration. The aim of the project is to mix research into modelling of
organic synthesis design [Lau85, Gie98, DFHL98] and computer science results
in Graph Theory, Constraint Satisfaction Problems, Distributed Artificial Intelli-
gence, Classification, Analogy and Case-based reasoning, Knowledge Acquisition
and Representation [Vis95, R9́5, Lie97, Py92]. A system for computer-assisted
synthesis design is currently under development.

The aim of this paper is not to present the whole RESYN project. We focus
on the topological perception of the target molecule. This analysis is a crucial step
in the definition of retrosynthetic strategies. These strategies are also based on the
perception of stereochemistry and functional groups which are not presented in this
paper.

The perception of a molecule involves recognizing it as a member of conceptual
categories and provides diverse types of information such as properties of that mole-
cule, its shape and parts which make it up. All this information is a base for action.
If we recognize that a molecule belongs to a chemical family, we may interpret that
in terms of known synthetic methods or starting materials for its construction. The
process starts with the target structural formula whose information is interpreted
to construct a new representation. This one describes at several abstract levels, in
a structured way, multiple aspects of the molecule and gives a view, both global
and detailed, of the problem which is to be solved. The topological perception of
a molecular graph consists in the recognition of cyclic parts and the description
of non-cyclic patterns as carbon chains, heteroatomic links .... The main part of
this paper aims at the computation of the set of relevant cycles in the molecule.
The second part presents an abstract representation of the molecular graph which
describes the structural relationships between patterns (cycles, carbon chains,...).

Relevant cycles

Study of cycles in molecules is a very long and rich story. It deals with
finding the better set of cycles to analyze the cyclic structure of a molecule. A
quite complete review of papers dealing with cycles in molecule has been done by
[DGHL89a]. Therefore, the aim of this part is to perform a more precise analysis
of some works from a Graph Theory point of view.

This part is organized as follows: Section 2 presents some algorithms that
search for a cycle basis of the cycle vector space associated with a molecular graph.
Two major kinds of cycles basis are studied: fundamental basis (associated to a
spanning tree) and minimum basis (often named SSSR). We show how successive
papers have tried to optimize the search for a minimum basis, until [Hor87] that
presents a polynomial algorithm.

Generally, cycle basis notion is not satisfactory to perform a good analysis of
the cyclic structure of the molecule. Hence, we present in section 3 a few papers
that deals with extended minimum cycle basis. We discuss on their interests and
limits before trying to define a general notion of Relevant Cycles. This notion is
described in section 4. We propose a polynomial time algorithm to compute the
Set of Relevant Cycles (denoted by CR) as a polynomial number of cycles families
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which define a partition of CR. Each family is represented by a single prototype
from which all the other cycles of the family can be generated without backtracking.

1. Preliminaries

1.1. Definitions. A molecule is generally represented by an undirected graph
G = (V,E) without loops (where V denotes the set of vertices associated with the
atoms and E defines the set of edges which correspond to bonds between atoms).
We denote by n and m the numbers of vertices and edges respectively.

In an undirected graph, an edge is an unordered pair of vertices (v1, v2).
A path (or a walk) is a route between two vertices passing along edges 1. A

simple path must contain each edge at most one time. A path is elementary if no
vertex appears more than once.

For any simple path µ, we define the length of the µ (denoted by |µ|) the number
of edges in µ. Define d(x, y) to be the length of any shortest path from x to y.

For any vertex v in V , we denote by d(v) the degree of v in G and by Γ(v) the
set of vertices adjacent to v (so d(v) = |Γ(v)|).

A cycle (or a ring) is a closed path (i.e. a path that starts and ends at the same
vertex). Simple and elementary cycles are defined according to path definitions. In
this paper, we consider a cycle as either a set of edges {(v1, v2), (v2, v3), ...} or a
closed path (v1, v2, v3, ..., v1). A simple cycle C can also be represented by a vector
of {0, 1}m such that C[i] = 1 if and only if edge i belongs to C. Then, the sum of
two cycles C1 and C2 is defined by the boolean addition of their associated vectors
(regarding cycles as sets of edges, this sum is equal to (C1 ∪ C2) \ (C1 ∩ C2) ).One
can define the vector space of cycles on the set of simple cycles closed by addition.
All the elements of this vector space (denoted by C) are simple cycles or sum of
simple cycles. Hence, C is the set of all the subgraphs2 of G in which the degree of
any vertex is even.

1.2. The cyclomatic number. The main interest of the cycle vector space is
that it introduces the notion of cycle basis. A cycle basis is a set of cycles such that
any element of C can be obtained by a sum of cycles of this basis.The dimension
of the vector space defines the minimum number of cycles needed to describe all
cycles of the graph. This dimension is generally called the cyclomatic number and
denoted by ν. For a graph with n vertices and m edges, ν is equal to m− n+ 1.

This formula has a very long history. It was introduced by [Eul52] to determine
the number of faces in a polyhedron. This result was generalized by [Cau13] and
described on a different way by [Frè39] (which is generally cited as Frerejacques
number). Ever since, some other formulas have been introduced that give the same
result, like [Elk84].

1.3. 2-connected components. A graph is k-connected if any vertices v1
and v2 are linked by at least k distinct paths. So, a molecular graph is generally
connected (i.e. 1-connected). A 2-connected component of a graph G (sometimes
called a block ofG) is a 2-connected maximal subgraph ofG. An important property
is that all the vertices of any elementary cycle belong to the same 2-connected com-
ponent. Hence, studying the cycle vector space can be independently performed on

1more formally, there is a path between vertices v0 and vk, passing through vertices v1, v2 ...

and vk−1, if each pair (vi, vi+1) is an edge of the graph (where i = 0, 1, ..., k - 1).
2a subgraph of G = (V,E) is a graph G′ = (V ′, U ′) such that V ′ ⊆ V and E′ ⊆ E

345



Figure 1. The 685 elementary cycles of this ”pagodane” molecule
can be generated from a cycle basis including only 11 cycles.

each 2-connected component. This decomposition of the graph generally provides
a great improvement. Firstly because it eliminates all the vertices which do not
belongs to any cycle (such vertices correspond to 2-connected components reduced
to a single vertex). Secondly, because it divides the initial large problem into a few
smallest ones.

