An argumentation workflow for reasoning in Ontology Based Data Access

Bruno YUN, Madalina CROITORU

a INRIA Graphik/LIRMM University Montpellier, France

Abstract. In this paper we demonstrate how to benefit from structured argumentation frameworks and their implementations to provide for reasoning capabilities of Ontology Based Data Access systems under inconsistency tolerant semantics. More precisely, given an inconsistent Datalog± knowledge base we instantiate it using the ASPIC+ framework and show that the reasoning provided by ASPIC+ is equivalent to the main inconsistent tolerant semantics in the literature. We provide a workflow that shows the practical interoperability of the logic based frameworks handling Datalog± and ASPIC+.

Keywords. Applications and Structured Argumentation and Datalog+-

Ontology Based Data Access and Inconsistency Handling

Ontology Based Data Access (OBDA) is a popular setting used by many Semantic Web applications that encodes the access to data sources using an ontology (vocabulary) [19, 20, 10]. The use of the ontology will help obtain a unified view over heterogeneous data sources. Moreover, the ontology will enable the exploitation of implicit knowledge not explicitly stored in the data sources alone.

One of the main difficulties in OBDA consists in dealing with potentially inconsistent union of facts (data sources). Reasoning with inconsistency needs additional mechanisms because classical logic will infer everything out of falsum. It is classically assumed (and a hypothesis that we will also follow in this paper) that the inconsistency in OBDA occurs at the fact level and not due to the ontology [19, 20]. The facts are error prone due to their unrestrained provenance while ontologies are considered agreed upon as shared conceptualisations.

We consider here two main methods of handling inconsistency. On one hand (and inspired from database research) we consider repair based techniques. A repair is a maximally consistent set of facts. Reasoning with inconsistency using repairs relies on reasoning with repairs and combining the results using various methods (called inconsistency tolerant semantics). [7, 8, 16] Despite them being the the mainstream techniques for OBDA reasoning, the main drawback of inconsistent tolerant semantics is the lack of implementations available today.

1 Paper submitted to the application track
2 Corresponding Author: E-mail: croitoru@lirmm.fr
A second method consists of using argumentation techniques. A Dung argumentation system [15] is a pair $\mathcal{AS} = (\mathcal{A}, \mathcal{C})$, where \mathcal{A} is a set of arguments and $\mathcal{C} \subseteq \mathcal{A} \times \mathcal{A}$ is a binary attack relation on them. We say that $a \in \mathcal{A}$ is acceptable w.r.t a set of arguments $\varepsilon \subseteq \mathcal{A}$ iff $\forall b \in \mathcal{A}$ such that $(b, a) \in \mathcal{C}, \exists c \in \varepsilon$ such that $(c, b) \in \mathcal{C}$. ε is conflict-free iff $\not\exists a, b \in \varepsilon$ such that $(a, b) \in \mathcal{C}$. ε is admissible iff ε is conflict-free and all arguments of ε are acceptable w.r.t ε. ε is preferred iff it is maximal (for set inclusion) and admissible. ε is stable iff it is conflict-free and $\forall a \in \mathcal{A} \setminus \varepsilon, \exists b \in \varepsilon$ such that $(b, a) \in \mathcal{C}$. ε is complete iff it contains all arguments that are acceptable w.r.t ε. ε is grounded iff it is minimal (for set inclusion) and complete. Reasoning takes place on the various ε (also called extensions).

In this paper we demonstrate how to benefit from structured argumentation frameworks and their implementations to provide for reasoning capabilities of OBDA systems under inconsistency tolerant semantics. More precisely, given an inconsistent Datalog± knowledge base we instantiate it using the ASPIC+ framework and show that the reasoning provided by ASPIC+ is equivalent to the main inconsistent tolerant semantics in the literature.

The significance of the paper is proving the practical application of reasoning under inconsistency using argumentation for OBDA inconsistency tolerant semantics in Datalog± knowledge bases.

This practical proof is based on the following new technical results:

- The first instantiation of the ASPIC+ framework using the Datalog± language.
- The proof of the soundness and completeness of this instantiation with respect to inconsistency tolerant semantics.

The paper organised as follows. We introduce the Datalog± language and the main inconsistency tolerant semantics: IAR, AR, ICR. We then show the ASPIC+ instantiation and prove its properties with respect to the state of the art. Last we demonstrate the workflow that allows to use ASPIC+ as a reasoning engine over inconsistent Datalog± knowledge bases.

The Logical Language: Datalog±

In this section we explain the logical language Datalog± used throughout the paper. We define the notion of Datalog± knowledge base, inconsistent knowledge base and explain the three inconsistency tolerant semantics mostly used in the literature.

In OBDA there are two major approaches to represent an ontology: Description Logics (such as \mathcal{EL} [3] and DL-Lite families [11]) and rule-based languages (such as Datalog± language [9], a generalization of Datalog that allows for existentially quantified variables in rules heads). Despite Datalog± undecidability when answering conjunctive queries, different decidable fragments are studied in the literature [6]. These fragments generalize the aforementioned Description Logics families and overcome their limitations by allowing any predicate arity as well as cyclic structures.

