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ABSTRACT

Recent neural networks for object detection achieve excel-
lent performance when trained on large databases but still
struggle to learn new objects with few examples, leading
to the development of Few-Shot Object Detection (FSOD).
State-of-the-art FSOD methods often use computationally
heavy architectures like Faster R-CNN or pre-trained Vision
Transformers (ViTs) such as DINOV2, limiting their usage
for real-time inference in resource-constrained environments.
We propose a novel approach that transfers rich features from
a pre-trained ViT (DINOV2) to the lightweight YOLOVS ar-
chitecture via knowledge distillation. This bridges the gap be-
tween FSOD performance and efficiency, enabling YOLOv8
to better handle few-shot scenarios while retaining computa-
tional efficiency. Experiments on the MSCOCO benchmark
adapted for FSOD show that our method enhances the per-
formance of lightweight detectors, highlighting the benefits
of combining ViT feature learning with efficient detectors for
real-world FSOD.

Index Terms— DINOv2, YOLOvS, Real-Time, Few-
Shot Object Detection, Distillation

1. INTRODUCTION

Recent deep learning models have improved image process-
ing tasks such as 2D classification, segmentation, and ob-
ject detection (defined by both localization and classification).
These models need large labeled databases, which are hard to
create when images are rare and labeling is costly and labor-
intensive.

The field of Few-Shot Object Detection (FSOD) [1],
which consists for a detector to learn a new object with
few examples, has therefore become increasingly popular.
Two main training paradigms have emerged in FSOD, meta-
learning [2] and transfer-learning [3], both based on a first
pre-training stage followed by a fine-tuning one.
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Fig. 1. Comparison of our proposed distillation method,

YOLOv8m_d2, with the baseline YOLOv8m and other state-
of-the-art methods, highlighting the trade-off between accu-
racy on novel classes at multiple shots, parameter efficiency,
and FPS achieved by our approach.

However, most state-of-the-art FSOD methods rely on
computationally intensive architectures, such as Faster R-
CNN [4] or large pre-trained ViTs like DINOV2 [5], [6],
making them unsuitable for real-time applications on devices
with limited computational resources and/or memory size,
particularly in embedded systems.

Recently, more advanced one-stage object detectors, par-
ticularly the YOLO family [7], have gained popularity for
their superior efficiency and performance in practical appli-
cations. However, YOLO models typically require extensive
labeled data and are not specifically tailored for FSOD tasks.

In this article, we present in Sec. 2 the transfer-learning
paradigm in FSOD along with key methods in the field,
notably the ones using Self-Supervised Learning (SSL) pre-
trained transformers, and the principle of distillation [8].
Next, in Sec. 3, we describe our approach to performing
knowledge distillation from DINOv2 to YOLOvVS8 [9], taking



in account the difference of architecture between ViT and
CNN. Finally, in Sec. 4, we assess the effectiveness of the
distillation process and evaluate the proposed approach on
the FSOD benchmark MSCOCO [10], demonstrating perfor-
mance improvements with our distilled YOLOvVS model as
shown in Fig. 1.

2. RELATED WORK

2.1. General FSOD consideration

Few-Shot Object Detection (FSOD) methods follow two
stages [1]. First, during pre-training, the detector is trained
on a large labeled dataset to learn detecting base classes,
Chase- Then, in fine-tuning, the model is adapted to both the
base classes and novel classes, Ci, e, Using K -shot samples
(i.e., K labeled bounding boxes). These novel classes are
entirely distinct from the base ones (Cpase [ | Crover = 0),
resulting in an N-way K-shot setup, where N is the total
number of classes.

Initially, FSOD was tackled with two primary approaches:
meta-learning and transfer learning. Meta-learning methods,
such as [2], use episodic training to simulate [N-way K-shot
tasks by sub-sampling data during pre-training. This helps the
model quickly adapt to novel objects using few examples, of-
ten relying on siamese networks for support-query pair com-
parisons [1 1]. However, transfer learning [3] has emerged as
the dominant paradigm for FSOD, surpassing meta-learning
in performance. It usually employs classical supervised learn-
ing to train a detector on Cj,s. during pre-training, then fine-
tunes to transfer features to C;,,,¢; With limited examples.

2.2. Transfer learning methods in FSOD and SSL

Transfer learning methods initially relied on Faster R-CNN
[4], with TFA [3] demonstrating that freezing the backbone
during fine-tuning outperformed meta-learning approaches.
Later, DeFRCN [12], one of the most effective Faster R-
CNN-based method, addressed the challenge of balancing
classification and localization in few-shot scenarios using a
gradient decoupling strategy between Region Proposal Net-
work (RPN), RCNN-head and backbone.

