
Generating Optimized Sparse Matrix Vector
Product over Finite Fields

Pascal Giorgi1 and Bastien Vialla1

LIRMM, CNRS, Université Montpellier 2 ,
pascal.giorgi@lirmm.fr, bastien.vialla@lirmm.fr

Abstract. Sparse Matrix Vector multiplication (SpMV) is one of the
most important operation for exact sparse linear algebra. A lot of re-
search has been done by the numerical community to provide efficient
sparse matrix formats. However, when computing over finite fields, one
need to deal with multi-precision values and more complex operations.
In order to provide highly efficient SpMV kernel over finite field, we pro-
pose a code generation tool that uses heuristics to automatically choose
the underlying matrix representation and the corresponding arithmetic.

Keywords: sparse linear algebra, finite fields, SpMV

1 Introduction

Modern sparse linear algebra is fundamentally relying on iterative approaches
such as Wiedemann or Lanczos. The main idea is to replace the direct manip-
ulation of a sparse matrix with its Krylov subspace. In such approach, the cost
is therefore dominated by the computation of the Krylov subspace, which is
done by successive matrix-vector products. Let A ∈ Fn×n be a sparse matrix
with O(n logo(1) n) non zero entries where F is a finite field. The matrix-vector

product y = Ax where y, x ∈ Fn costs O(n logo(1) n) operations in F . We call
this operation SpMV in the rest of this paper. SpMV is a particular opera-
tion in the linear algebra framework, since it requires as much memory accesses
as arithmetic operations. Basically, one entry in the matrix contributes to the
SpMV computation only once. Therefore, on modern processor where memory
hierarchy has a larger impact then arithmetical operations, data access is a major
challenge to reach good performances. This challenge has been widely studied by
the numerical community, and led to many different matrix storage for floating
point numbers.

Over finite fields the situation is slightly different. Basically, the underlying
arithmetic is more complex. Indeed, modern processor does not provide efficient
support for modular operations. Furthermore, finite fields can be large and then
requiring multiple precision arithmetic. Our main concern is weather the numer-
ical formats are still satisfying when computing over finite fields and which arith-
metic strategy is the most suited to the particularity of SpMV. This question has

1 This work has been supported by the Agence Nationale pour la Recherche under
Grants ANR-11-BS02-013 HPAC, ANR-12-BS02-001 CATREL.

2 Pascal Giorgi - Bastien Vialla

been already addressed in many papers, as in [3, 6], but no general optimization
approach has been designed. In this paper, we propose a general framework which
incorporates most of the optimization techniques for SpMV over finite field. We
provide a software tool, available at www.lirmm.fr/~vialla/spmv.html, that
emphasizes our approach for prime fields at any precision.

2 General optimization approach

It is well know that SpMV performance is limited by memory accesses. Indeed,
the irregularity access of the x[i]’s during SpMV does not allow the processor
to prefetch data to the cache memory in advance. In order to minimize cache
misses, one need to minimize the memory footprint of the matrix while preserving
a cache aware structure. To further speed-up SpMV over finite field, one need
to minimize the number of clock cycle per arithmetic operation. This could be
done by minimizing the modular reductions or taking care of particular entries
in the matrix, i.e. ones and minus ones. One can evaluate a priori the impact of
these optimizations by using the roofline model of [9].

Preprocessing the matrix in advance is a key tool to detect the most suited
optimization. This can be done at runtime, as in the OSKI library [8]. Our
proposed approach is to do this at compile time through two steps: 1) prepro-
cessing the matrix to provide an optimization profile.; 2) generating an optimized
SpMV with this profile.

3 Optimized SpMV generator

The workflow of our generator is given
in Figure 1. It receives a matrix A
and a prime number p such that the
SpMV with A is performed over Fp. De-
pending on the prime p and some char-
acteristics of A, such as the number
of ±1 or the dimension, the generator
choose the best suited matrix format
and an arithmetic strategy. Then, it
generates an optimization profile that
can be used to compile a SpMV imple-
mentation for A over Fp.

Generator

Matrix

p

Optimized SpMV

Arith

mod p

Matrix formats

Z

RNS

CSR
SELL-C
...

