
On the Complexity of Polynomial Matrix Computations

Pascal Giorgi, Claude-Pierre Jeannerod and Gilles Villard

CNRS, INRIA, Laboratoire LIP
ENSL, 46, Allée d’Italie 69364 Lyon Cedex 07, France

http://www.ens-lyon.fr/ ˜{pgiorgi,cpjeanne,gvillard}

ABSTRACT
We study the link between the complexity of polynomial
matrix multiplication and the complexity of solving other
basic linear algebra problems on polynomial matrices. By
polynomial matrices we mean n× n matrices in K[x] of de-
gree bounded by d, with K a commutative field. Under
the straight-line program model we show that multiplica-
tion is reducible to the problem of computing the coefficient
of degree d of the determinant. Conversely, we propose al-
gorithms for minimal approximant computation and column
reduction that are based on polynomial matrix multiplica-
tion; for the determinant, the straight-line program we give
also relies on matrix product over K[x] and provides an alter-
native to the determinant algorithm of [16, 17]. We further
show that all these problems can be solved in particular in
O (̃nωd) operations in K. Here the “soft O” notation O˜ in-
dicates some missing log(nd) factors and ω is the exponent
of matrix multiplication over K.

Categories and Subject Descriptors
F.2.1 [Analysis of Algorithms and Problem Complex-
ity]: Numerical Algorithms and Problems—computations
on matrices, computations on polynomials.

General Terms
Algorithms.

Keywords
Matrix polynomial, minimal basis, column reduced form,
matrix gcd, determinant, polynomial matrix multiplication.

1. INTRODUCTION
The link between matrix multiplication and other basic

linear algebra problems is well known under the algebraic
complexity model. For K a commutative field, we will as-
sume that the product of two n× n matrices over K can be

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSAC’03,August 3–6, 2003, Philadelphia, Pennsylvania, USA.
Copyright 2003 ACM 1-58113-641-2/03/0008 ...$5.00.

computed in O(nω) operations in K. Under the model of
computation trees over K, we know that ω is also the ex-
ponent of the problems of computing the determinant, the
matrix inverse, the rank, the characteristic polynomial (we
refer to the survey in [5, Chap.16]) or the Frobenius normal
form [8, 15]. On an algebraic Ram, all these problems can be
solved with O (̃nω) operations in K, hence the correspond-
ing algorithms are optimal up to logarithmic terms. Here
and in the rest of the paper, for any exponent e1, O (̃ne1)
denotes O(ne1 loge2 n) for any exponent e2.

Much less is known for polynomial matrices and even less
for integer matrices under the bit-complexity model. Dif-
ficulties come from the size of the data (and from carry
propagation in the case of integer arithmetic) which make
reductions between problems hard to obtain. In this pa-
per we investigate the case of matrices in K[x]n×n of degree
bounded by d. This is motivated both by the interest in
studying more concrete domains than abstract fields and by
the results [16, 17] and [10, 22]: Storjohann has established
an algorithm of cost O (̃nωd) for the determinant and the
Smith normal form; on the other hand, for the polynomial
matrix inverse, there is a straight-line program whose length
is O (̃n3d), i.e., almost the size of the output. Besides, the
latter approach gives an alternative for the determinant in
O (̃nωd) (see Section 4).

These two results first ask the following question: are
problems on polynomial matrices – and especially the de-
terminant problem – harder than polynomial matrix mul-
tiplication? By slightly extending the result of Baur and
Strassen [1, Corollary 5] for matrices over a field, we an-
swer positively for the determinant, up to a constant. More
precisely, we show in Section 4 that if there is a straight-
line program of length D(n, d) over K which computes the
coefficient of degree d of the determinant, then there is a
straight-line program of length no more than 8D(n, d) which
multiplies two n× n matrices of degree d.

Conversely, the second question is which polynomial ma-
trix problems can be solved with roughly the same number
of arithmetic operations as polynomial matrix multiplica-
tion. As seen above we already know that this is the case
of the determinant problem [16] on an algebraic Ram us-
ing O (̃nωd) as an estimation of the complexity of matrix
multiplication [6]. We will see in Section 4 that a differ-
ent approach, developed independently in [10, 22], gives a
straight-line program of length O (̃nωd) for the same prob-
lem.