Notion of 2-connectivity is seldom used by papers dealing with cycles in chem-
istry. Some of them, like [LDP90], suggest to recursively eliminate terminal atoms
(i.e. vertices whose degree is 1). This reduction do not only preserves vertices
belonging to cycles. It also conserves the vertices of any elementary path linking
two independent cycles. To solve this problem, [BSS91] has proposed to elimi-
nate vertices whose degree is 2. This method constructs a “crunched graph” on
which the cycle search is performed. Some precautions must be taken to detect
cycles that include vertices whose degree is 2. These reductions are not as efficient
as 2-connectivity components. Hence, [FPDB93] has proposed to decompose the
graph in blocks which correspond to 2-connected components. Unfortunately, the
algorithm they presented is more complicated and has a greater time complexity
than the one introduced by [Tar72] which can be performed in linear time.

2. Cycle basis

The set of all elementary cycles is not always relevant to analyze the cyclic
structure of a graph. For example, the molecule presented in figure 1 includes 685
elementary cycles. Hence, it is often important to be able to describe the cycle
vector space without enumerating all cycles. Of course, a cycle basis provides such
an optimal representation of the vector space.

2.1. Fundamental basis. The first and simplest way used to construct a
cycle basis consists in finding a fundamental basis associated with a spanning tree.
This method has been introduced by [Kir47]. In a spanning tree3 T = (V,E′) of a
graph G = (V,E), adding any edge from E \E′ creates a single cycle. This cycle is
called a fundamental cycle according to the spanning tree T . Because |E \E′| = ν
and all these cycles are independent4, they form a basis of the cycle space. Many

3A spanning tree is a connected subgraph without cycles which covers all the vertices of the

graph.
4We only add in T one edge of E \E′ at the same time. So, each fundamental cycle includes

an edge which cannot belong to any other cycle.
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Figure 2. The minimum cycle basis of this graph consists of
four 3-edges cycles. But no fundamental basis should include all
of them.

papers deal with fundamental basis search [Wel66, Pat69, Gib69]. Most of them
use this notion to enumerate all elementary cycles of the graph. Unfortunately,
[MD75] has shown that such a method can generate 2ν vectors a few of which
actually correspond to elementary cycles. This difficulty can be surmounted using
a search algorithm, as [RT75], which needs O(n + m + nc) operations (where c
is the number of elementary cycles). An other search algorithm, quite easy to
implement, has been proposed by [She83]. For planar graphs5, [Sys81] has shown
that a vector space approach can be as efficient as a search algorithm.

Because cycle basis may be numerous, they are compared according to their
lengths (the length of a cycle basis is defined by the sum of the lengths of all cycles
in the basis). This notion defines a minimum fundamental cycle basis. [DPK82]
showed that finding a minimum fundamental cycle basis is a NP-complete problem6.
Note that a minimum fundamental basis must be associated to a spanning tree.
But all cycle basis are not fundamental (see figure 2). We will see that finding
a minimum cycle basis, not necessarily associated with a spanning tree, can be
performed in polynomial time.

2.2. Minimum basis : SSSR. Since a few elementary cycles can be con-
sidered as “chemically relevant”, the cycle vector space is generally described by a
Smallest Set of Smallest Rings. This notion called SSSR is equivalent to a mini-
mum cycle basis (not associated with a spanning tree). Hence, an SSSR contains
ν independent cycles such that the sum of their lengths is minimum.

2.2.1. SSSR computed from a fundamental basis. The oldest method used to
find an SSSR starts by searching a fundamental cycle basis. Then, this basis B
is optimized using the following criterion: for each cycles C1, C2 ∈ B, if C1 + C2

is smaller than either C1 or C2, replace this fundamental cycle by C1 + C2 in B.
The new set of cycles is a basis smaller than B. This method, used by [CP72] and
[WD75], does not necessarily find a minimum basis even if some other heuristics are
employed. An other algorithm using fundamental basis notion has been proposed
by [HGT84]. It directly finds a short fundamental basis that is not necessarily
minimum.

2.2.2. SSSR directly computed. Since it is not easy to optimize a fundamental
basis, many algorithms try to directly obtain a minimum basis. For “fundamental”
algorithms, the main problem lies in the optimization of an initial basis. On the
opposite, “direct” algorithms easily find a minimum set of independent cycles but

5a graph is planar if it can be represented on a plane in such a way that no two edges cross

one another.
6It implicates that no polynomial time algorithm would probably be found to solve that

problem
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Figure 3. Any minimum cycle basis (SSSR) must include the
4-edges cycle. But this cycle never appears as a face of a planar
representation of the graph.

have difficulties to obtain a complete basis. To minimize the basis length, most of
the algorithms associate to any edge (or vertex) the shortest cycles that include
it. But these cycles are not necessarily different or independent. The set finally
obtained often includes less than ν cycles. Hence, general method for “direct”
algorithms consists in applying a search heuristic that minimize length until ν
independent cycles are obtained.

