
LINBOX: A GENERIC LIBRARY FOR EXACT LINEAR
ALGEBRA

J.-G. DUMASa, T. GAUTIERb, M. GIESBRECHTc, P. GIORGId, B. HOVINENe,
E. KALTOFENf , B.D. SAUNDERSe, W.J. TURNERf AND G. VILLARDd

awww-lmc. imag. fr/ lmc-mosaic/ Jean-Guillaume. Dumas
bwww-id. imag. fr/ ~gautier cwww. uwaterloo. ca/ ~mwg

dwww. ens-lyon. fr/ { ~pgiorgi,~gvillard}
ewww. cis. udel. edu/ { ~hovinen,~saunders}

fwww. math. ncsu. edu/ { ~kaltofen,~wjturner}

1 Introduction

Black box techniques12 are enabling exact linear algebra computations of a
scale well beyond anything previously possible. The development of new and
interesting algorithms has proceeded apace for the past two decades. It is time
for the dissemination of these algorithms in an easily used software library so
that the mathematical community may readily take advantage of their power.
LinBox is that library. In this paper, we describe the design of this generic
library, sketch its current range of capabilities, and give several examples
of its use. The examples include a solution of Trefethen’s “Hundred Digit
Challenge” problem #714 and the computation of all the homology groups of
simplicial complexes using the Smith normal form8.

Exact black box methods are currently successful on sparse matrices with
hundreds of thousands of rows and columns and having several million nonzero
entries. The main reason large problems can be solved by black box methods is
that they require much less memory in general than traditional elimination-
based methods do. This fact is widely used in the numerical computation
area. We refer for instance to the templates for linear system solution and
eigenvalue problems2,1. This has also led the computer algebra community
to a considerable interest in black box methods. Since Wiedemann’s seminal
paper16, many developments have been proposed especially to adapt Krylov
or Lanczos methods to fast exact algorithms. We refer to our paper5 and
references therein for a review of problems and solutions.

LinBox supplies efficient black box solutions for a variety of problems
including linear equations and matrix normal forms with the guiding design
principle of re-usability. The most essential and driving design criterion for
LinBox is that it is generic with respect to the domain of computation. This
is because there are many and various representations of finite fields each of

linbox: submitted to World Scientific on May 20, 2002 1

which is advantageous to use for some algorithm under some circumstance.
The integral and rational number capabilities depend heavily on modular
techniques and hence on the capabilities over finite fields. In this regard,
generic software methodology is a powerful tool.

Partly modeled on the STL, LinBox uses the C++ template mechanism
as the primary tool to achieve the genericity. The library is inspired by the
FoxBox black box and plug-and-play design objectives6. Projects with some
similar goals include MTL [http://www.osl.iu.edu/research/mtl] in numeri-
cal linear algebra and Synaps [http://www-sop.inria.fr/galaad/logiciels/
synaps] in symbolic computation. WiLiSys10 is a forerunner of LinBox.

The following section presents design decisions and their motivation using
the field and black box representations as examples. In Section 3 we discuss
the current capabilities provided in LinBox and guiding principles for the
implementation of their underlying algorithms. In Section 4 we illustrate the
power of LinBox with some example solutions.

2 LinBox design

The overarching goal of our design is to create a software library that supports
reuse and reconfiguration at a number of levels without sacrificing perfor-
mance. At the top level, we provide algorithms for many standard problems
in linear algebra. As input, these algorithms accept black box matrices, a
notion that uniformly captures sparse and structured (and dense) matrices
alike. Any object conformant with the specification for a black box matrix
can be plugged into these algorithms. At a lower level, we want our code to
operate over a multitude of coefficient domains and, for a given domain, a
variety of implementations. For instance, into our algorithms one might plug
any of several implementations of the integers modulo a prime number, e.g.,
when the field operations may be performed via a Zech logarithm table or
via integer remaindering. We thus hope to capture future improvements on
field arithmetic without rewriting our programs. One might also plug in a
field of rational functions, or the floating point numbers, although the result-
ing methods may not be numerically stable. At every stage we have applied
the principle commonly called generic programming. We realize this through
C++ templates and virtual member functions.

