Improving YOLOv8 for Fast Few-Shot Object Detection by DINOv2 Distillation

International Conference on Image Processing (ICIP) 2025

Guillaume Fourret^{1,2}, Marc Chaumont^{1,3}, Christophe Fiorio¹, Gérard Subsol¹

¹ICAR, LIRMM, University of Montpellier, CNRS, France

²Drone Geofencing, Nîmes, France

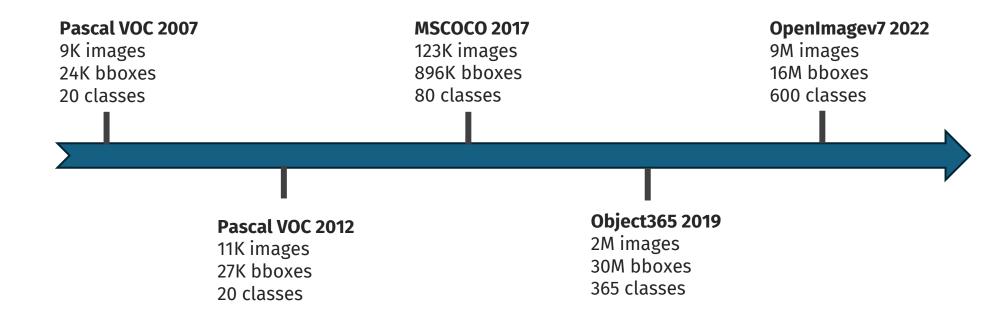
³University of Nîmes, France

Contact: guillaume.fourret@lirmm.fr

1. Object Detection

Deep learning has seen great progress, notably in object detection, driven by scaling up:

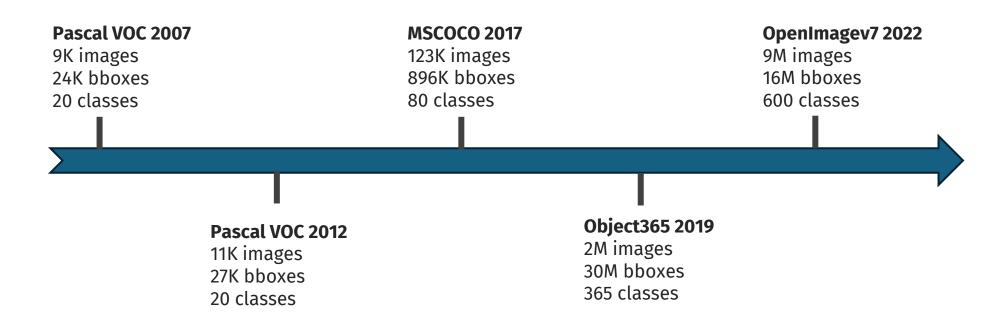
- 1. Model capacity (number of parameters)
- 2. Computational resources (number of GPUs)
- 3. Dataset size



1. Object Detection

Deep learning has seen great progress, notably in object detection, driven by scaling up:

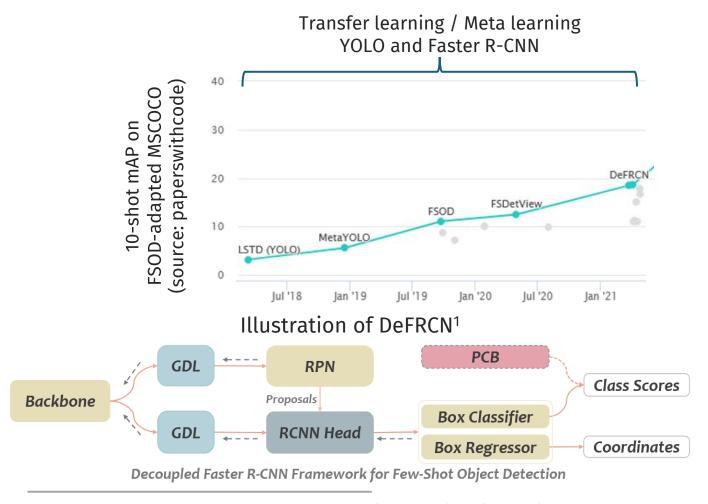
- 1. Model capacity (number of parameters)
- 2. Computational resources (number of GPUs)
- 3. Dataset size



 \Rightarrow What if we need real-time detection with few data (1–30 annotated boxes)?