Here we use the general rule-based setting knowledge representation language Datalog±, i.e, the positive existential conjunctive fragment of first-order logic FOL [12,5]. Its language \mathcal{L} is composed of formulas built with the usual quantifier (\exists, \forall) and only the connectors implication (\rightarrow) and conjunction (\land). We consider first-order vocab-
ularies with constants but no other function symbol. A vocabulary is a pair \(\mathcal{V} = (\mathcal{P}, \mathcal{C}) \), where \(\mathcal{P} \) is a finite set of predicates and \(\mathcal{C} \) is a possibly infinite set of constants. A term \(t \) over \(\mathcal{V} \) is a constant or a variable, different constants represent different values (unique name assumption). We use uppercase letters for constants and lowercase letters for variables. An atomic formula (or atom) over \(\mathcal{V} \) is of the form \(p(t_1, \ldots, t_n) \) where \(p \in \mathcal{P} \) is an \(n \)-ary predicate, and \(t_1, \ldots, t_n \) are terms. A ground atom is an atom with no variables. A conjunction of atoms is called a conjunct. A conjunction of ground atoms is called a ground conjunct. By convention a ground atom is a ground conjunct. A variable in a formula is free if it is not in the scope of any quantifier. A formula is closed if it has no free variables (also known as sentence). Classically, a fact is a ground atom. The notion was extended in [5], so that a fact may contain existentially quantified variables that occur in \(F \). We exclude duplicate atoms in facts, which allows to see a fact as a set of atoms. We denote by \(\vec{x} \) a vector of variables. An existential rule (or simply a rule) is a closed formula of the form \(R = \forall \vec{F}(\vec{y} \rightarrow \exists \vec{z} H) \), where \(B \) and \(H \) are conjuncts, with \(\text{vars}(B) = \vec{x} \cup \vec{y} \), and \(\text{vars}(H) = \vec{x} \cup \vec{z} \). The variables \(\vec{z} \) are called the existential variables of the rule \(R \). \(B \) and \(H \) are respectively called the body and the head of \(R \). We denote them respectively \(\text{body}(R) \) for \(B \) and \(\text{head}(R) \) for \(H \). We may sometimes omit quantifiers and write \(R = B \rightarrow H \). A negative constraint (or simply a constraint) is a rule of the form \(N = \forall \vec{x}(B \rightarrow \bot) \). Given a set of variables \(X \) and a set of terms \(T \), a substitution \(\sigma \) of \(X \) by \(T \) (notation \(\sigma : X \rightarrow T \)) is a mapping from \(X \) to \(T \). Given a fact \(F \), \(\sigma(F) \) denotes the fact obtained from \(F \) by replacing each occurrence of \(x \in X \cap \text{vars}(F) \) by \(\sigma(x) \). A homomorphism from a fact \(F \) to a fact \(F' \) is a substitution \(\sigma \) of \(\text{vars}(F) \) by (a subset of) \(\text{terms}(F') \) such that \(\sigma(F) \subseteq F' \) [5].

A rule \(R = B \rightarrow H \) is applicable to a fact \(F \) if there is a homomorphism \(\sigma \) from \(B \) to \(F \). The application of \(R \) to \(F \) w.r.t. \(\sigma \) produces a fact \(\alpha(F, R, \sigma) = F \cup \sigma(\text{safe}(H)) \), where \(\text{safe}(H) \) is obtained from \(H \) by replacing existential variables with fresh variables (not used variables). \(\alpha(F, R, \sigma) \) is said to be an immediate derivation from \(F \). Let \(F \) be a fact and \(\mathcal{R} \) be a set of rules. A fact \(F' \) is called an \(\mathcal{R} \)-derivation of \(F \) if there is a finite sequence (called the derivation sequence) \((F_0 = F, \ldots, F_i = F_i) \) such that for all \(0 \leq i < n \) there is a rule \(R \) which is applicable to \(F_i \) and \(F_{i+1} \) is an immediate derivation from \(F_i \). Given a fact \(F \) and a set of rules \(\mathcal{R} \), the chase (or saturation) procedure starts from \(F \) and performs rule applications in a breadth-first manner. The chase computes the closure of \(F \), i.e. \(CL_\mathcal{R}(F) \), which is the smallest set that contains \(F \) and that is closed under \(\mathcal{R} \)-derivation, i.e. for every \(\mathcal{R} \)-derivation \(F' \) of \(F \) we have \(F' \in CL_\mathcal{R}(F) \). Given a chase variant \(C \) [4], we call \(C \)-finite the class of set of rules \(\mathcal{R} \), such that the \(C \)-chase halts on any fact \(F \), consequently produces a finite \(CL_\mathcal{R}(F) \). We limit our work in this paper to these kind of classes.

Let \(F \) and \(F' \) be two facts. \(F \models F' \) if and only if there is a homomorphism from \(F' \) to \(F \). Given two facts \(F \) and \(F' \) and a set of rules \(\mathcal{R} \) we say \(F, \mathcal{R} \models F' \) if and only if \(CL_\mathcal{R}(F) \models F' \) where \(\models \) is the classical first-order entailment [13].

Example 1 (\(\mathcal{R} \)-derivation) For readability of this example only, we will use simple notation for predicates names. Let \(F = \{ q(A, B), r(D), p(x_1, C) \} \) and \(\mathcal{R} = \{ R_1, R_2 \} \) such that \(R_1 = q(x_1, y_1) \land r(z_1) \rightarrow d(x_1, z_1) \) and \(R_2 = p(x_2, y_2) \land r(z_2) \rightarrow m(z_2, x_2) \). The following is a derivation sequence: \((F_0, F_1, F_2) \) where \(F_0 = F, F_1 = \)
{q(A, B), r(D), d(A, D), p(x_1, C)} and F_2 = F_1 \cup \{m(D, x_1)\}. We get F_1 by applying R_1 on F then we get F_2 by applying R_2 on F_1. We say F_2 is an R-derivation of F. The closure of F is CL_R(F) = F \cup \{d(A, D), m(D, x_1)\}.