LinBox provides what we call archetype classes for fields and black box
matrices. An archetype serves three purposes: to define the common object
interface, to supply one instance of the library as distributable compiled code,
and to control code bloat. An archetype is an abstract class whose use is
similar to a Java interface. It specifies exactly what methods and members an

linbox: submitted to World Scientific on May 20, 2002 2

explicitly designed class must have to be a pluggable template parameter type.
Through the use of pointers and virtual member functions, the field archetype,
for instance, can hook into different LinBox fields. Thus the precompiled
library code can be executed on a user supplied field.

Field design. The algorithms in LinBox are designed to operate with a
variety of domains, particularly finite prime fields. To perform the required
arithmetic, additional parameters, such as the modulus, must be available to
the algorithm. One can store a pointer to the required parameters in each
field element, but that would require too much memory. One can also use a
global variable to store these parameters—as is done in NTL, for instance—
but it is then impossible to operate over more than one field concurrently. Our
approach is to have a separate field object whose methods include field arith-
metic operations. For example, the call F.add(x,y,z) adds the elements y and
z in the field F and stores the result in the element x. The field object stores
the required parameters, and it is passed to each of the generic algorithms.
Because of this design, we do not support traditional infix notation.

Given a field class Field, elements of this field are of the type Field::

element. This may be a C++ long, for integers modulo a word size prime,
or a more complicated data structure declared elsewhere in the library. The
field interface requires only that the data type support C++ assignment and
a copy constructor. Because elements by themselves do not have access to the
field parameters, they are initialized by the field, as in F.init(x,5). The field
type contains methods to initialize and perform arithmetic on field elements
and check their equality. In addition to standard arithmetic, in which the
result is stored in a separate field element, we support “in-place” arithmetic,
similar to C++ +=, -=, *=, and /=. Field types are also required to support
assignment and equality checking of whole fields. For each field type, there
exists a class that uniformly generates random elements of that field or an
unspecified subset of a given cardinality. Many of the algorithms in LinBox
depend on the availability of such random elements (see Section 3).

Whether or not a field requires parameters, such as a modulus, to perform
arithmetic, its interface is the same. We provide a template wrapper class for
the creation of an unparameterized field meeting the LinBox interface from
a C++ data type that supports standard arithmetic and equality operations.
For example, unparam_field<ZZ_p> F is a field of NTL modular integers. If a
user-defined field implements a required method in a different manner, one can
resort to partial template specialization in order to define the corresponding
operation. The following example adjusts Victor Shoup’s inv function of his
ZZ_p class to the signature of LinBox’s inv method.
template <> NTL::ZZ_p& unparam_field<NTL::ZZ_p >:: inv (

linbox: submitted to World Scientific on May 20, 2002 3

NTL::ZZ_p& x, const NTL::ZZ_p& y) const{
return x = NTL::inv(y);}

Thus we can easily adapt fields from other libraries to LinBox.
The field archetype defines the interface that all field implementations

must satisfy. Any class that meets that interface can be hooked into a generic
algorithm. A virtual copy method (“clone”) is introduced via an abstract
base class pointed to by the archetype thus yielding an STL-compliant copy
constructor in the archetype. Generic algorithms can be instantiated with
the archetype and compiled separately. Code making use of these algorithms
can supply a field inheriting the abstract field type and link against this code,
with a modest performance loss resulting from the inability to inline field
operations and from additional memory indirection. Finally, LinBox provides
a template class called Field_envelope that hooks any archetype-compliant
field type onto this abstract class, so any field type may be used in this
manner, then without any performance loss (see below).

Abstract Base Class
pointers

Concrete Field

virtual functions

Field Archetype

Linbox field archetype
Figure 1:

Black box design. The LinBox black box matrix archetype is simpler than
the field archetype because the design constraints are less stringent. As with
the field type, we need a common object interface to describe how algorithms
are to access black box matrices, but it only requires functions to access the
matrix’s dimensions and to apply the matrix or its transpose to a vector. Thus
our black box matrix archetype is simply an abstract class, and all actual black
box matrices are subclasses of the archetype class. We note that the overhead
involved with this inheritance mechanism is negligible in comparison with the
execution time of the methods, unlike for our field element types.