Before studying the determinant, we shall give analogous
cost estimates with Ram programs for two other problems:

1

we show in Section 2 how to compute minimal bases and
order d matrix approximants in O (̃nωd) operations in K; we
show in Section 3 that an invertible matrix can be column
reduced in time O (̃nωd) as well. Note that here column
reduction is roughly lattice basis reduction for K[x]-modules.

We further study the complexities of each of the above
problems in terms of general cost functions involving polyno-
mial matrix multiplication. To do so, we denote by MM(n, d)
the cost of multiplying two matrices of degree d in K[x]n×n

(with MM(n) = MM(n, 0)) and assume without loss of gen-
erality that n and d are powers of two. If M(d) denotes the
cost for multiplying two polynomials of degree d in K[x] then
we can always choose MM(n, d) = O(MM(n)M(d)). For ex-
ample, this gives MM(n, d) = O(nωd log d log log d) [6]. Us-
ing an evaluation/interpolation scheme when K has more
than 2d elements, we can take MM(n, d) = O(MM(n)d +
n2M(d) log d).

As we shall see in Section 2.2, our minimal basis algorithm
works recursively on the degree and leads us to define the
function

MM′(n, d) =

log d∑
i=0

2iMM(n, 2−id).

This will be used in Sections 2 and 3 for expressing the
costs of matrix approximation and column reduction. In the
same way, we use algorithms of [17] that work recursively on
the dimension and whose complexity estimates rely on the
function

MM′′(n, d) =

log n∑
i=0

4iMM(2−in, d).

For instance, with MM(n, d) = Θ(nωd log d log log d), both
sums MM′(n, d) and MM′′(n, d) are O (̃MM(n, d)).

We refer to the books [11, 3] for fundamental notions and
algorithms on matrix polynomials. We may also point out
to the reader that Section 2 below heavily relies on [2].

2. MINIMAL BASIS COMPUTATION
Many problems on matrix polynomials reduce to comput-

ing minimal approximant bases (or σ-bases) [2]. Given a
matrix power series G ∈ K[[x]]m×n and an approximation
order d ∈ N, these bases are nonsingular m×m polynomial
matrices M such that

MG ≡ 0 mod xd. (1)

Minimality is made precise in Definition 2.1 below. It es-
sentially expresses the fact that M has the smallest possible
row degrees.

Minimal basis computations are motivated by the follow-
ing two applications, which we shall develop later in the
paper: in Section 3 we will use the fact that the problem
of column reducing a matrix can be solved by computing a
Padé approximant and thus a minimal approximant basis;
in Section 4 we further use such approximants for recovering
the polynomial matrix kernels that lead to the determinant.
Note that a third application is the computation of minimal
matrix polynomials of linearly generated matrix sequences,
as proposed in [24] and [21].

Our purpose in this section is to introduce polynomial
matrix multiplication into the existing approximation algo-
rithms. We achieve this by first adapting in Section 2.1

the σ-basis algorithm of Beckermann and Labahn [2] to ex-
ploit fast matrix multiplication over K. Roughly, the algo-
rithm of [2] works iteratively and computes a σ-basis from
a (σ − n)-basis via n Gaussian elimination steps on vectors
of Km. How to replace these n steps on m× 1 vectors with
a single step on an m×n matrix was unclear. We solve this
problem by resorting to the approach of Coppersmith [7, 13]
and by using the matrix product-based LSP factorization
algorithm of [9]. Polynomial matrix product then arises in
Section 2.2 with a divide-and-conquer version of the method
of Section 2.1 that generalizes the previous studies in [2, 20].

This divide-and-conquer version yields the cost of O (̃nωd)
which improves upon the cost of O (̃n3d) in [2, Theorem 6.2].

To define the type of approximants we compute, we con-
sider as in [2] the formal power series vector

f(x) = G(xn)[1, x, . . . , xn−1]
T ∈ K[[x]]m.