For example, [Zam76] has proposed to use spanning notions to find a cycle
basis. The algorithm choose a vertex and search a smallest cycle that covers it.
All vertices in that cycle are marked and the process goes on until every vertex is
marked. If the cyclomatic number is not reached, a similar method is performed
with edges and then with faces. However, the final set of cycles is not always an
SSSR. The problem lies on the absence of direct relation between minimum cycles
bases and faces of a planar representation of the graph. For such a representation
of the molecule, the set of faces defines a cycle basis. Like fundamental ones, this
basis is not necessarily minimum. It depends on the representation of the graph.
And for some particular graphs, no planar representation defines a minimum basis
(see figure 3).

An other interesting algorithm has been presented by [GJ79]. Like “funda-
mental” algorithms, it uses a spanning tree to obtain a set of “ring-closure edges”.
For any ring-closure edge, a shortest cycle is searched instead of a fundamental
one. The problem is that two different closure edges can be associates with the
same shortest cycle (see edges a and b in figure 4). Hence, Gasteiger has proposed
to order the edges of the molecular graph according to the breadth first search
that computes the spanning tree. Each cycle closure edge e is associated with the
shortest cycle that only includes edges preceding e in this order. However, that
simple but very powerful method can fail when a shortest cycle is only composed
by ring-closure edges. For instance, in figure 5, the 3-edges cycle would not be
found respecting edge orientation. Some heuristics has been proposed to solve that
problem. But none of them guarantees that the final cycle basis is minimum.

All the algorithms we just have studied are failing in trying to directly find an
SSSR. Whatever criterion is used, it is not possible to directly recognize a cycle
which is member of a minimum basis. Hence, the solution consists in finding a set
including more than ν cycles from which an SSSR can be extracted.

348



root
21

a b

Figure 4. Edges a and b are associated with the same shortest
cycle: Cycle 2. Using Gasteiger’s heuristic, the edge a is associated
with Cycle 1.

root

Figure 5. A counter-example for Gasteiger’s heuristic.

2.2.3. A polynomial algorithm to find an SSSR. The weakness of the previous
algorithms is due to the use of a unique spanning tree of the graph. Therefore,
the solution consists in searching as many spanning tree as there are vertices in
the graph. This idea has been introduced by [Sor85]. But he did not prove his
algorithm or study its complexity. So, we will focus on the method presented
by [Hor87]. It is considered as the first polynomial time algorithm that finds a
minimal cycle basis.

Horton’s algorithm is based on the following theorem :

Theorem 2.1. Let x be any vertex of any cycle C in a minimum cycle basis.
There is an edge (y, z) in C such that C consists of a shortest path from x to y, a
shortest path from x to z and the edge (y, z).

Note that any cycle satisfying this property does not necessarily belong to a
minimum basis. Therefore, Horton’s algorithm extracts a cycle basis from an initial
set of cycles (denoted by CI) verifying theorem 2.1:

1) ∀a, b ∈ V find a shortest path P (a, b) between a and b.

2) For all v ∈ V do :
For all (x, y) ∈ E do :

If P (v, x) ∩ P (v, y) = {v}
Then add in CI the cycle C = P (v, x) + P (v, y) + (x, y)

3) Order by length the initial set of cycles CI
4) Use a greedy algorithm to extract a minimum cycle basis from CI .

First step of the algorithm chooses one path for every pair of vertices. Horton has
proved that any choice can lead to an initial set CI including a minimal cycle basis.
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This proof consists in replacing the cycles of any minimum basis by cycles belonging
to CI . In the second stage, a cycle C can be created as many times as it contains
vertices. To avoid this duplication, Horton uses the method suggested by [Tie70].
Considering an order π on vertices, all cycles generated from a vertex v must only
contain vertices that precede v in order π.

The two first stages of the algorithm can be implemented by the unique follow-
ing one. From any vertex r in X, we perform a breadth first search through the
graph. This search generate a spanning tree which includes the edges used to reach
a vertex for the first time. For any vertex y, the subpath of this tree that links y
to r is necessarily a shortest path. During the breadth first search, when a cycle
closing edge (x, y) in found, a cycle is created if the paths linking x and y to r are
disjoint.

Last step of the algorithm processes CI in order of the length of the cycles. A
new cycle is added to the k cycles of the current partial basis when the new induced
set is independent. This test uses a gaussian elimination on the m×(k+1) boolean
matrix corresponding to the set of cycle. This elimination can be performed in
O(m × (k + 1)). Since k ≤ ν and CI contains at most νn cycles 7, the minimum
cycle basis can be found in O(mν2n) operations.

A quite similar method as Horton’s one has been introduced by [LDP90].
Their algorithm can be summarized as follows: from each cycle closure edge, search
the shortest cycles of which it is a member. If all these cycles do not constitute a
linearly independent set, find the next smallest cycles for each cycle closure edge.
The process goes on until a minimum basis can be extracted from the current set
of cycles. The main difference between this method and Horton’s algorithm is that
Horton directly finds an unique and useful initial set of cycles. On the opposite, the
method presented by Leach finds a sequence of ever growing sets whose biggest one
is generally larger than the unique set used by Horton. Hence, Horton’s algorithm
is generally more efficient than the method presented by [LDP90].

3. Extended bases : Chemically relevant cycles

Although minimum cycles basis provides the smallest representation for the
cyclic structure of the molecule, this representation is rarely the better one for
chemical investigations. The problem lies in the following dilemma: on one hand,
a cycle basis provides a too small set of cycles to perform a satisfactory analysis;
on the other hand, the enumeration of all cycles does not allow evaluation in a
reasonable time. Hence, an optimal set of cycles may be defined between these two
extremes. Of course, such a definition depends on the kind of analysis performed.

3.0.1. Including cycles of a given length. On a synthetic analysis point of view,
[CP72] suggests to include all rings containing 6 or fewer vertices. In the same
way, [WD75] adds to the basis all cycles including at most 8 vertices (note that
many works in graph theory deals with algorithms which enumerate all the cycles
of a given length [CNAO85, Ric86]). The choice of the better upper bound for
cycle selection is quite subjective and depends on many factors. We can say that
the number of irrelevant cycles added to the set grows with the value of the upper
bound.