Recently, transfer-learning approaches in FSOD have sig-
nificantly benefited from transformer architectures and Self-
Supervised Learning (SSL), which enable the extraction of
high-quality features. ImTED [13] improves standard detec-
tion tasks by using a ViT encoder pre-trained with SSL as the
backbone for Faster R-CNN. It further enhances FSOD by
replacing the conventional detector head with a Masked Au-
toencoder (MAE) [14] decoder, allowing the entire model to
undergo MAE-based pre-training. This approach minimizes
the number of randomly initialized parameters during fine-
tuning, leading to better results in FSOD scenarios. Similarly,
DETReg [15] pre-trains the entire detection architecture us-
ing SSL within the DETR [16] framework. It introduces two

SSL pretext tasks: generating pseudo-labels for detection us-
ing Selective Search [17] and predicting object embeddings
derived from a pre-trained SWAV [18] model.

DINOV2 [5], [6] has then emerged as one of the most
effective ViTs for feature extraction, thanks to its large-scale
SSL pre-training on the private LVD-142M dataset. DE-ViT
[19] utilizes DINOv2 as a frozen backbone to pre-calculate
class and background prototypes from support images, refin-
ing RPN-generated bounding boxes with a learnable propaga-
tion network. CD-ViTO [20] improves DE-ViT and achieves
state-of-the-art performance by converting pre-computed
class prototypes into learnable features, emphasizing high-
quality shots via an multi-layer perceptron, and applying
domain adaptation to improve robustness to domain shifts.
Finally, FM-FSOD [21] uses cross-attention between class
prototypes and query features extracted by DINOv2, gener-
ating bounding boxes via a transformer decoder inspired by
DETR. A large language model (LLM) integrates prototypes,
proposals, and class names for final classification.

While effective, these methods rely on large frozen mod-
els, limiting their use in resource-constrained real-time set-
tings where lightweight detectors like YOLO excel but are
very underrepresented in FSOD. This prompts the ques-
tion: How can we exploit DINOv2’s high-quality features for
FSOD while retaining YOLOVS’s speed and efficiency?

2.3. The interest of distillation methods

Knowledge distillation [8] involves transferring knowledge
from a large, complex teacher model to a smaller, more ef-
ficient student model. This technique has been applied to ob-
ject detection [22], where smaller Faster R-CNN models were
trained using the teacher’s classification, regression outputs,
and intermediate layer features as soft labels.

A recent and effective variant of knowledge distillation
is self-distillation, as demonstrated by the object detector
D-FINE [23], which uses it to constrains the nature of in-
formation propagated through the network. DINOvV2[5], [6]
also uses self-distillation in a self-supervised learning setup,
where both the teacher and student share the same architec-
ture and learn simultaneously, with the teacher directing the
learning process.

In our work, two key questions arise: How can we effec-
tively transfer knowledge from DINOv2'’s large ViT architec-
ture to YOLOVS’s lightweight CNN design? Furthermore, is
distillation beneficial in a Few-Shot Object Detection setting ?

3. DINOV2 DISTILLATION IN YOLOVS

We explored three distinct distillation strategies to transfer
knowledge from DINOv2 to YOLOvVS. A key objective of
these methods is to ensure that all distillation weights are re-
movable at inference, retaining YOLOV8’s original speed and
memory efficiency while benefiting from improved training.
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Fig. 2. Schematic overview of our first distillation approach,
featuring the addition of a distillation branch alongside the
original two branches in the i-th detection head.

Our first approach, named YOLOv8m_d1 and summa-
rized in Fig. 2, operates at the level of the detection heads.
YOLOVS originally features three detection heads at differ-
ent spatial resolutions, achieved through a Feature Pyramid
Network and PANet, with two parallel branches dedicated
to localization and classification tasks (in gray on the fig-
ure). In this approach, we introduce an additional distilla-
tion branch (in orange) within each detection head. These
branches maintain the same resolution as the others and em-
ploys a 1x1 convolution to produce an embedding of size
d = 1024 for each pixel, matching the embedding size of
DINOV2I (with d = 1024 corresponding to the Large version
of DINOV2; the exact value depends on the specific DINOv2
variant used for distillation). During training, we process the
images simultaneously through YOLOvS and DINOv2, ex-
tracting the patch tokens from the final multi-head attention
layer of DINOv2. The distillation is performed by computing
a SmoothL1 loss between the normalized output embeddings
of YOLOVS’s distillation branch ey, and DINOv2’s patch to-
kens ptr, resized to match the spatial resolution:

0.5- (er, — ptr)?,
|€L — ptT| — 05,

£Sm00thLl (eL,ptT) = { if |€L 7 ptT‘ < 1’
otherwise.