Fig. 1. Generator workflow

3.1 Matrix formats

A lot of matrix format have been proposed by the numerical community for
SpMV: e.g. CSR, COO, BlockCSR[8], Compress Sparse Block [4]. In general,
matrices over finite fields do not have any structural properties than can be
used to improve performances. Therefore, we choose to focus on the CSR and

Generating Optimized Sparse Matrix Vector Product over Finite Fields 3

SELL-C format [7], and some adaptation avoiding the storage of ±1. However,
our approach is generic and more format can be added if necessary.

The CSR format compress data according to the row indices. It needs three
arrays: val[] for the matrix entries; idx[] for the column indices; ptr[] for
the number of non-zero entries per row. The SELL-C format is a variant of CSR
which is designed to incorporate SIMD operations. It sorts the rows according
to their sparsity and split the matrix by chunk of size C. Each chunk is padded
with zeros such that each row in a same chunck has exactly the same sparsity.
The parameter C is a chosen to be a multiple of the SIMD unit’s width. In order
to minimize the memory footprint, our generator adapt the data types of every
arrays, e.g. 4 bytes for idx[] when column dimension is < 65 536. It also choose
a data type related to ||A||∞ rather than p for val[].

3.2 Delayed modular reduction

As demonstrated in [5], performing modular reductions only when necessary
leads to better performances. Hence, the computation is relaxed over the integer
and needs that no overflow occurs.

Depending on the finite field, our generator will compute a priori the maxi-
mum value of k such that k(p− 1)||A||∞ does not overflow. Note that knowing
k at compile time will allow the compiler to perform loop unrolling. As delayed
modular reduction is fundamentally tied with the underlying data type, our ap-
proach is to use the best suited one to reduce the number of modular reductions.
Nevertheless, some compromises must be done between the cost of the standard
operations (+,×) vs the number of reductions.

3.3 Hybrid

In most applications over finite fields, many matrix entries are ±1. Thus, one can
avoid superfluous multiplication within SpMV and further reduce the memory
footprint of the matrix. This approach have been developed in [3] using a splitting
of the matrix A in 3 matrices: A1 storing only 1’s , A−1 storing −1’s and finally,
Aλ store the rest of the entries. SpMV is then computed independently for each
matrices and the results are sum up, i.e. y = Ax = A1x + A−1x + Aλx.

The drawback of this method is to amplify the number of cache misses arising
during the reading of the vector x. Indeed, most of the matrices have a spatial
locality in their row entries which is useful to avoid cache misses.

Our proposed hybrid approach is to keep this spatial locality such that
SpMV still can be performed row by row. CSR format is well designed for this
approach. Indeed, for each row we can store in idx[], the column indices of the
entries different ±1, then the indices of ones and the minus ones. We can do ex-
actly the same for ptr[], and val[] only stores the entries different from ±1. We
call this hybrid format CSRHyb. Note this approach, cannot be directly applied
to SELL-C since the zero padding may introduce too much memory overhead.

4 Pascal Giorgi - Bastien Vialla

To circumvent this, one must store entries different from ±1 in SELL-C format
and the ±1 in CSR format, but these two formats must be interleaved by row.

4 Benchmarks

Our benchmarks have been done on matrices arising in mathematical appli-
cations. The Table 1 gives the characteristic of such matrices (available at
http://hpac.imag.fr). In this table, nnz is the number of non zero entries,
nnzrow is the average number of non zero entries in a row, and kmax is the
maximum number of non zero entries in a row.

Name Dimensions nnz nnzrow kmax ±1 6= ±1 Problems

cis.mk8-8.b5 564 480× 376 320 3.3M 6 6 3.3M 0 (A)

GL7d17 1 548 650× 955 128 25M 16 69 25M 382K (B)

GL7d19 1 911 130× 1 955 309 37M 19 121 36M 491K (B)

GL7d22 349 443× 822 922 8.2M 23 403 7M 307K (B)

M06-D9 1 274 688× 1 395 840 9.2M 7 10 9.2M 0 (E)

rel9 5 921 785× 274 669 23M 3 4 23M 19K (C)

relat9 9 746 231× 549 336 38M 3 4 23M 29K (C)

wheel 601 902 103× 723 605 2.1M 2 602 38M 29K (F)

ffs619 653 365× 653 365 65M 100 413 60M 5M (D)

ffs809 3 602 667× 3 602 667 360M 100 452 335M 25M (D)

(A) Simplicial complexes from homology; (B) Differentials of the Voronöı complex of
the perfect forms (C) Relations;(D) Function field sieve ; (E) Homology of the moduli
space of smooth algebraic curves Mg,n ; (F) Combinatorial optimization problems.