This allows to compress the columns of G into a single one:
for 1 ≤ j ≤ n, the coefficients of f whose corresponding
power in x equals j − 1 modulo n give the jth column of G.
We further call (approximation) order of v ∈ K[x]1×m and
denote by ord v the integer

ord v = sup{τ ∈ N : v(xn)f(x) ≡ 0 mod xτ}.

Recall also that the degree deg v of v ∈ K[x]1×m is the high-
est degree of all the entries of v [11, §6.3.2]. For σ ∈ N we
then define σ-bases with respect to the rows of G as follows.

Definition 2.1. A σ-basis of G is a matrix polynomial
M in K[x]m×m that satisfies:

i) the rows M (1,∗), . . . , M (m,∗) have order at least σ;

ii) every v ∈ K[x]1×m such that ord v ≥ σ admits a unique

decomposition v =
∑m

i=1 c(i)M (i,∗) where, for 1 ≤ i ≤
m, c(i) ∈ K[x] and deg c(i) + deg M (i,∗) ≤ deg v (mini-
mality of the approximant).

This definition coincides with [2, Definition 3.2, p.809] when
the m components of the multiindex in [2] are the same.

Since i) yields M(xn)G(xn)[1, x, . . . , xn−1]
T ≡ 0mod xσ, it

suffices to take σ = nd to get approximant M(x) in (1).
For simplicity — and with no loss of generality regarding

the above three applications of σ-bases — we shall restrict
to the case where σ is a multiple of n and n ≤ m.

2.1 Via Matrix Multiplication
To introduce matrix multiplication into σ-basis computa-

tions of [2], we use the so-called LSP factorization [9] (see
also [3, p. 103]): every matrix A ∈ Km×m of rank r can be
written as A = LSP where L ∈ Km×m is lower triangular
with ones on the diagonal, S ∈ Km×m has m − r zero rows
and P ∈ Km×m is a permutation matrix; additionally, the
nonzero rows of S form an r × m upper triangular matrix
with nonzero diagonal entries. Let

1 ≤ i1 < i2 < · · · < ir ≤ m

be the indices of the nonzero rows of S. Each ij is then
uniquely defined as the smallest index such that the first ij
rows of A have rank j.

In Algorithm M-Basis below, we assume we compute LSP
factorizations with the algorithm of [9] as described in [3,
p. 103]: factors L, S, P are obtained in O(MM(m)) opera-
tions in K. Furthermore, it is not hard to verify that L and

2

S are such that if the ith row of S is identically zero then
the ith column of L is the ith unit vector.

Algorithm M-Basis(G, d)
Input: G ∈ K[[x]]m×n with m ≥ n and d ∈ N.
Output: a σ-basis M ∈ K[x]m×m with σ = nd.

M := Im;
δ := 0 ∈ Nm;
for k from 1 to d do

δ := πδ where matrix π sorts δ in descending order;

∆ := x−(k−1)πMG mod x;
∆ := ∆ augmented with m− n zero columns;
Compute the LSP factorization of ∆;
D := diag(d1, . . . , dm) where di = x if i ∈ {i1, . . . , ir}

and di = 1 otherwise;
M := DL−1πM ;
δ := δ + [d1(0)− 1, . . . , dm(0)− 1]T ;

od;
return M ;

Lemma 2.2. Algorithm M-Basis is correct. Its cost is
O(MM(m)d2) or O(mωd2) operations in K.

Proof. Let M0(x) = Im and, for 1 ≤ k ≤ d, write Mk(x)
for the matrix M computed by step k. We see that the de-
gree of Mk in x is no more than k and, assuming the algo-
rithm is correct, that MkG ≡ 0 mod xk. The computation
of ∆ at step k thus costs O(MM(m)k) field operations. This
dominates the cost of step k, for both LSP factorization
and the update of M require only O(MM(m)) operations in
K. The overall complexity then follows.

To prove the algorithm is correct, note first that M0(x)
is a 0-basis of G(x). Then, assuming for k ∈ {1, . . . , m}
that Mk−1(x) is an n(k − 1)-basis of G(x), we verify that
Mk(x) = D(x)L−1πMk−1(x) is an nk-basis of G(x).