Knowledge base and inconsistency Let us denote by \(L\) the language described so far. A knowledge base \(K\) is a finite subset of \(L\). Precisely, \(K\) is a tuple \((F, R, N)\) of a finite set of facts \(F\), rules \(R\) and constrains \(N\). Saying that \(K \models F\) means \(CL_R(F) \models F\). We say a set of facts \(F\) is \(R\)-inconsistent with respect to a set of constraints \(N\) and rules \(R\) if and only if there exists \(N \in N\) such that \(CL_R(F) \models body(N)\), otherwise \(F\) is \(R\)-consistent. A knowledge base \(K = (F, R, N)\) is said to be inconsistent with respect to \(R\) and \(N\) (inconsistent for short) if \(F\) is \(R\)-inconsistent. We may use the notation \(CL_R(F) \models \bot\) to mean the same thing.

In the area of inconsistent ontological knowledge base query answering, we usually check what can be inferred from an inconsistent ontology. We usually begin by calculating all maximal consistent subsets of \(K\) called repairs. Given a knowledge base \(K = (F, R, N)\), we call by \(Repairs(K)\) the set of all repairs defined as:

\[
Repairs(K) = \{F' \subseteq F | F' \text{ is maximal for } \subseteq \text{ and } R\text{-consistent}\}
\]

Different inconsistency tolerant semantics are used for inconsistent ontology knowledge base query answering (Intersection of All Repairs: IAR, All Repairs: AR, Intersection of Closed Repairs: ICR). It is good to notice that these semantics can yield different results.

Definition 1 [cf [14]]. Let \(K = (F, R, N)\) be a knowledge base and \(\alpha\) be a query.

- \(\alpha\) is AR-entailed from \(K\), written \(K \models_{AR} \alpha\) iff for \(\forall r \in Repairs(K)\), \(CL_R(r) \models \alpha\).
- \(\alpha\) is ICR-entailed from \(K\), written \(K \models_{ICR} \alpha\) iff \(\bigcap_{r \in Repairs(K)} CL_R(r) \models \alpha\)
- \(\alpha\) is IAR-entailed from \(K\), written \(K \models_{IAR} \alpha\) iff \(CL_R(\bigcap_{r \in Repairs(K)} r) \models \alpha\)

Structured Argumentation for Datalog±

In this section we address the problem of how to use structured argumentation for Datalog±. We show how the ASPIC\(^+\) framework can be instantiated to yield results equivalent to the state of the art in OBDA inconsistency tolerant semantics. This will help us establish the interoperability workflow where the ASPIC\(^+\) engine is used to compute knowledge base queries following inconsistent tolerant semantics. The section is structured as follows. We define the first instantiation in the literature of ASPIC\(^+\) using Datalog±. We then prove that this instantiation yields equivalent results to the state of the art (namely to existing instantiations for Datalog± that do not follow the ASPIC\(^+\) framework and, respectively, to inconsistency tolerant semantics).

ASPIC\(^+\) Instantiation For Datalog±

ASPIC\(^+\) [17] is a framework for obtaining logical based argumentation system using any logical language \(L\). It is meant to generate an abstract argumentation framework and
was created because abstract argumentation does not specify the structure of arguments and the nature of attacks. ASPIC+ is meant to provide guidance to those aspects without losing a large range of instantiating logics. Following [17], to use ASPIC+, we need to choose a logical language \(L \) closed under negation (\(\neg \)), provide a set of rules \(\mathcal{R} = \mathcal{R}_d \cup \mathcal{R}_s \) composed of defeasible rules and strict rules with \(\mathcal{R}_d \cap \mathcal{R}_s = \emptyset \), specify a contrariness function \(cf : L \rightarrow 2^L \) and a partial naming function \(n : \mathcal{L} \rightarrow \mathcal{L} \) that associates a well-formed formulas of \(L \) to a defeasible rule. The function \(n \) will not be used in this instantiation. In ASPIC+, an argumentation system is a triple \(\mathcal{A}S = (\mathcal{L}, \mathcal{R}, n) \) and a knowledge base is \(K \subseteq L \) consisting of two disjoint subsets \(K_n \) (the axioms) and \(K_p \) (the ordinary premises).

To instantiate ASPIC+ for Datalog\(^\pm\), we define \(L \) as Datalog\(^\pm\), rules in definition \(\text{2} \) and the contrariness function in definition \(\text{3} \). Please note that definition \(\text{4} \) and \(\text{7} \) are new w.r.t state of art regarding ASPIC+ instantiations conform [17].

Definition 2 (Rules in ASPIC+ - modified version of [17]) Strict rules (resp. defeasible rules) are of the form \(\forall \bar{x} \forall \bar{y} [B \rightarrow \exists \bar{z} H] \) (resp. \(\forall \bar{x} \forall \bar{y} [B \Rightarrow \exists \bar{z} H] \)) with \(B \), the body and \(H \), the head are atoms or conjunction of atoms with \(\text{vars}(B) = \bar{x} \cup \bar{y} \), and \(\text{vars}(H) = \bar{x} \cup \bar{z} \).