Table 1. List of matrices arising in mathematical applications

We used g++ 4.8.2 and an Intel bi-Xeon E5-2620, 16GB of RAM for our
benchmarks. We performed a comparison with the best SpMV available at this
time in the LinBox library1 (rev 4901) based on the work of [3].

4.1 Prime field Fpwith small p

In this section we consider the case where (p− 1)2 fits the mantissa of a double
floating point number, e.g. 53 bits. In this case, the modular reduction is costly
compare to the standard operations. However, it does not worth it to extend the
precision beyond 53 bits to avoid most of the reductions. Our strategy is then to
use double and to find the largest k such that k||A||∞(p−1) < 253 and perform
reduction at least every k entries in a row. If the matrix does not have too many
±1, the SELL-C format will be chosen to better exploit the SIMD vectorization,
otherwise the CSRHyb format will be preferred.

The Figure 2 gives the relative performances of our optimized SpMV against
the one of LinBox for the prime field F1048583. One can see that our code is
always faster than the CSR implementation of LinBox, up to a speed-up of 2.2.

1 www.linalg.org

Generating Optimized Sparse Matrix Vector Product over Finite Fields 5

Indeed, this can be explain by the
fact that most matrices have a
many ±1 entries and that the CSR
of LinBox is not handling such par-
ticularity. The implementation of
the hybrid format from [3] is not
yet fully operational in LinBox and
we did not get the chance yet to
compare to it. However, following
the speed-up of the hybrid format
vs the CRS one given in [3, Figure
3], which is less than 1.5, we are
confident in the performance of our
optimized SpMV.

Sheet1

Page 1

Matrix

ffs619 1048583 365 362 362,72 258 256 256,92 1,411801339

cis.mk8-8.b5 1048583 17 16 16,02 10 10 10 1,602

GL7d17 1048583 216 204 206,2 123 110 111,44 1,850323044

GL7d19 1048583 362 359 360,18 173 170 170,98 2,106562171

GL7d22 1048583 66 65 65,04 36 33 34 1,912941176

M06-D9 1048583 45 44 44,02 24 23 23,04 1,910590278

rel9 1048583 188 187 187,02 123 120 120,96 1,546130952

relat9 1048583 306 303 304 198 197 197,08 1,542520804

1048583 26 24 24,04 11 11 11 2,185454545

Linbox our code Speed-up

Wheel_601

ffs619
cis.mk8-8.b5

GL7d17
GL7d19

GL7d22
M06-D9

rel9
relat9

Wheel_601

1

1,2

1,4

1,6

1,8

2

2,2

2,4

Matrices

S
p
e
e

d
-u

p

Fig. 2. Speed-up of our generated
SpMV against LinBox over F1048583.

4.2 Prime field Fpwith p multiple precision

Our motivations come primarily from the computation of discrete logarithms
over finite fields [1]. We focus only on matrices which have small entries compare
to the prime p, e.g. less than a machine word, since it is mostly the case in
mathematical applications.

In order to compute with multiple precision integers, one can use the well
known GMP library 2 which is the fastest one for each single arithmetic oper-
ations. However, when dealing with vectors of small integers, e.g. ≈ 1024 bits,
the GMP representation through pointer makes it difficult to exploit cache lo-
cality. In such a case, one should prefer to use a fixed precision representation
through a residue number system [2], called RNS for short. Such approach pro-
vides intrinsic data locality and parallelism which are good for SpMV and its
SIMD vectorization. The difficulty is then transferred to the reduction modulo p
that cannot be done in the RNS basis. However, one can use the explicit chinese
remainder theorem [2, 6] to provide a reduction that can use SIMD instructions.
Furthermore, one can use matrix multiplication to perform modular reduction
of a vector of RNS values and then better exploit data locality and SIMD.