Let Nk−1(x) = πMk−1(x) and recall that P is the permu-
tation matrix in the LSP factorization at step k. It follows
that Nk−1(x) is an n(k − 1)-basis of G(x)P−1. Algorithm
FPHPS of [2, p. 810] with input parameters m, n,

F (x) = Nk−1(x
n)G(xn)P−1[1, x, . . . , xn−1]

T

and (0, . . . , 0) ∈ Nm then returns an nk-basis of G(x)P−1

after n steps. We denote this basis by Nk(x). (Uniqueness
of the output of FPHPS is explained in [2, p. 818].) As
shown below, the two bases are related as

Nk(x) = D(x)L−1Nk−1(x) (2)

and hence Mk = Nk is an nk-basis of GP−1 and G as well.
We now prove identity (2). Let Λ = ∆P−1 and let Λj be

the jth column of Λ. Then

x−(k−1)nF (x) ≡ Λ1 + xΛ2 + · · ·+ xn−1Λn mod xn.

Since the rows of Nk−1 have been sorted by permutation
π, the first step of FPHPS simply consists in picking the
first nonzero entry of Λ1 – say, λ1 with row index h1 – and
zeroing the lower entries of Λ1 by using pivot λ1. The h1st
row is then multiplied by x. In other words, Nk−1(x) is
transformed into E1(x)T1Nk−1(x) where we define E1(x) =
diag(Ih1−1, x, Im−h1) and

T1 =

 Ih1−1

1
t1 Im−h1

 with t1 ∈ Km−h1 . (3)

Recalling that i1 is the index of the first nonzero row of S
in factorization Λ = LS, we verify first that h1 = i1: since
the zero rows of S correspond with unit vector columns in
L, the product of these two matrices has the form

Λ = LS =

 Ii1−1

1
l1 L′

 λ1 sT
1

S′

 , λ1 ∈ K\{0}.

Here L′ ∈ K(m−i1)×(m−i1), S′ ∈ K(m−i1)×(n−1) and λ1 is
indeed the first nonzero entry of Λ1. Hence h1 = i1. Second,
comparing the first column in both sides of T1Λ = T1LS
yields t1 = −l1 and the i1st column of T−1

1 is thus equal
to the i1st column of L. The first step of FPHPS yields
eventually

x−(k−1)nE1(x
n)T1F (x) ≡ xΛ′

2 + · · ·+ xn−1Λ′
n mod xn

where[
0|Λ′

2| · · · |Λ′
n

]
= E1(0)T1Λ =

[
0 0
0 L′S′

]
∈ Km×n. (4)

Let h2 be the pivot index at step 2 and let T2 and E2(x) be
the associated transformation matrices. It follows from (4)
that h2 > i1. Hence T2 has the form T2 = diag(Ii1 , T ′

2) and
E1(x) commutes with T2. Then, noticing that the ordering
imposed by π is still the same, one can iterate by replacing
T1, LS and i1 < · · · < ir with respectively T ′

2, L′S′ and
i2 − i1 < · · · < ir − i1. We eventually get hj = ij for
1 ≤ j ≤ r. Therefore, defining for 1 ≤ j ≤ r matrices Ej(x)
and Tj as done in (3) for j = 1, we have

Nk(x) = Er(x) · · ·E2(x)E1(x)Tr · · ·T2T1Nk−1(x). (5)

It follows that Er(x) · · ·E2(x)E1(x) = D(x) and that the
ijth column of T−1

j equals the ijth column of L. Noticing
further that because of the structure of Tj the ijth column
of T−1 equals the ijth column of T−1

j , we have T−1 = L
and (2) follows from (5).

2.2 Via Polynomial Matrix Multiplication
To use polynomial matrix multiplication, we now give

a divide-and-conquer version of Algorithm M-Basis called
PM-Basis. This version is based on the following “transi-
tivity lemma”, which may be seen as the counterpart of
Theorem 6.1 in [2] and can be shown in the same way.