Definition 3 (Contrariness function [17]). \(cf \) is a function from \(L \) to \(2^L \) such that:

- \(\varphi \) is the contrary of \(\psi \) if \(\varphi \in cf(\psi) \), \(\psi \notin cf(\varphi) \)
- \(\varphi \) is the contradictory of \(\psi \) if \(\varphi \in cf(\psi) \), \(\psi \notin cf(\varphi) \)
- Each \(\varphi \in L \) has at least one contradictory.

We define our own contrariness function to instantiate ASPIC+ for Datalog\(^\pm\) (\(\mathcal{L} = \text{Datalog}^{\pm} \)). This contrariness function is necessary because it is used in the attack relation. It is worth noting that idea that we want to capture (as also defined in [1]) is that \(x \) is the contrary of \(y \) iff they cannot be both true but they can be both false. They are contradictory if the truth of one implies the falsity of the other and vice versa.

Definition 4 (Datalog\(^\pm\) contrariness function) Let \(a \in \mathcal{L} \) and \(b \) be an atom or a conjunction of atoms. \(b \in cf(a) \) iff \(\exists \psi \) an atom such that \(a \models \psi \) and \(\{b, \psi\} \) is \(\mathcal{R} \)-inconsistent.

Here we recall that an ASPIC+ argument can be built from axioms and ordinary premises or from rules and other arguments. The arguments are built once \(\mathcal{R}_d, \mathcal{R}_s, cf \) and \(K \) are known.

Definition 5 (Argument cf [17]) Arguments in ASPIC+ can be in two forms:

- \(\emptyset \rightarrow c \) (resp. \(\emptyset \Rightarrow c \)) with \(c \in K_n \) (resp. \(c \in K_p \)) or \(\emptyset \Rightarrow c \in \mathcal{R}_d \) such that \(\text{Prem}(A) = \{c\} \), \(\text{Conc}(A) = c \), \(\text{Sub}(A) = \{A\} \) with \(\text{Prem} \) returns premises of \(A \) and \(\text{Conc} \) returns its conclusion.
 \(\text{DefRules}(A) = \emptyset \).

- \(A_1, \ldots, A_m \rightarrow c \) (resp. \(A_1, \ldots, A_m \Rightarrow c \)), such that there exists a strict (resp. defeasible) rule \(r = B \rightarrow H \) (resp. \(r = B \Rightarrow H \)) and a homomorphism \(\sigma \) from \(B \) to \(X = \text{Conc}(A_1) \land \text{Conc}(A_2) \land \cdots \land \text{Conc}(A_m) \).
 \(\text{Prem}(A) = \text{Prem}(A_1) \cup \cdots \cup \text{Prem}(A_m) \).
Conc(\(A\)) = c = \(\alpha(X, r, \sigma)\),
Sub(\(A\)) = Sub(\(A_1\) \(\cup\) ... \(\cup\) Sub(\(A_m\)) \(\cup\) \(\{A\}\)),
TopRule(\(A\)) = rule \(r = B \rightarrow H\) (resp. \(r = B \Rightarrow H\)), such that there exists an homomorphism \(\sigma\) from \(B\) to \(X\).
DefRules(\(A\)) = DefRules(\(A_1\)) \(\cup\) ... \(\cup\) DefRules(\(A_m\)) (resp. DefRules(\(A\)) = DefRules(\(A_1\)) \(\cup\) ... \(\cup\) DefRules(\(A_m\)) \(\cup\) \(\{\text{TopRule}(A)\}\)).

Attacks in ASPIC\(^+\) are based on three notions (undercutting, undermining and rebutting). Each of those notions are useful as they capture different aspects of conflicts. In short, arguments can be attacked on a conclusion of a defeasible inference (rebutting attack), on a defeasible inference step itself (undercutting attack), or on an ordinary premise (undermining attack).

Definition 6 [cf \([17]\)]. Let \(a\) and \(b\) be arguments, we say that \(a\) attacks \(b\) iff \(a\) undercut, undermine or rebuts \(b\), where:

- \(a\) undercut argument \(b\) (on \(b'\)) iff Conc(\(a\)) \(\in\) cf(n(r)) for some \(b' \in\) Sub(\(b\)) such that \(b'\)’s top rule \(r\) is defeasible.
- \(a\) rebuts argument \(b\) (on \(b'\)) iff Conc(\(a\)) \(\in\) cf(\(\psi\)) for some \(b' \in\) Sub(\(b\)) of the form \(b_0', \ldots, b_n' \Rightarrow \psi\).
- \(a\) undermines \(b\) (on \(\psi\)) iff Conc(\(a\)) \(\in\) cf(\(\psi\)) for an ordinary premise \(\psi\) of \(b\).

We are now ready to define the mapping that allows the instantiation of ASPIC\(^+\) with Datalog\(^+\). The mapping will consider each fact as a defeasible rule because the inconsistency in the OBDA setting is assumed to come from the facts level. Therefore the only attack we consider in this instantiation is the undermine attack because we have simple defeasible rules. The rules of the ontology become strict rules.