The black box matrix archetype is template-parameterized by the vector
type upon which it acts, but not by the field in which the arithmetic is done
as we saw no necessity for this. The field of entries is bound directly to the
black box matrix class and is available as an argument to our black box algo-
rithms, which may perform additional coefficient field operations. Optionally,
black box matrix classes can have the field type as a template parameter. In
addition, variants of the apply method are provided through which one could
pass additional information, including the field over which to operate.

linbox: submitted to World Scientific on May 20, 2002 4

LinBox currently has three types of vectors, dense, sparse sequence, and
sparse map. The dense vectors store every entry of the vector and are
generally implemented as std::vector<element>. Sparse vectors only store
nonzero entries. Sparse sequence vectors have the archetype std::list<std::

pair<integer,element>>, and sparse map vectors have the archetype std::

map<integer,element>. The C++ operator[] is disallowed in the latter to
avoid fill-in with zero values. By its data structure, a map entry access is
logarithmic time.

We do not parameterize our algorithms with a black box type. We use
the black box archetype directly in the algorithms. The caller provides a
specific black box subclass. For convenience, some methods have default im-
plementations in the archetype. For example, apply and applyTranspose each
have three variants, which handle allocation of the input and output vectors
differently. Only one variant is necessary:
Vector & apply (Vector & y, const Vector & x) const;
Vector & applyTranspose (Vector & y, const Vector & x) const;

The archetype base class provides default implementations of the other vari-
ants, but a derived class can override them.

Overall our design is carefully constructed to be generic with respect to
the field and the blackbox matrices, and yet to provide high performance. A
simple experiment illustrates the successful avoidance of performance degrada-
tion. In this test we compare using an accumulation by a sequence of additions
and multiplications done using each of three different setups for the arithmetic.
The first is use of NTL::zz_p arithmetic directly, the second is our wrapper of
the NTL::zz_p class so that the arithmetic is done using LinBox’s generic field
interface, and the third is with use of the LinBox field archetype. This third
interface involves an extra pointer dereference for each field operation, but al-
lows separate compilation of field and algorithm. The results are 8.52 seconds
for NTL::zz_p directly, 8.32 seconds for Linbox wrapped NTL::zz_p, and 11.57
seconds for Linbox archetype over the LinBox wrapper of NTL::zz_p. Thus
there is no performance cost for the generic field interface, because the func-
tion signature changes have been resolved at compilation, but there is a cost
for support of separate compilation (and code bloat avoidance). However,
note that this overhead is relatively smaller for more expensive arithmetic,
such as using the archetype over NTL::ZZ_p on integers larger than word size.

3 Black box algorithms

Wiedemann’s paper16 has led to many developments in the application of
Krylov and Lanczos methods to fast exact problem solving. Here we present
the main directions followed in LinBox regarding these methods. Linear al-

linbox: submitted to World Scientific on May 20, 2002 5

gebra done over finite fields is the core of the library. Computations over the
integers or rationals build upon this core.

Randomized algorithms, heuristics and checking. In black box linear
algebra, the fastest known algorithms generally use random bits. Our library
includes Monte Carlo algorithms (which produce correct results with con-
trollably high probability), Las Vegas algorithms (which always produce cor-
rect results and are fast with high probability), and deterministic algorithms.
Properties of these algorithms are proven under conditions on the source of
random bits, e.g., that we are able to choose random elements uniformly from
a sufficiently large subset of the ground field. This condition may be pro-
hibitively costly in practice, e.g., if the field is small the use of an algebraic
extension may be required. This has led us to a new implementation strategy.
We relax theoretical conditions on our algorithms but introduce subsequent
checks for correctness. We exploit randomized algorithms as heuristics even
when the provable conditions for success are not satisfied. To complement
this, specific checks are developed to certify the output. These checks may
themselves be randomized (see below), in which case we certify only the prob-
ability of success. This strategy has been powerful in obtaining solutions for
huge determinant and Smith form problems in Section 4.