For this lemma, we need to keep track of the value of the
multiindex δ involved in Algorithm M-Basis. Noting that
Lemma 2.2 is actually valid for any initial value of variable
δ ∈ Nm, one can modify this algorithm so that it takes
(G, d, δ) as an input and returns (M, µ) where µ is the last
value taken by δ. The initialization step “M := Im; δ := 0”
thus reduces to “M := Im;”.

Lemma 2.3. If (M, µ), (M ′, µ′), (M ′′, µ′′) are the outputs
of Algorithm M-Basis for inputs (G, d, δ), (G, d/2, δ) and

(x−d/2M ′G, d/2, µ′) respectively, then (M, µ) = (M ′′M ′, µ′′).

Algorithm PM-Basis(G, d, δ)
Input: G ∈ K[[x]]m×n with m ≥ n, d ∈ N and δ ∈ Nm.
Output: a σ-basis M ∈ K[x]m×m with σ = nd, µ ∈ Nm.
Condition: d = 0 or log d ∈ N.

3

if d = 0 then (M, µ) := (Im, δ);
else if d = 1 then (M, µ) := M-Basis(G,d,δ);
else if d ≥ 2 then

(M ′, µ′) := PM-Basis(G, d/2, δ);

G′ := x−d/2M ′G mod xd/2;
(M ′′, µ′′) := PM-Basis(G′, d/2, µ′);
(M, µ) := (M ′′M ′, µ′′);

fi;
return (M, µ);

Theorem 2.4. Algorithm PM-Basis is correct. Its cost is
O(MM′(m, d)) or O (̃mωd) operations in K.

Proof. For correctness it suffices to show that the algo-
rithm with input (G, d, δ) uses only the first d coefficients
of series G: when d = 1 this is true because of Algorithm
M-Basis; if we assume this is true for a given d/2 then this is

still true for d since x−d/2M ′G mod xd/2 depends only on G
mod xd. Correctness then follows immediately from Lemma
2.3.

Now about complexity. First, it follows from Algorithm
M-Basis that deg M ≤ d. Hence the product M ′′M ′ costs
MM(m, d/2). Second, since deg M ′ ≤ d/2, the coefficient

in xi of x−d/2M ′G mod xd/2 is the coefficient in xi+d/2 of
M ′(G mod xd). This product costs MM(m, d). The cost
C(m, n, d) of Algorithm PM-Basis thus satisfies C(m, n, 1) =
O(MM(m)) and, for d ≥ 2,

C(m, n, d) ≤ 2C(m, n, d/2) + MM(m, d/2) + MM(m, d).

This gives the bound O(MM′(m, d)).

3. COLUMN REDUCTION
For A ∈ K[x]n×n we consider the problem of computing

C ∈ K[x]n×n such that C = AU is column reduced, U being
a unimodular matrix over K[x]. Column reduction is essen-
tially lattice basis reduction for K[x]-modules. To define the
reduction, let dj denote the degree of the jth column of C.
The corresponding coefficient vector of xdj is the jth lead-
ing vector of C. We let [C]l be the matrix of these leading
vectors.

Definition 3.1. A matrix C is column reduced if its lead-
ing coefficient matrix satisfies rank [C]l = rank C.

We refer to [14, 23] and the references therein for discus-
sions on previous reduction algorithms and applications of
the form especially in linear algebra and in linear control
theory. If r is the rank of A, the best previously known cost
for reducing A was O(n2rd2) operations in K [14]. Thus
in particular O(n3d2) for a nonsingular matrix. Here we
propose a different approach which takes advantage of fast
polynomial matrix multiplication and gives in particular the
complexity estimate O (̃nωd).

We assume that A of degree d is nonsingular in K[x]n×n.
The general case would require further developments. We
compute a column reduced form of A by combining our tech-
niques in [23] to the high-order lifting and the integrality
certificate in [17]. The main idea is to reduce the problem
to the computation of a matrix Padé approximant whose
side-effect is to normalize the involved matrices [23]. Let us
first recall the definition of right matrix greatest common
divisors.