In order to minimize the memory footprint of the matrix, we propose to
store the matrix entries in double and convert them to RNS on the fly. The
mi’s are chosen so that (mi − 1)2 fits in 53-bits to allow floating point SIMD in
the RNS arithmetic. Larger mi’s could be chosen to reduce the RNS basis but
this would induce a more complex SIMD vectorization which makes it harder to
reach sustainable performances. In our multiple precision SpMV, the mi’s are
chosen so that kmax(mi − 1)2 < 253 and M =

∏
imi > (p − 1) · kmax · ||A||∞.

This both ensures that the modular reduction mod mi and mod p can be done
only once per row. The matrix format is CSRHyb since the SIMD vectorization
is done over the arithmetic rather then being on SpMV operations.

2 https://gmplib.org/

6 Pascal Giorgi - Bastien Vialla

1	

2	

4	

8	

16	

32	

64	

64	 128	 256	 512	 1024	

Sp
ee
d-‐
up

	

bitsize	 of	 the	 prime	 p	

ffs619	
GL7d22	
GL7d19	
GL7d17	
Wheel_601	
relat9	
cis.mk8-‐8.b5	
rel9	
M06-‐D9	
ffs809	

Fig. 3. Speed-up of our generated multiple precision SpMV over LinBox.

The Figure 3 gives the relative performances of our optimized SpMV against
the one of LinBox for prime fields of bitsize, 64, 128, 256, 512, and 1024. One can
see that our code is always faster than LinBox one, up to a speed-up of 67. In-
deed, this can be explain by the fact that most matrices have many ±1 entries.
But, mainly because LinBox stores matrix entries as GMP integers while our
SpMV stores them as double. This has two consequences on LinBox SpMV per-
formances. First, matrix entries are not store contiguously and then many cache
misses are done. Secondly, LinBox use the arithmetic of GMP which is not using
any SIMD vectorizations for mixed precision arithmetic.

References

1. R. Barbulescu, C. Bouvier, J. Detrey, P. Gaudry, H. Jeljeli, E. Thomé, M. Videau,
and P. Zimmermann. Discrete logarithm in GF(2809) with FFS. In Proc. of 17th
International Conference on Practice and Theory in Public-Key Cryptography, 2014.

2. D. J. Bernstein. Multidigit modular multiplication with the explicit chinese remain-
der theorem. http://cr.yp.to/papers/mmecrt.pdf, 1995.

3. B. Boyer, J.-G. Dumas, and P. Giorgi. Exact sparse matrix-vector multiplication
on gpu’s and multicore architectures. In Proc. of the 4th International Workshop
on Parallel and Symbolic Computation, pages 80–88, July 2010.

4. A. Buluç, S. Williams, L. Oliker, and J. Demmel. Reduced-bandwidth multithreaded
algorithms for sparse matrix-vector multiplication. In Proc. of the 2011 IEEE In-
ternational Parallel & Distributed Processing Symposium, pages 721–733, 2011.

5. J.-G. Dumas, P. Giorgi, and C. Pernet. Dense Linear Algebra over Finite Fields:
the FFLAS and FFPACK package. ACM Trans. Math. Soft., 35:19:1–19:42, 2008.

6. H. Jeljeli. Accelerating iterative spmv for discrete logarithm problem using gpus.
hal-00734975, 2013. http://hal.inria.fr/hal-00734975/en/.

7. M. Kreutzer, G. Hager, G. Wellein, H. Fehske, and A.-R. Bishop. A unified sparse
matrix data format for modern processors with wide simd units. arXiv:1307.6209,
2013. http://arxiv.org/abs/1307.6209.

8. R. Vuduc, J. W. Demmel, and K. A. Yelick. OSKI: A library of automatically tuned
sparse matrix kernels. In Proc. of SciDAC 2005, Journal of Physics: Conference
Series, pages 521–530, June 2005.

9. S. Williams, A. Waterman, and D. Patterson. Roofline: An insightful visual perfor-
mance model for multicore architectures. Commun. ACM, 52(4):65–76, 2009.