Minimal polynomial and linear system solution over finite fields.
For a matrix A ∈ Fn×n over a field F, Lanczos and Krylov subspace methods
essentially compute the minimal polynomial of a vector with respect to A.
These methods access A only via matrix-vector products v = A · u and w =
AT · u, i.e., they treat A as a black box function. Thus the library will only
employ a black box for A, which can exploit the structure or sparsity of A.

The minimal polynomial fA,u of a vector u is computed as a linear de-
pendency between the iterates u,Au,A2u, In the Krylov/Wiedemann
approach, the dependency is found by applying the Berlekamp-Massey algo-
rithm to the sequence vTu, vTAu, vTA2u, . . . ∈ F, for a random vector v. This
identifies the minimum generating polynomial fA,u

v (x) = xd−fd−1x
d−1−· · ·−

f1x− f0, i.e., vTAd+iu = fd−1 · vTAd+i−1u + · · ·+ f1 · vTAi+1u + f0 · vTAiu,
for all i ≥ 0. Then fA,u

v (x) always divides fA,u, and they are equal with high
probability16. Berlekamp-Massey computes fA,u

v (x) after processing the first
2d elements of the sequence.

LinBox::minpoly: With high probability, the minimal polynomial of the
sequence {vTAiu}0≤i≤2n−1 is the minimum polynomial fA of A16,11, for ran-
domly chosen vectors u, v. This algorithm is randomized of the Monte Carlo
type. As first observed by Lobo, the cost can be reduced by early termination:
as soon as the linear generator computed by the Berlekamp-Massey process

linbox: submitted to World Scientific on May 20, 2002 6

remains the same for a few steps, it is likely the minimal polynomial. This
argument is heuristic in general but provable for the Lanczos algorithm on
preconditioned matrices over suitably large fields9 [Eberly, private communi-
cation (2000)]. A Monte Carlo check of the early termination is implemented
by applying the computed polynomial to a random vector.

Dominant costs in these algorithms are given in Table 113,7. Terms be-
tween brackets give memory requirements (in field elements). Early termi-
nation and randomized Monte Carlo algorithms correspond to bi-orthogonal
Lanczos algorithms with or without lookahead. In both approaches, the num-
ber of matrix-vector products may be cut in half if the matrix is symmetric.
Since the update of the linear generator is computed by dot products instead
of elementary polynomial operations, a Lanczos strategy has a slightly higher
cost for computing the minimal polynomial.

Table 1. Costs of Wiedemann and Lanczos algorithms for fA of degree d and
for Az = b. A or AT can be applied to a vector using at most ω operations.

Early termin. fA Monte Carlo fA Sys. soln. Az = b

Wiedem. [6n] 2dω + 4d(n + d) 2nω + 4n2 + 2d(n + d) +dω + 2dn
Wiedem. [O(dn)] 2dω + 4d(n + d) 2nω + 4n2 + 2d(n + d) +2dn

Lanczos [3n] 2dω + 8dn 2nω + 4n2 + 4dn +2dn

LinBox::linsolve: For nonsingular A, a linear system Az = b is solved by
computing the minimal polynomial fA,b(x) = xd + fd−1x

d−1 + · · ·+ f1x + f0

of b; its coefficients directly give z = −(1/f0)(Ad−1b+ fd−1A
d−2b+ · · ·+ f1b).

Checking Az = b makes the system solution Las Vegas. The Lanczos approach
allows one to compute z within the iterations for the minimal polynomial,
thus the arithmetic and memory costs are only slightly greater than for basic
Lanczos. The main drawback of the Wiedemann approach is that it needs to
either store or recompute the sequence {Aib}0≤i≤d−1.

For both minimal polynomial and system solution, we are developing
block versions of the Wiedemann and Lanczos algorithms15. The choice be-
tween the strategies will rely on the same criteria as for the non-blocked
versions7. We can also cover the case of singular systems.