Our two other methods are more detailed in Fig. 3. The
second one, YOLOvV8m_d2 (green arrows), eliminates the
need for a separate distillation branch by integrating the dis-
tillation mechanism directly into the original classification
branch of YOLOvVS. Specifically, we extend the last convo-
lution of this branch by adding d = 1024 channels, enabling
it to simultaneously process both the original classification

outputs (green block in the figure) and the embedding predic-
tions (red block). As before, the SmoothL1 loss is applied to
the embedding predictions.

Finally, our third method YOLOvV8m_d3 (red arrows)
builds on the second approach by incorporating the distilla-
tion signal into the localization branch. In ViT architectures,
much of the localization information is embedded within at-
tention maps, which capture the correlations between patches.
However, since YOLOVS lacks an attention mechanism, di-
rectly predicting attention maps would be suboptimal, as it
cannot inherently model correlations beyond its receptive
fields. To address this, we extend the localization branch to
predict embeddings (red block), similar to the classification
branch. These embeddings are then fed into a new multi-head
self-attention layer (noted ”Self-Attention;” in Fig. 3), from
which attention maps (blue block) are extracted. These at-
tention maps, alongside those from DINOvV2, are used for the
distillation process calculated with a SmoothL1 loss.

Additionally, in all our methods, DINOv2 remains frozen
throughout the training process to preserve its strong gen-
eralization capabilities. Distillation is applied during both
pre-training and fine-tuning. In pre-training, it enhances
YOLOVS’s internal representations and aligns its latent space
with DINOv2, while in fine-tuning, it provides a stable refer-
ence to guide the model.

Note that our method focuses on YOLOvV8 due to its com-
petitive accuracy compared to newer versions and its well-
established reliability. However, we emphasize that our ap-
proach can be seamlessly integrated into the latest YOLOI11,
as both versions share the same detection head architecture
for even faster inference speed.

4. EXPERIMENTS

We evaluated our methods on the standard MSCOCO bench-
mark [10], which consists of 123,287 images annotated across
80 classes. All images are used for training, except for a re-
served subset of 5,000 images designated for validation. To
adapt MSCOCO for FSOD [3], the dataset is divided into 60
base classes (Chqse) for the pre-training stage. During the
K -shot fine-tuning stage, labels for the remaining 20 classes
(Chover) are introduced alongside the base classes. Per-
formance metrics include mAP50 and mAP50:95, reported
separately for base and novel classes as bAP50, bAP50:95,
nAP50, and nAP50:95. For implementation, we utilized the
medium version of YOLOvVS (YOLOv8m) by Ultralytics and
the large version of DINOv2 (DINOv2I) with the addition of
registers from [0] to produce cleaner attention maps, useful
for YOLOv8m_d3.

4.1. Pre-training stage

We first performed the pre-training stage in a standard su-
pervised learning setup on the base classes Cpqse, using the
original YOLOv8m as the baseline and applying all DINOv2
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Fig. 3. Diagram illustrating our second approach (YOLOv8m_d2, green arrow) and third approach (YOLOv8m_d3, red arrow)
for distilling DINOvV2 into YOLOVS for Few-Shot Object Detection. The figure highlights the i-th detection head among the
three in YOLOVS. “Regmax” and ”nc” are dimensions initially introduced in YOLOvVS for computing the Distribution Focal
Loss (DFL, localization) and Binary Cross-Entropy (BCE, classification). Distillation is performed during both pre-training
and fine-tuning stages, with DINOv2 remaining frozen throughout the training process.

Table 1. Mean average performance on the 60 base classes
Chase of MSCOCO after pre-training.

Pre-training metrics bAP50 bAP50:95
YOLOvV8m vanilla [9] 61.25 45.62
YOLOv8m_dl 62.40 46.61
YOLOv8m_d2 62.47 46.70
YOLOv8m_d3 62.44 46.15

distillation strategies. The training utilized an SGD optimizer
with a batch size of 512 distributed across 8 Nvidia A100
GPUs, employing a cosine learning rate schedule and an ini-
tial learning rate of Ir = 102 for 450 epochs. The perfor-
mance metrics for each method are summarized in Tab. 1.
All distillation strategies outperformed the baseline training,
achieving up to a +1.2 bAP50 improvement in the best case.

4.2. K-shot fine-tuning

The fine-tuning process was conducted using an SGD opti-
mizer with a batch size of 16 on a single Nvidia A100 GPU.