7In step 2, a cycle is added to CI when it consists of two distinct shortest paths. Hence, the
number of cycles created from a vertex v is at most equal to the number of cycle closure edges.
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3.0.2. ESER. An other extended basis has been defined by [Fuj87] as the Es-
sential Set of Essential Rings. This definition is based on the notion of “tied”
cycles. A tied cycle is a cycle which have a chord8. The algorithm used to build
ESER starts by searching all the cycles of the molecular graph. Then, it extracts
the set of “tied” and “multi-tied” cycles. A cycle C is dependent if it is the sum of
tied cycles such that: 1. each tied cycle is the same size or smaller than C 2. the
intersection of all these tied cycles involves no less than half of the edges of C 3.
each tied cycle includes no more heteroatoms (noncarbon and nonhydrogen atoms)
than C.

This notion of ESER gives good results for a few examples of molecules. But
it presents two inconvenients : firstly, ESER should includes a great number of
cycles which are not chemically relevant (particularly when the molecule has no
tied cycle); secondly, the algorithm that compute ESER is not efficient because it
searches all the cycles and uses a high complexity criterion to detect dependent
cycles.

3.0.3. ESSR. The extended SSSR introduced by [DGHL89b] is based on faces
of a planar representation of the molecular graph. It defines the Extended Set of
Smallest Rings. This set first includes all the simple faces corresponding to cycles
without chords which are faces of a planar embedment of the graph. But some
relevant cycles are not simple faces (see figure 3). Therefore, ESSR also includes
some cut faces which corresponds to the other cycles without chords. A cut face
C is named primary if it includes a least one edge e such that the simple face that
contains e is the same size or smaller than C. So, ESSR includes all the simple
faces and primary cut faces.

ESSR notion provides a complex but original definition of cycle relevance. Un-
fortunately, the algorithm that build this set also has a great time complexity. But
the main weakness lies in the use of planar embedment. Although most of the
simple or primary cut faces are relevant, a large part of them have no real interest.
This is due to the fact that a planar embedment of the molecular graph is not a
real projection of the molecule. Faces of an embedment are not equivalent to the
real faces of the 3-dimensional structure of the molecule. That is the reason why
using planar embedments of the molecular graph does not lead up to satisfactory
definition of cycle relevance.

3.0.4. SER. The last extended SSSR we will study has been presented by
[Tak94]. He defines the Set of Elementary Rings (where the word “elementary”
does not correspond to the graph theory notion that we have mentioned in sec-
tion 1.1). To build this set of cycles, the algorithm starts including all the cycles
of a SSSR in SER. Then, for every pair of cycles C1 and C2 in the current SER, a
new cycle C1 + C2 is added if C1 and C2 share at least 2 contiguous edges9. This
process goes on until SER is stable.

According to its definition, the SER may include a lot of cycles a few of which
are really relevant. For instance, figure 6 shows two unrelevant cycles added to the
SER of the molecule presented in figure 1.

8a chord is an edge that links two vertices of a cycle and that does not belong to this cycle.
9more precisely, Takahashi uses the notion of θ-graph. It designates a connected graph such

that every vertex has 2 adjacent edges, except for two unadjacent vertices whose valence is 3.

Then, cycle C1 + C2 is added to SER if the subgraph induced by C1 ∪ C2 is a θ-graph.
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Figure 6. Some examples of cycle added to the SER correspond-
ing to molecule in figure 1.

4. Set of Relevant Cycles

4.1. Definition.
4.1.1. What is cycle relevance ? Study of the previous definition of extended

bases leads us to that obvious conclusion: whatever criterion is used, no satisfac-
tory definition of cycle relevance has yet been found. Of course, all these works are
interesting since they propose a formal definition of an abstract notion. According
to particular applications, they should provide a better set of cycle than the min-
imum cycle basis one. But the problem of finding an universal definition of cycle
relevance is still open. And it would probably never be solved.

One reason of this failure lies on the incompatibility of relevance notions coming
from different aspects of chemistry. A given cycle may be relevant according to a
particular point of view, but absolutely insignificant for an other one.

The other difficulty, and probably the most important, concerns the use of
graphs to represent molecules. A molecular graph is not a molecule but an useful
abstraction of very complicated 3-dimensional object. Trying to find, in a molecular
graph, properties that depend on distance between atoms or spatial arrangement
is doomed to failure. To be optimal, definition of cycle relevance probably needs to
go beyond the scope of graph theory. It would require using spatial coordinates of
atoms, atom interactions, chemical properties and so on. But such a definition of
chemical relevant cycles would be very complex.

When we started the RESYN project, we had to choose a definition of relevant
cycles. Because we are developing a system for computer-aided synthesis, this
definition must satisfy some constrains. First, the definition of relevant cycles must
be canonical, that is independant from the way it is computed. Then, it must be
simple in order to be easy to understand by the users of the program. Finally, we
need an efficient algorithm to compute the set of relevant cycles.

4.1.2. A canonical definition. In the scope of graph theory, notion of minimum
cycle basis is absolutely unsatisfactory since different SSSR can be associated to the
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Figure 7. An example of a graph having several minimum bases.

same molecule. For example, the graph presented in Figure 7 has three different
minimum bases.

Instead of trying to elaborate an other definition of relevance, we have tried to
find the simplest canonical definition which is closed to the SSSR notion. Unifying
previous definitions of extended bases leads us to that observation: a cycle which
is not the sum of smaller cycles is chemically relevant . This definition has been
suggested by Plokin [Plo71]. Hence, we will characterize relevant cycles according
to that definition which can be formalized as follows (where C denotes the set of
elementary cycles):

Definition 4.1. C ∈ C is relevant iff @C1, ..., Ck ∈ C s.t.