Definition 7 (Mapping For ASPIC\(^+\) Instantiation of Datalog\(^+\)) We denote by \(S\) the set of all possible inconsistent knowledge bases of the form \(K = (F, R, N)\) and \(\mathcal{G}\) the set of all ASPIC\(^+\) instantiation using Datalog\(^+\) language. The mapping \(\tau : S \rightarrow \mathcal{G}\) is defined as follows:

1. The mapping \(\tau\) associates every \(R\)-consistent subset \(F_i \subseteq F\) to its defeasible rule \(\emptyset \Rightarrow \text{conjunct}(F_i)\) where conjunct(\(F_i\)) denotes the conjunction of facts contained in \(F_i\).
2. The mapping \(\tau\) associates every rules \(r_i \in R\) to the same rule \(r_i \in R_s\).

We will considerate that if \(\emptyset \Rightarrow c\), then \(c\) is an ordinary premise (\(c \in K_p\)).

Properties of the Datalog\(^+\) ASPIC\(^+\) Instantiation

In order to give properties of the ASPIC\(^+\) instantiation presented in this paper we re-mind few notions. \(\varepsilon\) is admissible iff \(\varepsilon\) is conflict-free and all arguments of \(\varepsilon\) are acceptable w.r.t \(\varepsilon\). \(\varepsilon\) is preferred iff it is maximal (for set inclusion) and admissible. \(\varepsilon\) is stable iff it is conflict-free and \(\forall a \in A \setminus \varepsilon, \exists b \in \varepsilon\) such that \((b, a) \in C\).

We denote by \(AF\)\(^+\)\(_K\) the ASPIC\(^+\) argumentation framework constructed from \(K\) using the mapping of definition \([7]\). We restate that attacks in \(AF\)\(^+\)\(_K\) are composed only of undermining because we only have simple defeasible rules of the form \(\emptyset \Rightarrow c\). The following lemma shows that stable extensions are closed under sub-arguments in the Datalog\(^+\) instantiation of ASPIC\(^+\).
Lemma 1 Let ε be an ASPIC$^+$ stable extension and $A \in \varepsilon$ an argument contained in ε. Then $\text{Sub}(A) \subseteq \varepsilon$.

Proof By means of contradiction we suppose the contrary, i.e. there is an argument $A_1 \in \text{Sub}(A)$ that does not belong to ε. Since ε is stable, then there is an argument $B \in \varepsilon$ such that B undermines A_1 on $\phi \in \text{Prem}(A_1)$. Therefore, B undermines A since $\text{Prem}(A_1) \subseteq \text{Prem}(A)$, contradiction. Consequently, $\text{Sub}(A) \subseteq \varepsilon$.

Notation Let $\varepsilon = \alpha_1 \wedge \alpha_2 \wedge \cdots \wedge \alpha_n$ be a conjunction of facts. Elimination$(\varepsilon) = \{\alpha_1, \alpha_2, \ldots, \alpha_n\}$ is the set resulting from eliminating the conjunction of ε. Let S be a set of facts. We denote by $\mathcal{P}(S)$ the superset of S which correspond to all subsets of S.

We can now define the set of arguments constructed on a consistent set of facts.

Definition 8 (new definition) Let $\mathcal{K} = (\mathcal{F}, R, N)$ be a knowledge base and $\mathcal{A}^A_{\mathcal{K}}$ be the corresponding ASPIC$^+$ instantiation and $S \subseteq \mathcal{F}$ a R-consistent subset of \mathcal{F}. We denote by $\text{Arg}^A(S)$ the set of arguments such that their premises are contained in S.

$$\text{Arg}^A(S) = \{\text{ASPIC}^+ \text{ argument } a \mid \bigcup_{c \in \text{Prem}(a)} \text{Elimination}(c) \subseteq \mathcal{P}(S)\}$$

The main result shows that the set of stable extension coincides with the set of preferred one and it is obtained from the arguments built on repairs. This result is important as it will allow to formally underpin the interoperability workflow presented in the next section.

Theorem 1 (Repair Equivalence for ASPIC$^+$ Instantiation) Let $\mathcal{K} = (\mathcal{F}, R, N)$ be a knowledge base, $\mathcal{A}^A_{\mathcal{K}}$ be the corresponding ASPIC$^+$ instantiation and $\sigma \in \{\text{preferred, stable}\}$. Then:

$$\{\text{Arg}^A(R)|R \in \text{Repair}(\mathcal{K})\} = \text{Ext}_\sigma(\mathcal{A}^A_{\mathcal{K}})$$

Proof The plan of the proof is as follows:

1. We prove that $\{\text{Arg}^A(R)|R \in \text{Repair}(\mathcal{K})\} \subseteq \text{Ext}_{\text{stable}}(\mathcal{A}^A_{\mathcal{K}})$.
2. We prove that $\text{Ext}_{\text{preferred}}(\mathcal{A}^A_{\mathcal{K}}) \subseteq \{\text{Arg}^A(R)|R \in \text{Repair}(\mathcal{K})\}$.
3. Since every stable extension is a preferred one, we can proceed as follows. From the first item, we have that $\{\text{Arg}^A(R)|R \in \text{Repair}(\mathcal{K})\} \subseteq \text{Ext}_{\text{stable}}(\mathcal{A}^A_{\mathcal{K}})$, thus the theorem holds for preferred semantics. From the second item we have that $\text{Ext}_{\text{preferred}}(\mathcal{A}^A_{\mathcal{K}}) \subseteq \{\text{Arg}^A(R)|R \in \text{Repair}(\mathcal{K})\}$, thus the theorem holds for stable semantics.

