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1. UAS monitoring

Objective: Prevent power line shutdowns by analyzing their components.

Traditional inspection methods include:

Unmanned Aircraft Systems (UAS) have revolutionized the field:

• Minimize risk to technicians

• Significantly lower operational costs

• Efficiently cover large and hard-to-reach areas

• Capture high-quality views of components from multiple angles
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1. Monitoring automation

Technicians using UAS provide us with numerous RGB inspection videos:

drone inspection.mp4

To automate defect monitoring on components, the first step is to apply

object detection using deep learning:

drone detection.mp4
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1. Interest of FSOD

In real-world scenarios: a wide variety of components must be detected!

Few-Shot Object Detection (FSOD): Training a detector to recognize

new classes using as few as 1 to 30 annotated examples.
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2. General FSOD setting

• Pretraining: Use a large dataset with many classes and examples
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2. General FSOD setting

• Pretraining: Use a large dataset with many classes and examples

• Finetuning: Add new classes using very few examples (shots)
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2. Evaluated FSOD methods

Methods selected for our study:

• DeFRCN1: A modified Faster R-CNN based method for FSOD

• CD-ViTO2: Most performant method, using Self-Supervised

Learning (SSL) for high quality feature extraction for FSOD

• Yolov83 (baseline): Widely adopted one-stage detector

• Lightweight models suited for embedded devices

• High inference speed

• Strong performance on MSCOCO

• However, NOT designed for FSOD

• Yolov8 DeFRCN: Our hybrid approach, combining DeFRCN

components with YOLOv8

1Qiao, Limeng et al. 2021. “Defrcn: Decoupled faster r-cnn for few-shot object detection” Proceedings of the IEEE/CVF International

Conference on Computer Vision.

2Fu, Yuqian et al. 2024. “Cross-Domain Few-Shot Object Detection via Enhanced Open-Set Object Detector” arXiv preprint

arXiv:2402.03094.

3Jocher, Glenn, Ayush Chaurasia, and Jing Qiu 2023. YOLO by Ultralytics.
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2. DeFRCN, a Faster R-CNN based method

GDL and PCB modules in DeFRCN.
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2. DeFRCN, a Faster R-CNN based method

GDL and PCB modules in DeFRCN.
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2. CD-ViTO, a SSL based method

CD-ViTO uses DINOv24 pretrained with SSL on 142 million images.

4Oquab, Maxime et al. 2023. “DINOv2: Learning Robust Visual Features without Supervision” arXiv:2304.07193.
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2. Our adaptation of Yolov8

Traditional YOLO: Shared weights for localization and classification.

⇒ YOLOv8 DeFRCN combines DeFRCN with YOLOv8’s decoupled

head to achieve faster and more accurate FSOD:

• YOLOv8’s decoupled head enables the use of GDL.

• PCB can be computed from the classification branch outputs.
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3. Two power line components detection datasets

Insplad5 A private dataset from Enedis

⇒ Insplad offers close-up views of components, while our private dataset

provides a broader, aerial perspective.

5 (Silva, et al Andre Luiz Buarque Vieira e 2023. “InsPLAD: A Dataset and Benchmark for Power Line Asset Inspection in UAV Images”

International Journal of Remote Sensing)
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3. Real world FSOD

Insplad

• 18 components

• Evaluated on 2,627 RGB

images (1920×1080)

Enedis dataset

• 2 components

• Evaluated on 122 RGB images

(4096×2160)

In real-world FSOD scenarios, classes rarely have the same number of

instances, we conducted our experiments on:

• 5-shot and 10-shot splits on Insplad, balanced as much as possible

• 12-shot split on the Enedis dataset
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4. Qualitative results

We performed few-shot fine-tuning of all methods using their base

weights pretrained on the FSOD-adapted version of MSCOCO6:

6Wang, Xin et al. 2020. “Frustratingly Simple Few-Shot Object Detection” Proceedings of the 37th International Conference on Machine

Learning.
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4. Results on Insplad

Mean average precision on novel classes (nAP) in our 5-shot and 10-shot splits

of the Insplad dataset

Method Shot nAP50 nAP50-95

Yolov8 5-shot 52.5 38.6

Yolov8 DeFRCN 5-shot 45.6 33.0

DeFRCN 5-shot 34.2 20.5

CD-VITO 5-shot 50.5 32.4

Yolov8 10-shot 62.6 45.7

Yolov8 DeFRCN 10-shot 59.6 44.1

DeFRCN 10-shot 53.5 31.0

CD-VITO 10-shot 59.0 37.6
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4. Results on Enedis dataset

Mean average precision on novel classes (nAP) in our 12-shot split of our

private dataset

12-shot
Insulator Shackle

nAP50 nAP50-95 nAP50 nAP50-95

Yolov8 89.8 64.7 41.4 20.7

Yolov8 DeFRCN 89.2 67.6 42.8 19.6

DeFRCN 84.8 57.6 17.0 6.0

CD-ViTO 84.9 56.8 29.5 8.3
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4. Results on Enedis dataset

Mean average precision on novel classes (nAP) in our 12-shot split of our

private dataset

12-shot
Insulator Shackle

nAP50 nAP50-95 nAP50 nAP50-95

Yolov8 89.8 64.7 41.4 20.7

Yolov8 DeFRCN 89.2 67.6 42.8 19.6

DeFRCN 84.8 57.6 17.0 6.0

CD-ViTO 84.9 56.8 29.5 8.3

⇒ Surprisingly, FSOD-specialized methods do NOT deliver the best

performance on either dataset.
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4. Why do FSOD methods underperform here?

Surprisingly, Yolov8 DeFRCN underperforms on both datasets despite

outperforming Yolov8 on FSOD-adapted MS COCO:

3-shot 5-shot

bAP50 bAP50-

95

nAP50 nAP50-

95

bAP50 bAP50-

95

nAP50 nAP50-

95

Yolov8 19.1 13.4 9.3 5.6 19.3 13.6 11.7 7.4

Yolov8 DeFRCN 55.9 40.4 15.9 10.8 53.0 38.1 23.0 15.0

DeFRCN 49.8 32.5 24.2 13.4 50.6 33.1 28.4 15.3

Hypothesis: The few-shot performance of some FSOD methods is

heavily influenced by their pretraining, leading to strong biases.
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DeFRCN 49.8 32.5 24.2 13.4 50.6 33.1 28.4 15.3

Hypothesis: The few-shot performance of some FSOD methods is

heavily influenced by their pretraining, leading to strong biases.

PCB gain MSCOCO Insplad

Splits 5-shot 10-shot 5-shot 10-shot

nAP50 +1.7 +1.7 -3.4 -3.1

nAP50-95 +1.0 +1.0 -0.1 -0.2
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5. Conclusion

To conclude, this work:

• FSOD methods often perform poorly in real-world scenarios and are

highly sensitive to bias, unlike their performance on standard

benchmarks.

• Cross-Domain Few-Shot Object Detection (CD-FSOD) is a relatively

new field, with growing interest through initiatives like the NTIRE

workshop at CVPR2025.

• Another emerging approach is the use of Vision-Language Models

(VLMs) for zero-shot object detection, with promising methods like

YOLO-World7 and Grounding-DINO8, which present interesting

directions for future work.

7Cheng, Tianheng et al. 2024. “Yolo-world: Real-time open-vocabulary object detection”.

8Liu, Shilong et al. 2024. “Grounding dino: Marrying dino with grounded pre-training for open-set object detection”.
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5. Conclusion

Thanks for your attention!

Questions?
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