From BLAS routines to finite field exact linear algebra solutions

Pascal Giorgi

Laboratoire de l'Informatique du Parallélisme (Arenaire team)
ENS Lyon - CNRS - INRIA - UCBL
France

Main goals

Solve Linear Algebra problems exactly using BLAS routines

Implementation in LinBox library

- Focus on finite fields
- Use matrix multiplication and BLAS routines as kernel
- Fast exact linear algebra routines (triangular solver, LSP factorization)

Finite field computations via BLAS routines

Main idea [Dumas-Gautier-Pernet 02]
Convert data from finite field to double
Direct call to BLAS
Convert back the result

- Only one reduction
- Certify data hold over 53 bits
- Use division-free BLAS routines only

Illustration with matrix multiplication

- (\mathbf{m} by \mathbf{k} matrix $) \times(\mathbf{k}$ by \mathbf{n} matrix $)$ over $\mathbf{G F}(\mathbf{p})$.

$$
\text { certificate: } \mathrm{k}(\mathrm{p}-1)^{2}<2^{53}
$$

- Performances with $\mathbf{m}=\mathbf{n}=\mathbf{k}$ and $\mathbf{p}=19$:

- Even better with Strassen-Winograd algorithm [Dumas-Gautier-Pernet 02]

Our extension to a triangular solver with matrix r.h.s.

Problem:

- Certificate is $\mathrm{p}^{\mathrm{k}}<2^{53}$ instead of $\mathrm{kp}^{2}<2^{53}$ for matrix multiplication Direct call to BLAS only is too restrictive (only small matrices)

Solution:

- Use a block recursive algorithm
- Decrease matrix size until certification
- Use BLAS-based matrix multiplication routine to reconstruct the solution

Block recursive algorithm

- Solve AX = B over GF (p)
- While no certification

$$
\left\{\begin{array}{lr}
\text { solve } \mathbf{A}_{3} \mathbf{X}_{2}=\mathbf{B}_{2} & \text { recursive call } \\
\mathbf{B}_{1} \leftarrow \mathbf{B}_{1}-\mathbf{A}_{\mathbf{2}} \mathbf{X}_{2} & \text { BLAS-based MM } \\
\text { solve } \mathbf{A}_{1} \mathbf{X}_{1}=\mathbf{B}_{1} & \text { recursive call }
\end{array}\right.
$$

- Now, how to solve small (certified) linear systems?

Solving a certified triangular linear system

- Certified as soon as $(\mathrm{p}-\mathbf{1}) \mathrm{p}^{\mathrm{m}-1}<\mathbf{2}^{53}(\mathrm{~m}=$ row dimension of small system $\mathbf{A X}=\mathbf{B})$
- Let $\mathbf{A}=\mathbf{U D}$ over $\mathbf{G F}(\mathbf{p})$ with \mathbf{D} a diagonal matrix and \mathbf{U} a unit upper triangular matrix

$$
\text { Solve } \mathbf{U Y}=\mathbf{B} \text { using the dtrsm BLAS routine }
$$

- Return $\mathbf{X}=\mathbf{D}^{-1} \mathbf{Y}$ over $\mathbf{G F}(\mathbf{p})$

Performances over GF(19) on Intel Itanium

In summary, we have just seen

- BLAS-based matrix multiplication
- BLAS-based triangular solver with matrix r.h.s.

Now, let us see

- LSP factorization

What is LSP factorization?

- LSP matrix factorization [Bini-Pan 94]
\mathbf{L} - lower triangular matrix with 1's on the main diagonal
\mathbf{S} - reduces to an u.t. matrix with nonzero diagonal entries when zero rows deleted
\mathbf{P} - permutation matrix
- Exemple over GF (7):
$\left[\begin{array}{llllll}1 & 3 & 5 & 2 & 4 & 6 \\ 3 & 2 & 1 & 6 & 5 & 4 \\ 3 & 3 & 6 & 0 & 1 & 2 \\ 5 & 3 & 3 & 6 & 0 & 1\end{array}\right]=\left[\begin{array}{llll}1 & & & \\ 3 & 1 & & \\ 1 & & 1 & \\ 1 & & 2 & 1\end{array}\right] \times\left[\begin{array}{llllll}3 & 1 & 5 & 6 & 2 & 4 \\ & & & & & \\ & 2 & 1 & 3 & 5 & 4 \\ & 1 & 1 & 5 & 3\end{array}\right] \times\left[\begin{array}{lllll}1 & 1 & & & \\ 1 & & & \\ & & 1 & & \\ & & & & 1 \\ & & 1 & & \\ & & & & 1\end{array}\right]$