2. Few-Shot Object Detection (FSOD)

Goal of FSOD: Add to a detector new classes from only *K*-shot



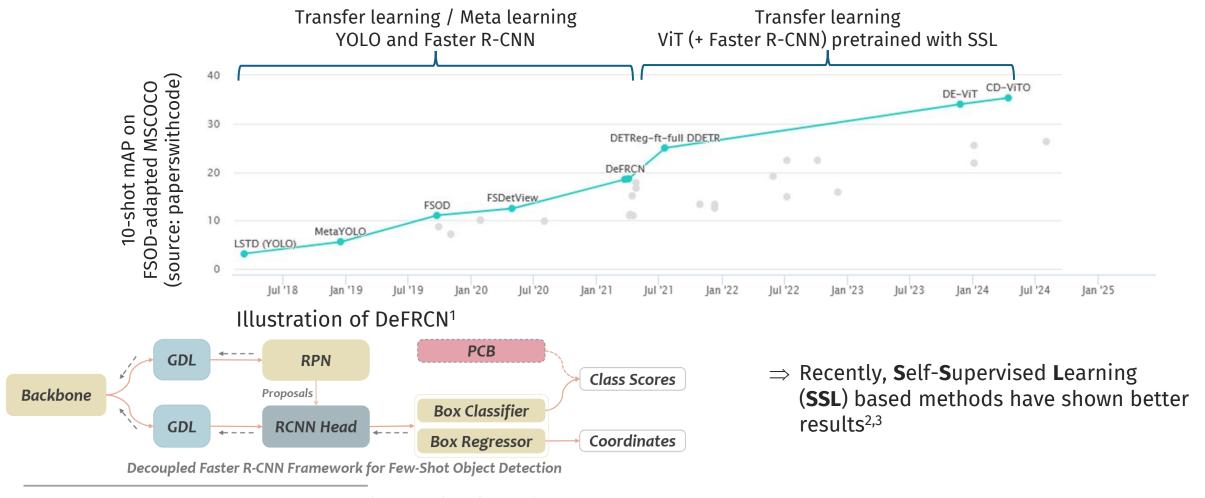
¹DeFRCN: Decoupled Faster R-CNN for Few-Shot Object Detection, Limeng Qiao, et al, ICCV 2021

²Integrally migrating pre-trained transformer encoder-decoders for visual object detection, Feng Liu, et al, ICCV 2023

³DETReg: Unsupervised Pretraining with Region Priors for Object Detection, Amir Bar, et al, CVPR 2022

2. Few-Shot Object Detection (FSOD)

Goal of FSOD: Add to a detector new classes from only *K*-shot



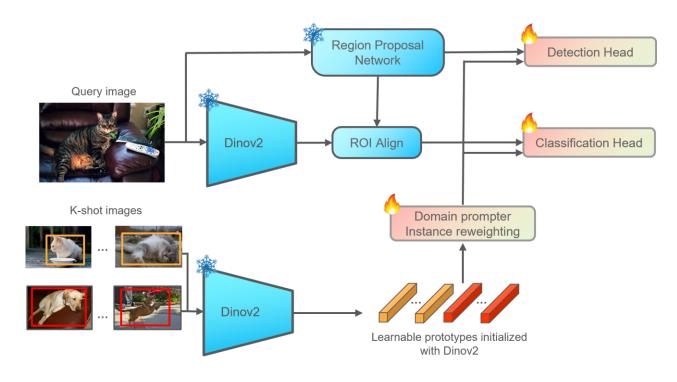
¹DeFRCN: Decoupled Faster R-CNN for Few-Shot Object Detection, Limeng Qiao, et al, ICCV 2021

²Integrally migrating pre-trained transformer encoder-decoders for visual object detection, Feng Liu, et al, ICCV 2023

³DETReg: Unsupervised Pretraining with Region Priors for Object Detection, Amir Bar, et al, CVPR 2022