Definition 3.2. A right matrix gcd of P ∈ K[x]m×n and
A ∈ K[x]n×n is any full row rank matrix G such that

U

[
P
A

]
=

[
G
0

]
with U unimodular.

Right gcd’s are not unique, but if [P T AT]T has full col-
umn rank — here this is true by assumption — then, for
given matrices P and A, all the gcd’s are nonsingular and
left equivalent (up to multiplication by a unimodular matrix
on the left) in K[x]n×n. This also leads to the notion of an ir-
reducible matrix fraction description. (See for example [11]
for a detailed study of matrix gcd’s and fractions.)

Definition 3.3. If a right gcd of P and A is unimodular
then we say that P and A are relatively prime and that PA−1

is an irreducible right matrix fraction description.

The whole algorithm for column reduction will be given
in Section 3.3. A matrix fraction H ∈ K(x)n×n is said to
be strictly proper if it tends to zero when x tends to in-
finity [11, §6.3.2]. The first step of the algorithm, detailed
in Section 3.1, is to compute from A a strictly proper and
irreducible right fraction description

H = RA−1 ∈ K(x)n×n, R ∈ K[x]n×n. (6)

The fact that H is strictly proper implies that the degree of
the jth column of R must be strictly lower than the degree
of the jth column of A. Since the degrees of R and A are
bounded by d, the second step of the method, studied in
Section 3.2, is to compute from the first 2d + 1 terms of the
expansion of H a right matrix Padé approximant

H = TC−1

of H. Such an approximant, obtained from the results of
Section 2 and [2], will have the additional property that C
is column reduced. We will see that by the equivalence of
irreducible fractions, C will be a column reduced form of A.

Like the algorithms in [17], our column reduction algo-
rithm is randomized Las Vegas since the first step requires
that det A(0) 6= 0. Without loss of generality this may be
assumed by choosing a random element x0 in K and by com-
puting a column reduced form C of A(x + x0). Indeed, a
column reduced form of A is then recovered as C(x− x0).

3.1 A Strictly Proper and Irreducible Fraction
For a given A, its inverse A−1 may not be a strictly proper

rational function, a case where R = I is not a suitable choice
in (6). We show that the integrality certificate of [17, §11]
can be used here to find a target strictly proper function.

Lemma 3.4. Let A ∈ K[x]n×n of degree d be such that
det A(0) 6= 0. For h > (n− 1)d define R ∈ K[x]m×n by

I =
(
A−1 mod xh

)
A + xhR. (7)

The fraction RA−1 is strictly proper and irreducible. If h is
the closest power of 2 greater than (n− 1)d + 1, the 2d + 1
first terms of the expansion of RA−1 may be computed at the
cost of O(MM(n, d) log n+MM′′(n, d))+O (̃n2d) operations
in K.

4

Proof. Identity (7) is identity (18) in [17] with B = I
and T = A. This is a Euclidean matrix division with coeffi-
cients in reverse order. The fraction RA−1 is strictly proper
because

RA−1 = x−hA−1 − x−h
(
A−1 mod xh

)
(8)

and h > (n − 1)d ≥ deg A∗ where A∗ is the adjoint matrix
of A. On the other hand, there is a unimodular U such that[

xhR
A

]
=

[
I −(A−1 mod xh)
0 I

][
I
A

]
= U

[
I
0

]
.

Hence matrices xhR and A are relatively prime (see Defini-
tion 3.2) and the same is true for R and A.

For h as in the statement, the 2d+1 terms of the expansion
of RA−1 may be computed by high-order xd-lifting [17, §10]
with input parameters A, I, h/d and 3. The corresponding
cost is given by [17, Proposition 17].

3.2 Pad́e Approximation and Reduction
The key observation is that the descriptions TC−1 of H

with C a column reduced form of A are those whose numer-
ator and denominator matrices have minimal degrees (see
Corollary 3.6 below). By definition they satisfy[

H −I
][C

T

]
= 0 mod x2d+1

and, as we shall see, their minimality implies that they must
appear in any σ-basis of G = [H −I] for σ = n(2d+1). (Here
we consider σ-bases with respect to the columns rather than
the rows. Hence we transpose the matrices of Section 2.)