{ ∀i, |Ci| < |C|
and
C = C1 + ...+ Ck

This characterization defines the Set of Relevant Cycles we denote by CR. This
definition is very close to minimum basis notion. For example, in figure 7, CR
contains all the 6-edges cycles whereas each SSSR only includes three of them.

In fact, we should easily prove that:

Lemma 4.2. CR is equal to the union of all the minimum cycle bases of G.

Hence, a cycle is relevant if it belongs to at least one SSSR. Note that CR is
unique for a given molecule. This set is generally quite small for a molecular graph.
For instance, in figure 1, CR contains 15 cycles whereas any SSSR would include 11
of them.

On a graph theory point of view, the number of relevant cycles is not necessarily
polynomial. If G is a complete graph 10, the size of CR is equal to the polynomial
number of 3-edges cycles. But there exists graphs, as the one of figure 8, which
contain an exponential number of relevant cycles.

The existence of such graphs must not hide the interest of this definition. Note
that the same problem occurs with any canonical definition based on SSSR. In
organic chemistry, graphs with an exponential number of relevant cycles are hardly
possible.

Till now, no algorithm has been proposed to compute CR. In this paper, we
present a polynomial time algorithm to compute CR as a polynomial number of
parts. Each part corresponds to a family of cycles which can be directly listed from
a particular relevant cycle. This cycle defines a prototype of its family. This compact

10in a complete graph, any vertex is adjacent to all the other ones.
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Figure 8. According to the definition of relevant
cycles, set CR contains 2

n
4 cycles in this graph

( (x, b, u, v, d, w, ..., y, ..., x), (x, a, u, v, d, w, ..., y, ..., x), etc).

representation of CR gives a more precise description of the cycle vector space than
a simple minimum basis. For instance, in the graph of Figure 8, apart from the
n
4 4-edges cycles that must be known, the other relevant cycles can be described

by a single family. The prototype of this family is one of the 2
n
4 elementary cycles

with 3n
4 vertices. Listing all these relevant cycles is not very meaningful for such a

graph. But it can be very useful for a computer system to be able to perceive them
and designate a single prototype.

For molecular graphs, the compact representation can be replaced by the com-
plete enumeration of the relevant cycles.

The method we present to find the Set of Relevant Cycles is analogous to
Horton’s algorithm. We start by searching for an initial set of cycles (denotes by
C′I) from which a subset of relevant prototypes is extracted. Then, all the others
relevant cycles are directly generated from the set of relevant prototypes.

4.2. Partition of the set of relevant cycles. This section defines a parti-
tion of the set of relevant cycles such that the number of parts is polynomial.

Lemma 4.3. If µ is a subpath of a relevant cycle C such that |µ| ≤ 1
2 |C| then

µ is a shortest path.

Proof. Assume that µ is not a shortest path. Then µ includes a subpath
ρ = (a . . . b) such that |ρ| > d(a, b) and there is a shortest path ρ′ from a to b
such that ρ and ρ′ are disjoint. Replacing ρ with ρ′ in C will create a new cycle
C ′ such that |C ′| < |C|. Define C ′′ to be the cycle that consists of ρ and ρ′.
Since |ρ′| < |ρ| ≤ 1

2 |C| we have |C ′′| < |C|. Because C = C ′ + C ′′, C cannot be
relevant. �

In the rest of this paper, we assume that the vertices are ordered by a numbering
π that respects their degrees, i.e. ∀x, y ∈ V, π(x) < π(y)⇒ deg(x) ≤ deg(y).

For any cycle C being considered, we denote by rC the highest vertex in C
according to the numbering π.

Lemma 4.4. any relevant cycle C consists of two disjoint shortest paths (rC . . . p)
and (rC . . . q) having the same length and linked by the edge (p, q) if |C| is odd or
by the path (p, x, q) if |C| is even.

|C|

2

r
C

|C|

2

r
C

q

p

Odd cycle

x
p

q

Even cycle
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Proof. For a given cycle C, we can define (rC . . . p) and (rC . . . q) to be the
two longest subpaths of C whose length is strictly lower than 1

2 |C|. By lemma 4.3,
these paths are shortest paths in the whole graph. �

The partition of the set of relevant cycles is based on lemma 4.4.

Definition 4.5. the cycle family associated with a relevant cycle C, including
the vertices rC , p, q and eventually x as defined in lemma 4.4, is:

F(C) =

C ′ ∈ CR
∣∣∣∣∣∣∣
|C ′| = |C| and C ′ consists of :
• the vertex rC and the edge (p, q) (or the path (p, x, q)),
• two shortest paths (rC , . . . , p) and (rC , . . . , q) passing only
through vertices lower than r.


r

2

|C|
2

|C| r
C

C

Odd cycle

p

q

q

p

x

Even CycleC’

C

Hence, two cycles C and C ′ belonging to F(C) only differ in the shortest paths
from rC to p and from rC to q they include.

Theorem 4.6. The set of all the relevant cycle families defines a partition of
CR.

Proof. By lemma 4.4 and definition 4.5, the cycle family associated with a
relevant cycle C is unique for a given ordering π. So any relevant cycle belongs to
exactly one family. Then, we define an equivalence relation such that two relevant
cycles are equivalent if they belong to the same cycle family �

To describe the family F(C), we need a single cycle C which is a prototype of
this family. All the other cycles in F(C) can be generated from C by replacing
paths (rC , . . . p) and (rC , . . . q) with paths of the same length passing only through
vertices smaller than rC .

Hence, a cycle family is properly defined by a triple rC , p, q for odd cycles or a
quadruple rC , p, q, x for even cycles.

The number of relevant cycle families depends on the order π used to define
the families. However, we have the following result:

Theorem 4.7. the number of relevant cycle families is always polynomial.