1. We show that $\{\text{Arg}^A(R)|R \in \text{Repair}(\mathcal{K})\} \subseteq \text{Ext}_{\text{stable}}(\mathcal{A}^A_{\mathcal{K}})$. Let $R \in \text{Repair}(\mathcal{K})$ and let $\varepsilon = \text{Arg}^A(R)$. We first prove that ε is a conflict-free extension. Aiming to a contradiction, let $A, B \in \varepsilon$ and A attacks B. From the definition of undermining, $\text{Conc}(A) \in \text{cf}(\phi)$ and $\phi \in \text{Prem}(B)$. From the definition of the contrariness function, $\exists \psi$ atom of ϕ such that $\{\text{Conc}(A), \psi\}$ is R-inconsistent. Thus, $\text{Prem}(B) \cup \{\text{Conc}(A)\}$ is R-inconsistent. Consequently R is R-inconsistent, contradiction. Therefore, ε is conflict-free.
Let us now prove that \(\varepsilon \) is a stable extension. Let \(B \in \text{Arg}^{A}(F) \setminus \text{Arg}^{A}(R) \) and \(\psi \in \text{Prem}(B) \) such that \(\psi \notin R \) (such \(\psi \) exists otherwise \(B \in \text{Arg}^{A}(R) \)). Let \(c = \text{conjunct}(R) \) be the conjunction of elements of \(R \) and let \(A : \emptyset \Rightarrow c \) (\(A \in \text{Arg}^{A}(R) \)). We have \(\psi \notin R \), so, due to the set inclusion maximality for the repairs, \(\{ c, \psi \} \) is \(\mathcal{R} \)-inconsistent. Therefore, \(\varepsilon \in cf(\psi) \) and \(A \) undermines \(B \). Consequently, \(\varepsilon \) is a stable extension.

2. We show that \(\text{Ext}_{\text{preferred}}(AF_{K}^{c}) \subseteq \{ \text{Arg}^{A}(R) | R \in \text{Repair}(\mathcal{K}) \} \). Let \(\varepsilon \in \text{Ext}_{\text{preferred}}(AF_{K}^{c}) \). Let \(\varepsilon \in \text{Ext}_{\text{preferred}}(AF_{K}^{c}) \) and let us prove that there exists a repair \(R \) such that \(\varepsilon = \text{Arg}^{A}(R) \). Let \(S = \bigcup_{a \in \varepsilon} \text{Prem}(a) \). Let us prove that \(S \) is \(\mathcal{R} \)-consistent. Aiming to a contradiction, suppose that \(S \) is \(\mathcal{R} \)-inconsistent. Let \(S' \subseteq S \) be such that \(S' \) is \(\mathcal{R} \)-inconsistent and every proper set of \(S' \) is \(\mathcal{R} \)-consistent. Let us denote \(S' = \{ \phi_{1}, \phi_{2}, \ldots, \phi_{n} \} \). Let \(A \in \varepsilon \) be an argument such that \(\phi_{n} \in \text{Prem}(A) \). From Lemma \([1] \) there is an argument \(A_{1} \in \text{Sub}(A) \) such that \(A_{1} : \emptyset \Rightarrow \phi_{n} \) and \(A_{1} \in \varepsilon \). Let \(c = \text{conjunct}(S' \setminus \{ \phi_{n} \}) \) and let \(A' : \emptyset \Rightarrow c' \). We have that \(c' \in cf(\phi_{n}) \), thus \(A' \) attacks \(A_{1} \). Since \(\varepsilon \) is conflict-free, then \(A' \notin \varepsilon \). Since \(\varepsilon \) is an admissible set, there exists \(B \in \varepsilon \) such that \(B \) attacks \(A' \). Since \(B \) attacks \(A' \) then \(\text{Conc}(B) \in cf(c') \) and there exists \(i \in \{ 1, 2, \ldots, n - 1 \} \) such that \(\{ \text{Conc}(B), \phi_{i} \} \) is \(\mathcal{R} \)-inconsistent. Since \(\phi_{i} \in S \), then there exists \(C \in \varepsilon \) such that \(\phi_{i} \in \text{Prem}(C) \). Thus, using Lemma \([1] \) there exists \(C' \in \text{Sub}(C) \) and \(C' : \emptyset \Rightarrow \phi_{i} \). Therefore \(\text{Conc}(B) \in cf(\phi_{i}) \) and \(B \) attacks \(C' \), contradiction. So it must be that \(S \) is \(\mathcal{R} \)-consistent.

Let us now prove that \(S \) is maximal, i.e. there exists no \(S' \subseteq F \) such that \(S \subset S' \) and \(S' \) is \(\mathcal{R} \)-consistent. We use the proof by contradiction. Thus, suppose that \(S \) is not a maximal \(\mathcal{R} \)-consistent subset of \(F \). Then, there exists \(S' \in \text{Repair}(\mathcal{K}) \), such that \(S \subset S' \). We have that \(\varepsilon \subseteq \text{Arg}^{A}(S) \). Denote \(c' = \text{Arg}^{A}(S') \). Since \(S \subset S' \) then \(\text{Arg}^{A}(S) \subset c' \). Thus, \(\varepsilon \subset c' \). From the first part of the proof, \(c' \in \text{Ext}_{\text{stable}}(AF_{K}^{c}) \). Consequently, \(c' \in \text{Ext}_{\text{preferred}}(AF_{K}^{c}) \). We also know that \(\varepsilon \in \text{Ext}_{\text{preferred}}(AF_{K}^{c}) \). Contradiction, since no preferred set can be a proper subset of another preferred set. Thus, we conclude that \(S \in \text{Repair}(\mathcal{K}) \).