LSP factorization via matrix multiplication

- Recursive algorithm [Ibarra-Moran-Hui 82]:
- Partition $\mathbf{A}=\left[\begin{array}{l}\mathbf{A}_{1} \\ \mathbf{A}_{2}\end{array}\right]$ and factor $\mathbf{A}_{1}=\mathbf{L}_{1} \mathbf{S}_{1} \mathbf{P}_{1}$
- Partition $\mathbf{S}_{1}=\left[\mathbf{S}_{1}^{\prime} \mathbf{B}\right]$ and $\mathbf{A}_{2} \mathbf{P}_{1}^{-1}=[\mathbf{C} \mathbf{D}]$
- Solve $\mathrm{GS}^{\prime}{ }_{1}=\mathrm{C}$ and factor $\mathrm{D}-\mathrm{GB}=\mathrm{L}_{2} \mathbf{S}_{2} \mathrm{P}_{2}$
- Reconstruct with formula:

Our implementation

- Solve $\mathrm{GS}_{1}^{\prime}=\mathrm{C}$ by using BLAS-based triangular solver
- Compute $\mathbf{D}-\mathrm{GB}$ by using BLAS-based matrix multiplication
- Performances over GF(19) on Intel Itanium:

> In summary, we have just seen

- BLAS-based matrix multiplication
- BLAS-based triangular solver with matrix r.h.s.
- BLAS-based LSP factorization

Now, let us see

- Availability in LinBox and application to minimal matrix polynomial

Integration in LinBox library

- FFLAS package [Dumas-Gautier-Pernet 02]
- Fast BLAS-based triangular solver (BLAS-like interface)
template < class Field >
void Field_trsm(const Field\& F, int m, int n,
typename Field::Element * B, int ldb,
typename Field::Element * A, int lda,
typename Field::Element * X, int ldx,
Triangular tr,
Unitary un,
Side si);
- Fast BLAS-based LSP factorization
- Genericity over the domain $\mathbf{G F}(\mathbf{p})$ and dense matrices (with BLAS-like storage)

Features of our LinBox implementation routines

- Easier to implement higher level algorithms based on matrix multiplication
- Speeding up matrix multiplication \Longrightarrow faster routines

- Example: computation of minimal matrix polynomial

Minimal matrix polynomial $\boldsymbol{\Pi}_{\mathbf{A}}(\mathbf{x})$ of a square matrix \mathbf{A}

- Important algorithm in LinBox (Krylov/Lanczos approach)

Two main steps of the algorithm:

- Compute the first terms of $\mathbf{U V}, \mathbf{U A V}, \mathbf{U A}^{2} \mathbf{V}, \ldots$
- Deduce $\boldsymbol{\Pi}_{\mathbf{A}}(\mathbf{x})$ by computing a matrix approximant of $\left[\begin{array}{cc}\sum_{\mathrm{i}}\left(\mathbf{U A} A^{i} \mathbf{V}\right) \mathbf{x}^{\mathrm{i}} & \mathbf{0} \\ 0 & \mathbf{I}\end{array}\right]$ [Turner's PhD Thesis 02]

Matrix approximant algorithm

- Beckermann-Labahn's algorithm via matrix multiplication [Giorgi-Jeannerod-Villard 03]
- Iterative algorithm which computes approximant $\mathbf{M}(\mathbf{x})$ s.t.

$$
\mathbf{M}(\mathbf{x}) \mathbf{F}(\mathbf{x})=\mathbf{O}\left(\mathbf{x}^{\boldsymbol{\sigma}}\right) \text { in } \boldsymbol{\sigma} \text { steps }
$$

- Main operations involved at step \mathbf{k}
- k calls to matrix multiplication
- $\mathbf{1}$ call to LSP factorization
- k calls to triangular system solving
- We have used our LinBox BLAS-based routines to implement this algorithm

First performances over GF(19) on Intel Itanium

Conclusion and future work

- Significant improvement for some linear algebra problems over $\mathbf{G F}(\mathbf{p})$
- Implementation in LinBox library [www.linalg.org]
- Extension to sparse matrices
- Extension to other algorithms using matrix multiplication