Proof. The number of families whose prototype is an odd cycle is smaller than
n ν, since an odd cycle prototype is defined by a vertex rC and a cycle closing edge
(p, q). As for even cycle families, their prototype is defined by 4 vertices rC , x, p
and q such that p and q are adjacent to x. Hence, the number of even cycle families
is smaller than:∑
r∈V

∑
x∈V, π(x)≤π(r)

deg(x)2

2 ≤
∑
r∈V

(
deg(r)×

∑
x∈V, π(x)≤π(r)

deg(x)
2

)
≤ 2m2,

since order π respects vertex degrees (∀x ∈ V, π(x) ≤ π(v)⇒ deg(x) ≤ deg(r)) �

To compute the union of all the minimum cycle bases, we may find one proto-
type for each relevant cycle family.
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4.3. A polynomial algorithm that finds the Set of Relevant Cycles.
The algorithm we propose to compute cycle prototypes is based on the converse of
lemma 4.4. This converse is not necessarily true but it gives a strong condition on
cycle relevance.

The outline of the algorithm can be given as follows:

• firstly, we compute the set C′I including one cycle for each triple rC , p, q
(or quadruple rC , p, q, x) satisfying the condition of lemma 4.4,

• secondly, we use a greedy algorithm to extract relevant prototypes from
C′I .

4.3.1. Computation of C′I . This set is generated using breadth first searches
through the molecular graph G from every vertex r whose degree is higher than
two11.

Denote by Vr the set of vertices z such that π(z) < π(r) and there is a shortest
path in G from r to z that passes only through vertices which precede r in the
ordering π.

Definition 4.8. ∀x ∈ Vr, the set of ancestors of x according to r is defined
by: ancr(x) = {a ∈ Γ(r) such that ∃ shortest path from r to x including a}

Now consider a cycle C that consists of the two shortest paths (r, ap, ..., p) and
(r, aq, ..., q) linked by the edge (p, q) if |C| is even or the path (p, x, q) if |C| is odd.

Lemma 4.9. If ancr(p) ∩ ancr(q) 6= ∅ Then C is not relevant

ap

aq

ap

aq

yp

yq

yp

yq

xr a ar

p

q

z z

q

p

Proof. If there exists a vertex a such that a ∈ ancr(p) ∩ ancr(q), cycle C is
the sum of three cycles12 smaller than C. Note that the proof holds for degenerate
cases when a = ap and/or a = aq. �

Lemma 4.9 gives a strong condition to detect wrong cycles. For a given triple
rC , p, q (or quadruple rC , p, q, x) we add a cycle in C′I only if ancr(p) ∩ ancr(q) = ∅.

To generate C′I , we also need to compute the folowing values, for any x in Vr:

• fathers(x) = {z ∈ Γ(x) ∩ Vr such that d(r, z) = d(r, x)− 1}
• brothers(x) = {z ∈ Γ(x) ∩ Vr such that d(r, z) = d(r, x)}
• Path(r, x) = a shortest path from r to x passing only through vertices in
Vr

We can now consider the algorithm for the generation of C′

I as presented in
Figure 9.

In the main While loop, lines 9-20 perform the breadth first search and compute
the sets fathers(y), brothers(y) and ancr(y).

Note that we have the following property: fathers(x) 6= ∅ =⇒ x ∈ Vr.

11If ν > 1, every cycle includes at least one vertex r such that d(r) ≤ 3
12in the example: (r, ap, yp, z, a, r), (r, aq , yq , z, a, r) and (z, yp, p, q, yq , z)
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[Algorithm 1]

1. For each r ∈ V such that d(r) ≥ 3 do :
2. For each x ∈ V do :
3. level(x)← +∞; fathers(x)← ∅; brothers(x)← ∅;
4. endfor

5. fathers(r)← ∅; ancr(r)← ∅; Path(r, r)← (r);
6. FIFO ← ∅; AddLast(r, FIFO);
7. level(r)← 0; explored← ∅;
8. While FIFO 6= ∅ do :
9. x← ExtractFirst(FIFO):
10. For each y ∈ Γ(x) do :
11. If level(x) < level(y) Then :
12. If π(y) < π(r) and ( fathers(x) 6= ∅ or x = r ) Then

fathers(y)← fathers(y) ∪ {x};
13. If level(y) =∞ Then
14. level(y)← level(x) + 1; AddLast(y, FIFO);
15. If x = r Then ancr(y)← {y} Else ancr(y)← ancr(x);
16. Else ancr(y)← ancr(y) ∪ ancr(x);
17. Else If fathers(y) 6= ∅ and fathers(x) 6= ∅ Then
18. brothers(y) ← brothers(y) ∪ {x}
19. endif

20. endfor

21. ∀p, q ∈ fathers(x) such that ancr(p) ∩ ancr(q) = ∅ and (p, q) 6∈ E
add even cycle “Path(r, p) + x+ Path−1(r, q)” to C′

I

22. If fathers(x) 6= ∅ Then Path(r, x)← Path(r, f) + x, where f ∈ fathers(x);
23. ∀b ∈ brothers(x) ∩ explored such that ancr(b) ∩ ancr(x) = ∅

add odd cycle “Path(r, x) + Path−1(r, b)” to C′

I

24. explored← explored ∪ {x};
25. endwhile

26. endfor

Figure 9. Algorithm that computes C′

I

Even and odd cycles are computed at line 21 and line 23 respectively, using a
test on ancestors.

Line 22 chooses a shortest path form r to x, when x ∈ Vr.

Lemma 4.10. For molecular graphs, the set of cycles C′

I can be computed with

O(m2) operations and the cardinality of C′

I is lower than (2m2 + νm).