Let us show that \(\varepsilon = \text{Arg}^{A}(S) \). It must be that \(\varepsilon \subseteq \text{Arg}^{A}(S) \). Also, we know (from the first part) that \(\text{Arg}^{A}(S) \) is a stable and a preferred extension, thus the case \(\varepsilon \subseteq \text{Arg}^{A}(S) \) is not possible.

3. Now we know that \(\{ \text{Arg}^{A}(R) | R \in \text{Repair}(\mathcal{K}) \} \subseteq \text{Ext}_{\text{stable}}(AF_{K}^{c}) \) and \(\text{Ext}_{\text{preferred}}(AF_{K}^{c}) \subseteq \{ \text{Arg}^{A}(R) | R \in \text{Repair}(\mathcal{K}) \} \). The theorem follows from those two facts, as explained at the beginning of the proof.

Let us highlight that the state of the art can also provide a structured argumentation framework of Datalog\(^{+} [14][13] \). The authors define the notion of argument and attack and prove that the argumentation framework thus obtained yields the same extensions as the repairs of the inconsistent knowledge base that has been used to build the arguments and the attacks.

Definition 9 (Argument cf [14][13]) Let \(\mathcal{K} = (F, \mathcal{R}, \mathcal{N}) \) be a knowledge base, an argument \(a \) as described in \([13][14] \) is a tuple \(a = (F_{0}, F_{1}, \ldots, F_{n}) \) where:

- \(F_{0} \subseteq F \) is \(\mathcal{R} \)-consistent and \((F_{0}, F_{1}, \ldots, F_{n-1}) \) is a derivation sequence.
- \(F_{n} \) is an atom, a conjunction of atoms, the existential closure of an atom or the existential closure of a conjunction of atoms such that \(F_{n-1} \models F_{n} \).
We denote by $\text{Supp}(a) = \mathcal{F}_0$ the support of an argument, $\text{Conc}(a) = \mathcal{F}_n$, its conclusion and $\forall X \subseteq \mathcal{F}$, $\text{Arg}(X)$ is the set of all arguments a such that $\text{Supp}(a) \subseteq X$.

The attack relation between arguments is defined below and is not symmetric (following [2]).

Definition 10 (Attack cf [14,13]) Let $K = (\mathcal{F}, \mathcal{R}, \mathcal{N})$ be a knowledge base and let a and b be two arguments. We say that an argument a attacks an argument b denoted by $(a, b) \in \text{Att}$ iff $\exists \varphi \in \text{Supp}(b)$ such that $\{\text{Conc}(a), \varphi\}$ is \mathcal{R}-inconsistent.

This attack relation is not symmetric. Please note that it have been showed that symmetric attack relations violate some desirable properties [2].

Let $K = (\mathcal{F}, \mathcal{R}, \mathcal{N})$ be a knowledge base, we denote by AF_K^M the instantiated logical argumentation framework $(\mathcal{A}, \mathcal{C})$ with $\mathcal{A} = \text{Arg}(\mathcal{F})$ and \mathcal{C} defined in definition 10. Conform [14] the arguments constructed on the set of repairs coincide with the arguments in the stable and preferred extension: $\{\text{Arg}(R) | R \in \text{Repair}(K)\} = \text{Ext}_\sigma(\text{AF}_K^M)$.

We can thus conclude that the preferred/stable extensions in the two instantiated frameworks are the same and that for each stable/preferred extension of one framework, there is a corresponding stable/preferred extension in the other and vice-versa. This is formalised int he theorem below.

Theorem 2 (Instantiations Equivalence) Let $K = (\mathcal{F}, \mathcal{R}, \mathcal{N})$ be a knowledge base, AF_K^M and AF_K^A be the two argumentation framework instantiations. Then if $\sigma \in \{\text{preferred, stable}\}$, $|\text{Ext}_\sigma(\text{AF}_K^M)| = |\text{Ext}_\sigma(\text{AF}_K^A)|$ and for each extension under semantics σ, $\varepsilon \in \text{Ext}_\sigma(\text{AF}_K^M)$, there is a corresponding extension $\varepsilon_2 \in \text{Ext}_\sigma(\text{AF}_K^A)$ and vice-versa (the corresponding extension can be found via repairs).

We have thus proved that the ASPIC^+ instantiation presented in the paper yields the same semantic results as the repair based techniques. Therefore one can use the ASPIC^+ reasoning engine in order to provide reasoning techniques for OBDA in inconsistent Datalog^\pm knowledge bases. This is explained in the next section.

Workflow for ASPIC^+ Datalog^\pm Instantiation in OBDA

The significance of this work is that the proposed workflow it will enable Datalog^\pm frameworks to handle inconsistencies in knowledge bases by means of the ASPIC^+ framework. Here we use two frameworks:

- **Graal**, a Java toolkit dedicated to querying knowledge bases within the framework of Datalog^\pm and maintained by GraphIK team. Graal takes as input a Dlgp file and a query and answer the query using various means (saturation, query rewriting). This toolkit can be found at https://graphik-team.github.io/graal/.