2. FSOD and SSL

Recent FSOD methods as **FM-FSOD**⁵,**DE-ViT**⁶, and **CD-ViTO**⁷ leverage foundation models like **DINOv2**^{8,9}:



⁵Few-Shot Object Detection with Foundation Models, Guangxing Han, et al, CVPR 2024

⁶Detect Everything with Few Examples, Xinyu Zhang, et al, CoRL 2024

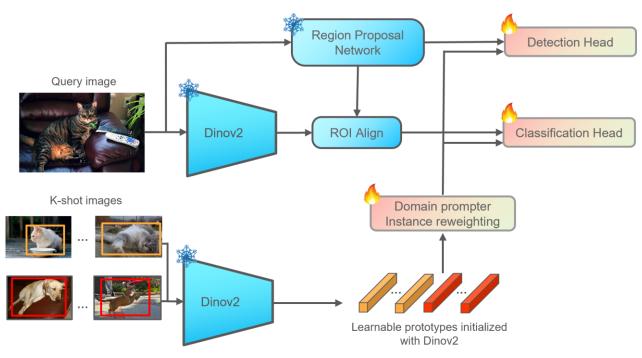
⁷Cross-Domain Few-Shot Object Detection via Enhanced Open-Set Object Detector, Yugian Fu, et al, ECCV 2024

⁸DINOv2: Learning Robust Visual Features without Supervision, Maxime Oquab, et al, avril 2023

⁹Vision Transformers Need Registers, Timothée Darcet, et al, ICLR 2024

2. FSOD and SSL

Recent FSOD methods as **FM-FSOD**⁵,**DE-ViT**⁶, and **CD-ViTO**⁷ leverage foundation models like **DINOv2**^{8,9}:



- BUT far from real-time performance
- Meanwhile, YOLO series is the go-to for fast detection, yet not designed for FSOD
- ⇒ How to bring the capacity of **DINOv2** into **YOLO** for **real-time FSOD**?

⁵Few-Shot Object Detection with Foundation Models, Guangxing Han, et al, CVPR 2024

⁶Detect Everything with Few Examples, Xinyu Zhang, et al, CoRL 2024

⁷Cross-Domain Few-Shot Object Detection via Enhanced Open-Set Object Detector, Yugian Fu, et al, ECCV 2024

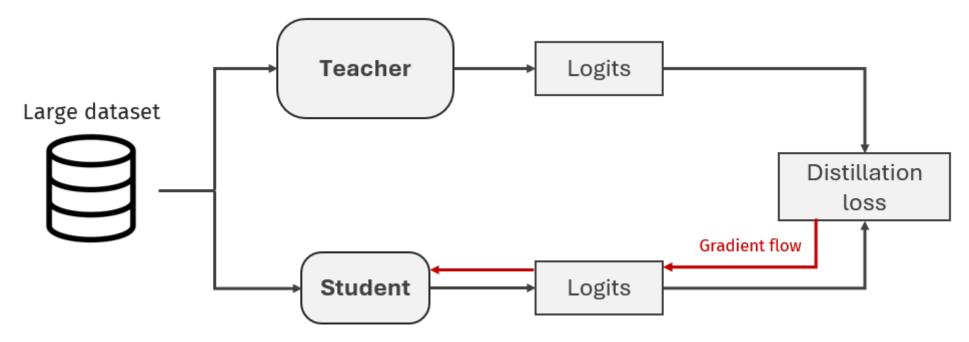
⁸DINOv2: Learning Robust Visual Features without Supervision, Maxime Oquab, et al, avril 2023

⁹Vision Transformers Need Registers, Timothée Darcet, et al, ICLR 2024

3. A method of distillation for FSOD

Distillation¹⁰ principle to obtain more efficient models:

- 1. Train a large teacher model on a huge dataset
- 2. Train a smaller student model (with same architecture) to mimic the teacher's predictions