Preconditioning for the rank and the determinant over finite fields.
The computation of the rank and determinant of a black box matrix A re-
duce to the computation of the minimal polynomial of a matrix Ã, called a
preconditioning of A, obtained by composing A with one or more other black
boxes called preconditioners16,5. A first type of preconditioning involves mul-
tiplication of A by Toeplitz, sparse, or butterfly matrices, and typically incurs
a cost of O(n2 log n) or O(n2 log2 n) operations. For large n, this cost can be
prohibitive. We have thus focused on diagonal preconditioners, i.e. scalings,

linbox: submitted to World Scientific on May 20, 2002 7

which involve only n field elements and incur O(n) cost. They are proven
effective for large fields9,5.

LinBox::rank: The minimal polynomial fA,u
v (x) of {vTAiu}i≥0 always

reveals a lower bound for rank A. Whether this bound coincides with the
rank depends on the spectral structure of A16. In a given application, if
that structure is favorable then LinBox::minpoly is sufficient (for instance,
full rank is certified by checking if deg fA,u

v (x) is maximal). For large fields
the preconditioning Ã = D1A

TD2AD1, with D1 and D2 two random diagonal
matrices, probabilistically ensures a good structure9. For smaller fields, one
might use a field extension, but we can also use this preconditioning in the
ground field as a heuristic. The Lanczos approach allows an easy check. It can
produce an orthogonal basis for the range of Ã, and with O(n) dot products
one may orthogonalize a random vector with respect to this basis. The rank
is quickly certified by checking that the result is in the null space.

LinBox::determinant: The determinant is easily obtained from the con-
stant term of the minimal polynomial of the preconditioning Ã = DA, where
D is a random scaling5. This has been used for some of the experiments in
Sections 4.

Integer computations. Most LinBox algorithms for integer and rational
number computations are based on the finite field functionality. Minimal
polynomial, determinant and system solution may be computed using Chi-
nese remaindering, including early termination strategies4,12. Integer linear
systems, especially sparse ones, may also be solved using the p-adic lifting
approach combined with the use of a black box for the inverse matrix mod-
ulo p16,11. An efficient Monte Carlo rank determination is based on rank
computations modulo random primes (see above). Specialized algorithms for
Smith normal form computations8 (see also Section 4) and diophantine prob-
lems served during the early development of LinBox to validate the design of
the library. We plan to provide additional algorithms for integral problems,
like a sparse diophantine linear system solver.

4 Computational experiences

What do we know in practice about the prospects for high performance ex-
act linear algebra computations? In this section we cite some examples to
illustrate the range of possibilities. The problems described here have been
difficult to solve by other means. The alternative to LinBox’s exact linear al-
gebra is numeric approximation in some cases and combinatorial methods in
others. These alternative approaches suffer fatal numerical instability and/or

linbox: submitted to World Scientific on May 20, 2002 8

exponential memory demand, which are avoided here. The first example is
not a real application, but rather a posed Challenge problem. Its solution
is illustrative of LinBox’s capability. A noteworthy fact is that a very long
computation succeeded without exhausting memory. Computations with high
time to memory ratio are rare in computer algebra.

Trefethen’s Hundred Digits. Nick Trefethen has just posed a “Hundred
Dollar, Hundred Digit Challenge14.” Aimed at numerical analysts, the Chal-
lenge consists of 10 problems which have real number solutions. Ten digits
of accuracy are asked in the answer to each. All of them are numerically
difficult. Problem #7 is the computation of the (1, 1) entry of A−1, where A
is the 20000× 20000 matrix whose entries are zero everywhere except for the
primes 2, 3, 5, 7, . . . , 224737 along the main diagonal and the number 1 in all
the positions aij with |i− j| = 1, 2, 4, 8, . . . , 16384. We took this on as a chal-
lenge for LinBox to produce the exact solution. It is a rational number whose
numerator and denominator each has approximately 100,000 digits. To com-
pute this number is well beyond the capability of present day general purpose
systems such as Maple and Mathematica on current processors and memo-
ries. Indeed, it is beyond the capabilities of any software we know of, save
LinBox. We have computed this exact answer using approximately 2 years of
CPU time (about 180 CPUs running for 4 days). Trefethen has asked that
we not reveal the solution or the details of our method before the deadline of
his Challenge, May 20, 2002. However, we intend to include a more complete
description of this computation in the final version of this paper. Also, we
are experimenting with several approaches to this problem and will expand
on their relative performances.