Proof. Except for the computation of sets ancr, the time complexity of lines
9-20 is the standard complexity of a breadth first search, that is O(n+m) for each
search from a vertex r.

Computation of ancr(y) only occurs for ring-closure edges whose extremities
have different breadth levels (according to the breadth first search from r). For
such edges, the modification is performed in O(d(r)). For molecular graphs, d(r)
is always bounded (by 5 or 6 in organic chemistry). So we can assume that each
modification is performed in O(1) if we use bit vectors to represent the sets ancr.

357



Hence, time complexity of ancestor computation is O(νn) for all the breadth first
searches.

Line 21 is the critical step of the algorithm. The number of unordered pairs p, q
checked by the program is lower than

∑
r∈V

∑
x∈Vr

1
2 deg(x)(deg(x) − 1) < 2m2,

since ∀x ∈ Vr, deg(r) > deg(x). If the sets ancr are represented by bit vectors,
each check is performed in O(1). So the complexity of Line 21 for all the breadth
first searches is O(m2).

For the computation of odd cycles, the number of checks performed for each
breadth first search is O(ν) since the number of “brothers” is lower than the number
of ring-closure edges. So there are at most O(νn) odd cycles.

Finally, the whole complexity is O(m2) for a molecular graph. �

Lemma 4.11. C′

I includes one and only one prototype of each relevant cycle
family.

Proof. Let C = (r, . . . , p, x, q, . . . , r) be a relevant even cycle (if C is odd, the
proof is quite similar). Assume that r is the highest vertex in C according to π and
x is the unique vertex in C such that d(r, x) = 1

2 |C|.
Now consider the exploration of vertex x in algorithm 1. By lemma 4.4, (r, . . . , p)
and (r, . . . , q) are shortest paths. So p and q belong to fathers(x). Define C ′ to be
the cycle added to C′I at line 21 for the pair of vertices p, q. By definition of the
algorithm, C ′ is unique. Cycles C and C ′ only differ in the shortest paths (r, . . . , p)
and (r, . . . , q) they include. The sum C+C ′ defines a set of cycles which are smaller
than C. Hence, cycle C ′ must be relevant since C is relevant. So, C ′ is the unique
prototype of F(C) which belongs to C′

I �

4.3.2. Computation of a set of relevant prototypes. By lemma 4.11, CR ∩ C
′

I is

a set of prototypes. So, we have to extract all the relevant cycles in C′

I .
As in Horton’s algorithm, a minimum cycle basis B is calculated by processing

the cycles of C′

I in order of weight. During the processing of a cycle C, we denote
by B< and B= the subsets of cycles in the current sub-basis whose lengths are
less than |C| and equal to |C|, respectively. By Definition 4.1, C is relevant when
B< ∪ {C} is independent. When this check succeeds, cycle C is added to B= if
B< ∪ {C} ∪ B= is also independent. The processing stops when B is complete and
all the cycles having the same length as the greatest one in B have been tested.

The current minimal sub-basis of B is represented by a (|B<|+|B=|)×m boolean
matrix. To test if B< ∪ {C} is independent, we perform a Gaussian elimination on
the first rows of the matrix which are associated with B<. When this check succeeds,
the Gaussian elimination follows on the other rows to test if B< ∪ B= ∪ {C} is
also independent.

Since B contains at most ν cycles, each check of a cycle is performed in O(νm).
By lemma 4.10, the cardinality of C′I is in O(m2). So, the set of prototypes C′I ∩ CR
can be generated in O(ν m3) operations.

4.3.3. Enumeration of CR. CR is completely described by a set of prototypes
of the families defined in section 4.2. From this set of prototypes, the union of all
the minimum cycle bases can easily be listed.

Consider a cycle prototype C ∈ CR ∩ C
′

I .To generate the cycle family F(C),
we define a directed graph Dr = (Vr, Ur) associated with the vertex r so that:
Ur = { (y, z), where z ∈ fathers(y)}. Figure 10 gives an example of such a graph.

The computation of the digraph Dr can be directly performed in Algorithm 1.
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Figure 10. Digraph describing the shortests paths associated to
the breadth first search from r

The digraph Dr has two major properties:

• It has no directed cycle,
• ∀x ∈ Vr, any directed path (x, . . . , r) in Dr corresponds to a shortest path

in G.

To list all the paths from x to r in Dr, we use a backtracking function which is
based on a depth first search from x. This recursive function can be summarized
as follows:

Function List Paths( x; current path )
add x at the head-end of current path;
If x = r Then Return({current path})
Else:

Result← ∅;
For any z such that (x, z) ∈ Ur Do

Result← Result ∪ List Paths(z, current path);

Return(Result)
endif

To compute F(C), we first replace the path (p, . . . , r) in C by each path re-
turned by the call List Paths(p, ∅). Then, in any cycle generated this way, we
replace the path (q, . . . , r) by each path resulting from List Paths(q, ∅).

Each cycle in F(C) corresponds to a pair of paths (p, . . . , r), (q, . . . , r). Since
the computation of each path takes a number of operations in the order of the path
cardinality, the family F(C) can be listed in O(n |F(C)| ).

So, the generation of CR from subset CR ∩ C
′

I is performed in O(n |CR|) opera-
tions (including cycle enumeration).

Note that the use of prototypes substantially optimizes the generation of CR: if
a cycle prototype is relevant, this implies that all cycles of the corresponding family
are relevant. Therefore, the number of cycle relevance checks is polynomial since it
is in O(|C′

I |) instead of O(|CR|).
Another interest of the prototypes lies in the possibility of computing the car-

dinality of CR without enumerating all the cycles. This method is based on the
digraph Dr from which we can easily evaluate the number of shortest paths from r
to any vertex x, which passe only throught vertices in Vr. This method is discribed
in [Vis97]. It also provides a way of calculating, in polynomial time, the number
of relevant cycles of a given length which include a given vertex.
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Figure 11. Graphs of the relevant cycles to describe cyclic systems

Abstract representation of a molecular graph

This part presents an abstract representation of the molecular graph which
describes the structural relationships between topological patterns as cycles, carbon
chains,... We first define the “graph of relevant cycles” which aims at the description
of the cyclic systems in the molecular graph. Then we give a definition of the major
non-cyclic patterns as carbon chains, cyclic links, and heteroatomic links. Then we
define the abstract representation.