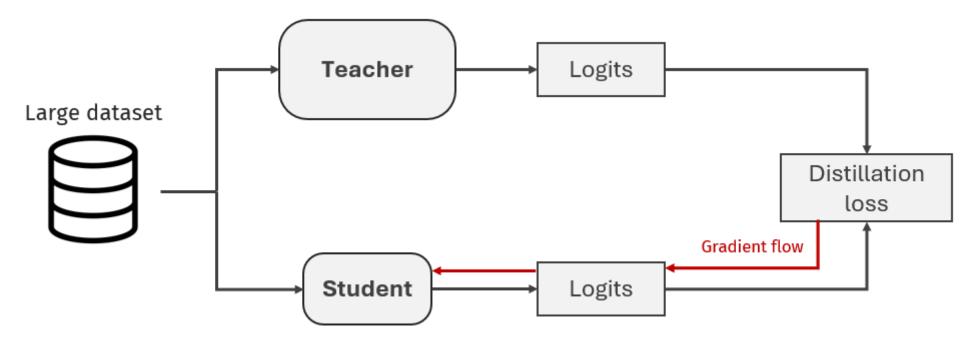


¹⁰Distilling the Knowledge in a Neural Network, Geoffrey Hinton, et al, 2015

3. A method of distillation for FSOD

Distillation¹⁰ principle to obtain more efficient models:

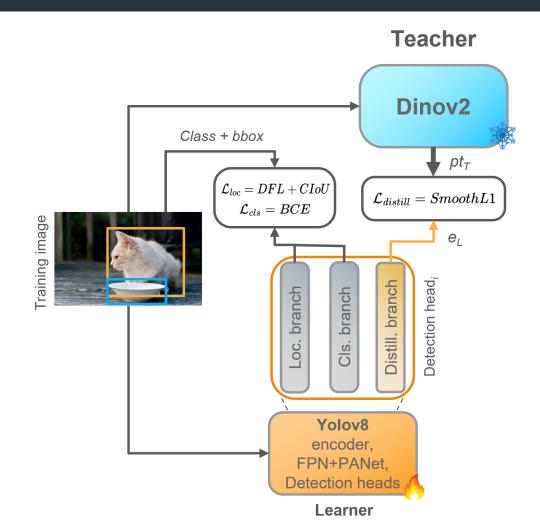
- 1. Train a large teacher model on a huge dataset
- 2. Train a smaller student model (with same architecture) to mimic the teacher's predictions



- ⇒ How to perform distillation between YOLO and DINOv2?
 - \Rightarrow Is distillation still relevant in FSOD setting?

¹⁰Distilling the Knowledge in a Neural Network, Geoffrey Hinton, et al, 2015

3. Our distillation scheme: YOLOv8m_d1



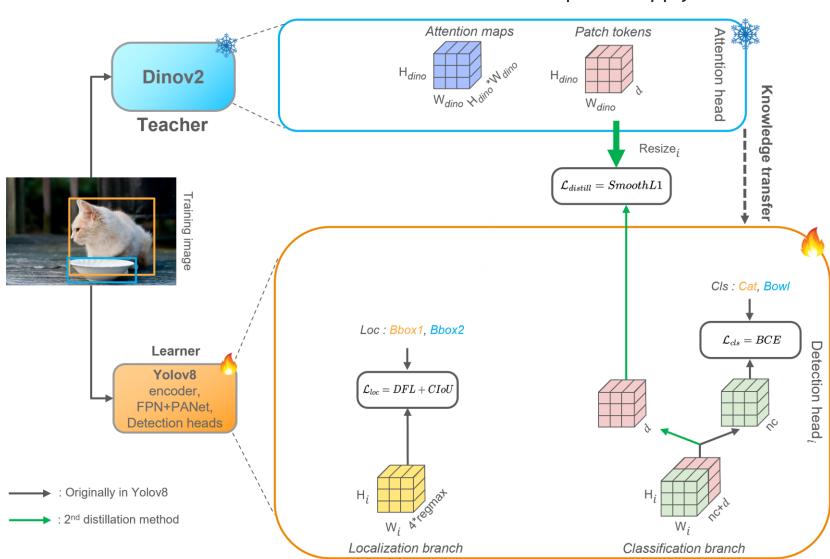
- YOLOv8 architecture employs parallel branches for classification and localization.
- YOLOv8m_d1 introduces a new distillation branch.
- DINOv2 serves as a frozen teacher.
- Distillation is performed by minimizing SmoothL1:

$$\mathcal{L}_{\text{SmoothL1}}(e_L, pt_T) = \begin{cases} 0.5 \cdot (e_L - pt_T)^2, & \text{if } |e_L - pt_T| < 1, \\ |e_L - pt_T| - 0.5, & \text{otherwise.} \end{cases}$$

Constraint: All additional parameters must be removable at inference time to ensure no impact on latency.