Rank, competition with Gaussian elimination techniques. In table 2
we report some comparisons between Wiedemann’s algorithm and elimination
with reordering for computing the rank. For the first method, we compute the
minimal polynomial of D1A

T D2AD1, as seen in Subsection Preconditioning
of Section 3. In order to show the usefulness of this approach, we compare it to
elimination-based methods. As the matrices are sparse, some pre-elimination
and on-the-fly reordering may be used to reduce fill-in and augment efficiency.
We have chosen not to focus on this (Dumas’s thesis7 and references therein
review some reordering heuristics and their application to the matrices). The
timings in column “Gauß” of Table 2 have been obtained using the algorithm
of the thesis7, §5.1. The timings in column “SuperLU” are those of a generic
version [www-sop.inria.fr/galaad/logiciels/synaps] of the SuperLU 2.0 nu-
merical code [www.nersc.gov/~xiaoye/SuperLU]. For several cases, fill-in causes
a failure of elimination. This is due to memory thrashing (MT).

linbox: submitted to World Scientific on May 20, 2002 9

Our experiments show that as long as enough memory is available, elimi-
nation is very often more efficient when the matrix is already nearly triangular
(cyclic8 m11, from Gröbner basis computation), when the matrix has a very
small number of elements per row (nick; chi-j, from algebraic topology), or
when the matrix is very unbalanced (bibd – Balanced Incomplete Block De-
sign, from combinatorics). Nonetheless, when the mean number of elements
per row is significant (greater than 5, say), Wiedemann’s algorithm is superior,
even on small matrices, and is sometimes the only practical solution.

Table 2. Rank modulo 65521, Elimination vs. Wiedemann on an Intel PIII,
1GHz, 1Gb. n ×m is the shape, Ω the number of non-zero elements, r the integer
rank of the matrix, timings are in seconds.
Matrix Ω, n×m, r Gauß SuperLU Wiedem.

cyclic8 m11 2462970, 4562x5761, 3903 257.33 448.38 2215.36

bibd 22 8 8953560, 231x319770, 231 100.24 938.81 594.29

n4c6.b12 1721226, 25605x69235, 20165 188.34 1312.27 2158.86
mk13.b5 810810, 135135x270270, 134211 MT 44907.1
ch7-7.b5 211680, 35280x52920, 29448 2179.62 MT 2404.5
ch7-8.b5 846720, 141120x141120, 92959 5375.76 MT 29109.8
ch7-9.b5 2540160, 423360x317520, 227870 MT 210698
ch8-8.b5 3386880, 564480x376320, 279237 MT 363754

TF14 29862, 2644x3160, 2644 50.58 50.34 27.21
TF15 80057, 6334x7742, 6334 734.39 776.68 165.67
TF16 216173, 15437x19321, 15437 18559.40 15625.79 1040.36
TF17 586218, 38132x48630, 38132 MT MT 7094.97

Smith Form, Simplicial Homology. Integer Smith Normal form, espe-
cially as applied to Simplicial Homology computation, was the earliest appli-
cation of LinBox methods. A GAP share package implements this and the
web site http://linalg.org offers both downloads and access to these Smith
form computation using a web math server. Combinatorial conjectures have
been disproven and others affirmed or inspired by computations using these
tools. Matrices with hundreds of thousands of rows and columns and several
million nonzero entries have proven tractable for computing Smith forms. See
our paper8, and Björner/Welker’s3 for some of the homology applications.