- **ACL’s ASPIC** project that takes as input a query and ASPIC^+ knowledge base, i.e. rules (strict and defeasible), ordinary premises, axioms and preferences. The output is the answer to the query. This inference engine can be found at http://aspic.cossac.org/components.html.
We use Graal’s representation of a knowledge base $\mathcal{K} = (\mathcal{F}, \mathcal{R}, \mathcal{N})$ and construct
the necessary input for the $ASPIC^+$ argumentation inference engine. The difficulty of
this work resides in the definition of the contrariness function that ensures the semantic
equivalence proved in the previous section.

![Figure 1. Interoperability Workflow of ACL and Graal.](image)

In Figure 1 the interoperability workflow of the Graal software and the $ASPIC^+$
implementation are shown. Let us detail here how the workflow functions:

- **Step 1.** The input of the software is a Datalog$^\pm$ knowledge base $\mathcal{K} = (\mathcal{F}, \mathcal{R}, \mathcal{N})$
obtained from the OBDA setting (that considers several data sources unified un-
der the same ontology). The $dlgp$ file that encodes this knowledge base (a textual
format for the existential rule / Datalog framework) is parsed by the Graal frame-
work. Each line in a $dlgp$ file corresponds either to a fact, existential rule, negative
constraint or conjunctive query. Please note that a complete grammar of the $dlgp$
format is available here: https://graphik-team.github.io/graal/papers/datalog+_v2.0_en.pdf.

- **Step 2.** The intermediary files are meant to serve as input for the contrariness
function computation: *Index Of Atoms* and *Conflict File*. The *Index Of Atoms* con-
tains an index of all facts that can be obtained. The *Conflict File* contains the con-
flicts between the atoms and represent the constraints expressed by the negative
constraints. The first line of this file represents the number of conflicts and each
line describes the atoms participating in the conflict.

Let us suppose that the knowledge base obtained from the parser is $\mathcal{K} =$
$(\mathcal{F}, \mathcal{R}, \mathcal{N})$ where $\mathcal{F} = \{\text{mammal}(\text{mouse}), \text{peripheral}(\text{mouse})\}$, $\mathcal{R} =$
$\{\forall x (\text{mammal}(x) \rightarrow \text{living}(x))\}$ and $\mathcal{N} = \{\forall x (\text{living}(x) \land \text{peripheral}(x) \rightarrow \bot)\}$. The corresponding *Index Of Atoms File* contains:

- 0 mammal(mouse).
- 1 peripheral(mouse).
- 2 living(mouse).

In this example, the fact $\text{mammal}(\text{mouse})$ is represented with the number 0.
Similarly, the corresponding Conflict File contains:

```
2
2 1
1 0
```

In this example, there are two conflicts and the first one involves the facts `living(mouse)` and `peripheral(mouse)`.

- **Step 3.** The Contrariness Function File is build from the Index Of Atoms File and the Conflict File and explicitly details the sets $cf(a)$ where a is conjunction contained of facts contained in a \mathcal{R}-consistent subset of \mathcal{F}. Using the same knowledge base, the Contrariness Function File contains:

```
(0) [(1)]
(1) [(2), (0)]
```

The first line express the idea that a conjunction that contains the atom `peripheral(mouse)` is contained in $cf(mammal(mouse))$ and the second line that a conjunction in $cf(peripheral(mouse))$ contains either `mammal(mouse)` or `living(mouse)` (or both). This Contrariness Function File is then passed to the inference engine which is instantiated using the method stated previously.

- **Querying.** The output of this inference engine is the answer to the query w.r.t the inconsistent knowledge base $\mathcal{K} = (\mathcal{F}, \mathcal{R}, \mathcal{N})$, i.e. true or false if the query is a boolean conjunctive query or all the substitutions of answer variables by constants in \mathcal{F}. The soundness and completeness of the answer with respect to inconsistency tolerant semantics is ensured by the equivalence results presented in the previous section.

While this workflow has not yet been implemented, this is solely due to temporary technical details in obtaining the source files of the two implementations and will not put foundational challenges as explained above.

Conclusions

In this paper we demonstrated how to benefit from structured argumentation frameworks and their implementations to provide for reasoning capabilities of OBDA systems under inconsistency tolerant semantics. More precisely, given an inconsistent Datalog± knowledge base we instantiated it using the ASPIC+ framework and showed that the reasoning provided by ASPIC+ is equivalent to the main inconsistent tolerant semantics in the literature. A workflow of interoperability between ASPIC+ ACL framework and Graal Datalog± framework was also demonstrated.

The future work avenues opened by this work are two fold. First, one could remove the hypothesis of inconsistency solely due to facts and explore other semantics obtained naturally using argumentation instantiation. Second, the investigation of how preferences are handled in various systems could also be of great practical benefit (since it will allow to explicitly consider the provenance of facts).

Acknowledgments

The authors acknowledge the support of ANR grants ASPIQ (ANR-12-BS02-0003), QUALINCA (ANR-12-0012) and DUR-DUR (ANR-13-ALID-0002). The work of the
second author has been carried out part of the research delegation at INRA MISTEA Montpellier and INRA IATE CEPIA Axe 5 Montpellier.

References