3. Our distillation scheme: YOLOv8m_d2

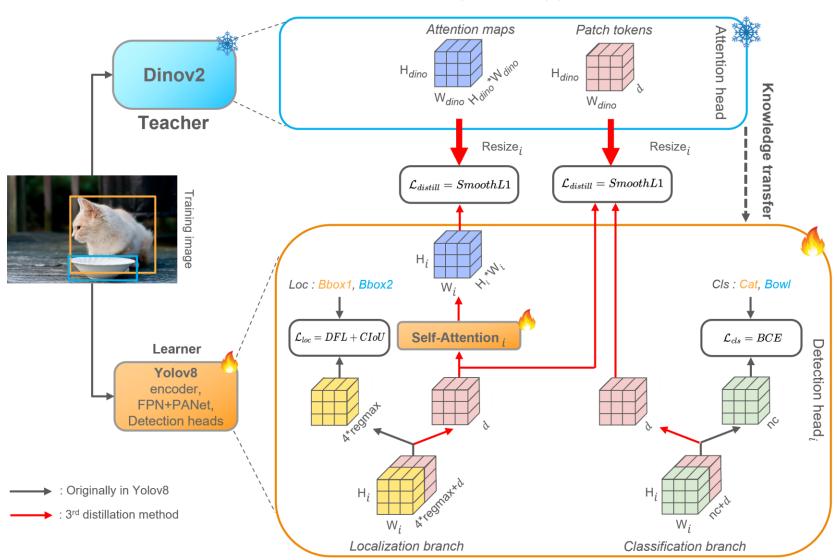
Broader distillation impact ⇒ Apply to classification branch



- YOLOv8m_d2 removes this additional distillation branch
- Applies the distillation signal within the classification branch by extending last convolution

3. Our distillation scheme: YOLOv8m_d3

Broader distillation impact ⇒ Apply to both classification and localization branch



- YOLOv8m_d3 keeps the distillation in the classification branch
- Also incorporates distillation in its localization with attention maps from DINOv2

4. Results on benchmarks

Benchmarked on the MSCOCO adapted to FSOD¹¹:

60 classes for pretraining the models

Pre-training metrics	bAP50	bAP50:95
YOLOv8m vanilla	61.25	45.62
YOLOv8m_d1	62.40	46.61
YOLOv8m_d2	62.47	46.70
YOLOv8m_d3	62.44	46.15

¹¹Frustratingly Simple Few-Shot Object Detection, Xin Wang, et al, ICML 2020 https://github.com/ucbdrive/few-shot-object-detection

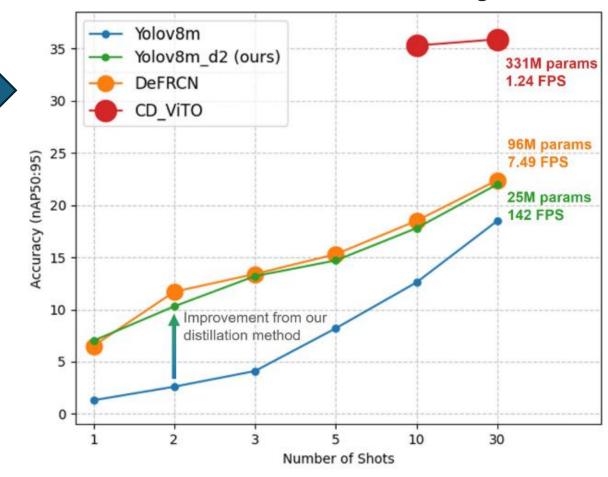
4. Results on benchmarks

Benchmarked on the MSCOCO adapted to FSOD¹¹:

60 classes for pretraining the models

Pre-training metrics	bAP50	bAP50:95
YOLOv8m vanilla	61.25	45.62
YOLOv8m_d1	62.40	46.61
YOLOv8m_d2	62.47	46.70
YOLOv8m_d3	62.44	46.15

20 classes for the *K*-shot finetuning



¹¹Frustratingly Simple Few-Shot Object Detection, Xin Wang, et al, ICML 2020 https://github.com/ucbdrive/few-shot-object-detection

4. Results on benchmarks

Benchmarked on the MSCOCO adapted to FSOD¹¹:

60 classes for pretraining the models

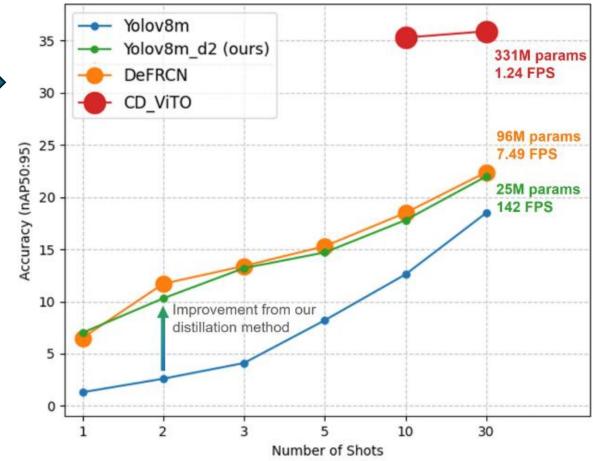
Pre-training metrics	bAP50	bAP50:95
YOLOv8m vanilla	61.25	45.62
YOLOv8m_d1	62.40	46.61
YOLOv8m_d2	62.47	46.70
YOLOv8m_d3	62.44	46.15

While being a lot more lightweight and faster!

	Number of Parameters ↓	FPS ↑
YOLOv8m	25,902,640	142
DeFRCN	96,754,958	7.49
CD-ViTO	331,149,640	1.24

- ⇒ **Yolov8m_d1** performs a bit worse than others
- ⇒ **Yolov8m_d2** best from 1 to 5 shots
- ⇒ **Yolov8m_d3** best from 10 to 30 shots

²⁰ classes for the *K*-shot finetuning



¹¹Frustratingly Simple Few-Shot Object Detection, Xin Wang, et al, ICML 2020 https://github.com/ucbdrive/few-shot-object-detection

5. Conclusion

Source Data

MS-COCO

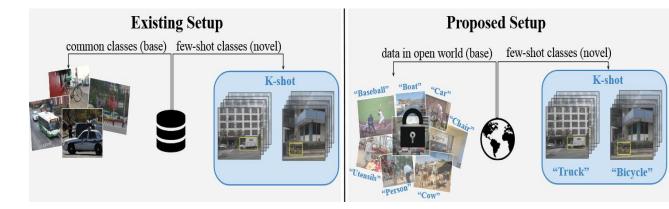
Style: photorealistic

- We introduced distillation-based supervision to benefits from SSL-pretrained extractor in a fast detector
- Further work could investigate results on Cross-Domain FSOD¹² and comparisons to VLM and zero-shot methods^{13,14}

Discrepancy between domain in CD-FSOD

Target Data ArTaxOr Clipart1k DIOR Style: aerial Style: photorealistic Style: cartoon ICV: medium; IB: slight ICV: small; IB: slight ICV: large; IB: slight Inter-Class Variance (ICV): large Indefinable Boundaries (IB): slight UODD DeepFish **NEU-DET** Style: industry Style: underwater Style: underwater ICV: / (N = 1); IB: moderate ICV: large; IB: significant ICV: small; IB: significant

Setup for VLM evaluation in FSOD



¹²Cross-domain few-shot object detection via enhanced open-set object detector, Yugian Fu, et al, ECCV 2025

¹³Revisiting Few-Shot Object Detection with Vision-Language Models, Anish Madan, et al, NeurIPS2024

¹⁴Grounding DINO: Marrying DINO with Grounded Pre-Training for Open-Set Object Detection, Shilong Liu, et al, ECCV2024