Acknowledgements. We are grateful to B. Mourrain and P. Trébuchet for their
help in benchmarking their SuperLU code, to A. Lobo and J.-L. Roch for their com-
ments, and to W. Eberly for his algorithmic improvements published elsewhere. This
material is based on work supported in part by NSF (USA) under grants Nrs. DMS-
9977392, CCR-9988177, and ITR/ASC-0113121 (Kaltofen) Nrs. CCR-0098284 and
ITR/ASC-0112807 (Saunders) and by CNRS (France) Actions Incitatives No 5929
et Stic LinBox 2001 (Villard) and by NSERC (Canada, Giesbrecht).

linbox: submitted to World Scientific on May 20, 2002 10

References

1. Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, and H. van der Vorst, editors. Tem-
plates for the solution of Algebraic Eigenvalue Problems: A Practical Guide.
SIAM, Philadelphia, PA, 2000.

2. R. Barrett, M. Berry, T.F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Ei-
jkhout, R. Pozo, C. Romine, and H. Van der Vorst. Templates for the Solution
of Linear Systems: Building Blocks for Iterative Methods, 2nd Ed. SIAM, 1994.

3. Anders Björner and Volkmar Welker. Complexes of directed graphs. SIAM
Journal on Discrete Mathematics, 12(4):413–424, November 1999.

4. H. Brönnimann, I.Z. Emiris, V.Y. Pan, and S. Pion. Sign determination in
residue number systems. Theoret. Comput. Sci., 210(1):173–197, 1999. Special
Issue on Real Numbers and Computers.

5. L. Chen, W. Eberly, E. Kaltofen, B.D. Saunders, W.J. Turner, and G. Villard.
Efficient matrix preconditioners for black box linear algebra. Linear Algebra
and its Applications, 343-344:119–146, 2002.

6. A. Dı́az and E. Kaltofen. FoxBox a system for manipulating symbolic objects
in black box representation. In O. Gloor, editor, Proc. ISSAC ’98, pages 30–37,
New York, N. Y., 1998. ACM Press.

7. J.-G. Dumas. Algorithmes parallèles efficaces pour le calcul formel: algèbre
linéaire creuse et extensions algébriques. Thèse de Doctorat, Institut National
Polytechnique de Grenoble, France, décembre 2000.

8. J-G. Dumas, B. D. Saunders, and G. Villard. On efficient sparse integer ma-
trix Smith normal form computations. Journal of Symbolic Computations,
32(1/2):71–99, July–August 2001.

9. W. Eberly and E. Kaltofen. On randomized Lanczos algorithms. In Proc.
ISSAC 1997, pages 176–183. ACM Press, 1997.

10. E. Kaltofen and A. Lobo. Distributed matrix-free solution of large sparse linear
systems over finite fields. Algorithmica, 24(3–4):331–348, July–Aug. 1999.
Special Issue on “Coarse Grained Parallel Algorithms”.

11. E. Kaltofen and B.D. Saunders. On Wiedemann’s method of solving sparse
linear systems. In Proc. AAECC-9, LNCS 539, Springer, pages 29–38, 1991.

12. E. Kaltofen and B. Trager. Computing with polynomials given by black boxes
for their evaluations: Greatest common divisors, factorization, separation of
numerators and denominators. J. Symb. Comp., 9(3):301–320, 1990.

13. R. Lambert. Computational aspects of discrete logarithms. PhD thesis, Uni-
versity of Waterloo, Ontario, Canada, 1996.

14. N. Trefethen. A Hundred-dollar, Hundred-digit Challenge. SIAM News, 35(1),
2002.

15. G. Villard. A study of Coppersmith’s block Wiedemann algorithm using matrix
polynomials. Rapport de Recherche 975 IM, www.imag.fr (Grenoble), April
1997. Extended abstract in Proc. ISSAC 1997, pages 32–39, ACM Press.

16. D. Wiedemann. Solving sparse linear equations over finite fields. IEEE Transf.
Inform. Theory, IT-32:54–62, 1986.

linbox: submitted to World Scientific on May 20, 2002 11