The initial learning rate was set to Ir = 1073, and train-
ing was performed for 250 epochs. Following standard prac-
tices in FSOD on MSCOCO, we evaluated the models with
K =1,2,3,5,10, 30 shots. The results, presented in Tab. 2,
demonstrate that our distilled versions achieve superior met-
rics for novel class learning (nAP50, nAP50:95) compared to
the baseline YOLOv8m (vanilla). We can also remark that
the first approach, which introduces a separate branch for dis-
tillation, performs worse than the other two methods that in-
tegrate distillation directly into the original branches. This
observation aligns with findings from [13], [15], which sug-
gest that to achieve improved results, a greater portion of the
model’s parameters should benefit from pre-training and, in
our case, have direct access to the distillation signal. More-
over, we observe that YOLOv8_d2 achieves the best perfor-
mance in the extremely low-shot regime (e.g., 1-5 shots),
whereas YOLOvVS8_d3 demonstrates better scalability as the
number of shots increases, particularly at 10 and 30 shots.
The key advantage of our methods is that the distilled
YOLOVS retains the same inference speed and number of
parameters as the original model while delivering improved



Table 2. Results of the K -shot fine-tuning on the first MSCOCO seed from [3], comparing the YOLOv8m baseline, our distilled
models, DeFRCN (results from their GitHub 2), and CD-ViTO (note that their results for 10 and 30 shots are averaged over

multiple seeds and included for approximate comparison).

1-shot 2-shot
bAP50 bAP50:95 nAP50 nAP:5095 bAP50 bAP50:95 nAP50 nAP:5095
YOLOv8m vanilla [9] 46.3 33.0 1.7 1.3 44.9 32.2 4.0 2.6
YOLOv8m_dl 49.9 35.7 2.9 2.5 46.8 33.7 3.6 2.6
YOLOv8m_d2 50.1 359 9.9 7.0 47.6 34.2 14.4 10.3
YOLOv8m_d3 452 324 6.2 49 43.6 31.2 10.2 7.0
DeFRCN [12] 48.7 31.8 10.9 6.5 49.7 32.5 20.6 11.7
CD-ViTO [20] - - - - - - _ -
3-shot 5-shot
bAP50 bAP50:95 nAP50 nAP:5095 bAP50 bAP50:95 nAP50 nAP:5095
YOLOv8m vanilla [9] 43.1 31.2 6.5 4.1 42.9 30.8 12.7 8.2
YOLOv8m_dl1 42.3 30.6 14.3 8.1 43.7 31.3 18.8 10.2
YOLOv8m_d2 48.1 34.5 18.1 13.2 50.1 35.7 19.8 14.7
YOLOv8m_d3 40.5 28.8 13.6 8.3 42.0 29.8 20.6 13.8
DeFRCN [12] 49.8 32.5 24.2 13.4 50.6 33.1 28.4 15.3
CD-VIiTO [20] - - - - - - - -
10-shot 30-shot
bAP50 bAP50:95 nAP50 nAP:5095 bAP50 bAP50:95 nAP50 nAP:5095
YOLOv8m vanilla [9] 453 32.0 22.0 12.6 43.4 30.8 30.5 18.5
YOLOv8m_d1 45.5 32.4 23.1 15.7 46.8 33.3 327 21.5
YOLOv8m_d2 52.6 37.3 24.2 17.8 46.5 32.9 332 22.0
YOLOv8m_d3 44.1 31.4 29.2 18.6 44 .4 31.3 37.9 25.1
DeFRCN [12] 53.1 34.5 34.5 18.5 52.8 34.6 39.9 224
CD-VIiTO [20] - - 54.9 353 - - 54.5 35.9

Table 3. Comparison of model sizes (number of parameters)
and inference speeds (Frames Per Second, FPS) measured on
a single Nvidia RTX A6000 GPU using PyTorch (without
TensorRT optimization).

Number of Parameters | FPS t
YOLOvV8m [9] 25,902,640 142
DeFRCN [12] 96,754,958 7.49
CD-ViTO [20] 331,149,640 1.24

performance compared to the vanilla version. Table 3 presents
the number of parameters and FPS for YOLOv8m, as well
as for DeFRCN (with 4 times more parameters and 19 times
lower FPS) and CD-ViTO (with 12 times more parame-
ters and 114 times lower FPS). These results underscore
YOLOVS’s suitability for applications with limited computa-
tional and memory resources.

2https://github.com/er-muyue/DeFRCN

5. CONCLUSION

In this study, we focused on the YOLOVS architecture as
a prominent example of lightweight detectors, which are
underrepresented in the field of Few-Shot Object Detection
(FSOD). We developed knowledge distillation schemes lever-
aging DINOV2 as the teacher model to provide a strong super-
visory signal and to harness its high-quality features, despite
the architectural differences between the two models. Our ex-
periments on the MSCOCO dataset demonstrated that these
distillation methods effectively enhance YOLOVS’s perfor-
mance in FSOD scenarios without adding extra parameters or
computational overhead during inference. Future work could
investigate the effectiveness of these approaches in Cross-
Domain FSOD [20] scenarios and real-world applications,
where substantial differences exist between the domains and
object categories used in pre-training and fine-tuning.
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