5. Graph of the relevant cycles

To analyse the cyclic system of the molecule, we define a new graph in which
each relevant cycle is associated to a vertex. This vertex is labeled by the size of the
cycle. Two cycles are linked in the new graph if they share at least one atom. This
link is labeled by a couple of values which correspond to the numbers of vertices
and edges shared by the two cycles, respectively.

Figure 11 illustrates this graph of the relevant cycles.
With the label of the link joining two cycles, we can analyse the relationship

between these cycles and characterize the corresponding cyclic system, according
to the chemical nomenclature:

• a spirocyclic system corresponds to the label (1, 0)
• a fused system is labeled by (2, 1)
• other values represent bridged systems
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6. Non-cyclic topological patterns

The analysis of the non-cyclic parts of the molecule is quite easy to implement.
In the scope of organic synthesis, it is important to distinguish the heteroatomic

parts from the carbon ones. The first step of the analysis consists in finding the
“skeleton” of the molecule (Figure 12). The skeleton is obtained by recursively
removing terminal heteroatoms (i.e. heteroatoms whose vertex degree is 1). Hence,
the skeleton only includes heteroatoms which belong to a path linking two carbons.
Note that the terminal heteroatoms are suppressed because they do not affect the
topological analysis of a molecular graph. For a retrosynthesis analysis, the skeleton
represents the main structural part of the target molecule on which topological
strategies can be worked out.

The analysis of the non-cyclic parts is performed on the skeleton of the molecule.
In order to define retrosynthetic topological stategies, the RESYN system detects
the folowing components (see Figure 13):

• a cyclic link is a non-cyclic edge whose at least one extremity belongs
to a cycle. The perception of cyclic link is used to detect the boundary
between cyclic and non-cyclic parts. For instance, some retrosynthesis
strategies consist in cutting cyclic links to isolate complex cyclic systems.

• an heteroatomic link is a maximal non-cyclic subgraph which consists of
heteroatoms. The existence of heteroatomic links make easier the decon-
nection of the molecule.

• a carbon chain is a maximal non-cyclic subgraph which consists of carbons.
A carbon chain is linear if all its vertex degrees are not greater than 2,
otherwise the chain is branched .

The perception of these patterns can be performed in linear time using an
algorithm based on a depth first search [Vis95].

7. Abstract representation

The abstract representation extends the graph of the relevant cycles. It also
defines the relationship between the non-cyclic topological patterns. Figure 13 gives
an example of abstract representation.

Abstract or reduced graph representations have been used for different purposes
elsewhere. For example,[LDP90] describes such a representation used in automated
conformational analysis.

Our abstract representation allows to define and describe strategic goals to
be reached by the system. It can also be used to perform analogical reasoning.
For instance, suppose we want to find a retrosynthetic pathway for the molecule
of ibogamine described in Figure 14. Computing the abstract representation of
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Figure 13. An example of abstract representation

ibogamine shows that it is very close to the representation of patchouli alcohol,
whereas the molecular graphs are rather different. Then, if we now a retrosynthetic
pathway for patchouli alcohol, based on the Diels-Adler reaction, we can try to use
the same reaction in order to build the cyclic system of ibogamine. Without the
abstract representation, the analogy would have been more difficult to find.

8. Conclusion

Perception of the target molecule is a main phase in solving an organic syn-
thesys problem. From a structural formula, this process leads to a new represen-
tation which describes the molecule components and their relationships accordind
to different viewpoints (topology, stereochemistry, functionality). This structured
representation is used for defining strategies which will guide the retrosynthetic
analysis of the target. To automate this process in a synthesis design system, it is
necessary to precisily and formally define the chemical concepts used (cycles, func-
tions,...) and to have efficient algorithms for recognizing them. The topological
perception concerns the recognition of cycles, chains, links,... This perception is
the subject of the work presented in this paper. We have particularly studied the
problem of finding a set of relevant cycles.

We have seen, in the short review of papers dealing with SSSR, how difficult
is the search of an efficient algorithm, even when the set of cycles to find is very
well formalized. But minimum cycle basis do not provide a satisfactory notion
to analyze the cyclic structure of a molecule. Hence, we have presented a few
papers which define extended SSSR. None of them gives a perfect notion of cycle
relevance. Since these definitions try to include all the relevant cycles, they also add,
in their extended basis, cycles which have no real interest in chemistry. Naturally,
the criterion used to select cycles may depend on the kind of analysis which is
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performed. But cycle relevance should not be correctly defined in the scope of
graph theory. It may resort to various other theories in chemistry which can explain
why a given cycle is chemically relevant. Therefore, we chose the definition that
corresponds to the smallest canonical set. According to this definition, the Set of
Relevant Cycles (denoted by CR) is the union of all the minimum cycles basis of
the graph. We have proposed a polynomial time algorithm that computes CR in
O(νm3) as a set of cycle families. From these families, all the relevant cycles can
be generated in O(n |CR|) (including output).

We have presented an abstract representation of molecular graphs for the def-
inition of high level strategies allowing various kinds of reasoning (classification,
analogy, induction, DAI,...). This work have been integrated in a prototype, the
RESYN system, to experiment knowledge level modeling and reasoning through a
constructive interaction with experts in chemistry.
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