To describe the set of all matrices T and C we use the
notion of minimal basis of a module. For M ∈ K(x)n×m,

m > n, with rank n, let N ∈ K[x]m×(m−n) with columns
forming a basis of the K[x]-submodule ker M . We denote by
d1, d2, . . . , dm−n the column degrees of N and assume they
are ordered as d1 ≤ d2 ≤ · · · ≤ dm−n. Then we have the
following theorem and consequence.

Theorem 3.5. [11, §6.5.4]. If N is column reduced then
the column degrees d′1 ≤ d′2 ≤ · · · ≤ d′m−n of any other basis
of ker M satisfy d′j ≥ dj for 1 ≤ j ≤ m − n. We say that
the columns of N form a minimal basis of ker M .

Corollary 3.6. A basis [CT T T]T of ker G = ker[H −I]
is minimal if and only if C is a column reduced form of A.

Proof. If [CT T T]T is a minimal basis then H = TC−1

must be irreducible, otherwise the simplification of (T, C)
by a right matrix gcd would lead to a basis with smaller de-
grees. The latter would contradict Theorem 3.5. In addition
since [CT T T]T is column reduced then C is column reduced.
Indeed, H being strictly proper implies that T has column
degrees strictly lower that those of C which thus dominate.
By [11, Theorem 6.5-4] we further know that two irreducible
descriptions TC−1 and RA−1 of the same function H have
equivalent denominators. This means that there exists a
unimodular U such that C = AU . Hence C is a column
reduced form of A. Conversely, if C in a basis [CT T T]T is
a column reduced form of A then by Theorem 6.5-4 cited
above, TC−1 is an irreducible description of H. Since C is
column reduced, the non-minimality of [CT T T]T as a basis
of ker G would then contradict its irreducibility.

We now show that, for σ large enough, a σ-basis with
respect to the columns of [H − I] leads to a minimal ba-
sis [CT T T]T as in the corollary, and hence to a column
reduced form of A. We follow here the techniques in [10]
for computing a minimal basis of the kernel of a polynomial
matrix.

Lemma 3.7. Let N ∈ K[x]2n×2n be a σ-basis with respect
to the columns of G = [H − I]. If σ ≥ n(2d + 1), then
the n columns of N of degree at most d define an irreducible
description TC−1 of H with C a column reduced form of A.

Proof. We first show that there may be at most one set
of n columns of N of degree at most d. Then the minimality
of the σ-basis will imply its existence and the fact that it
leads to a fraction description of the form TC−1.

If [QT P T]T is a set of n columns of N of degrees bounded
by d then

HQ− P ≡ 0 mod x2d+1.

If A−1S is a left description of H, defined in the same way
as RA−1 in Lemma 3.4, we get

SQ−AP ≡ 0 mod x2d+1.

Since every matrix in the latter identity has degree at most
d we deduce that

SQ−AP = 0. (9)

It follows from the columns of a σ-basis N being linearly
independent over K(x) [2] that [QT P T]T has full column
rank. Since (9) implies that[

I 0
S −A

][
Q
P

]
=

[
Q
0

]
,

we see that Q is invertible and satisfies

PQ−1 = A−1S = H. (10)

Another choice [QT
1 P T

1]T of n such columns would give
H = PQ−1 = P1Q

−1
1 . By [11, Theorem 6.5-4] the two

descriptions would verify[
Q
P

]
U =

[
Q1

P1

]
with U unimodular,

and this would contradict the nonsingularity of the σ-basis.
Hence the choice [QT P T]T must be unique as announced.

Let d1, . . . , dn be the minimal degrees among the columns
of a minimal description [CT T T]T and let v1, . . . , vn be the
corresponding columns. From ii) in Definition 2.1, v1 can
be written as

v1 =

2n∑
j=1

c
(j)
1 Nj with deg c

(j)
1 + deg Nj ≤ d1

and where Nj is the jth column of the σ-basis N . Thus
one column of N has degree bounded by d1. Now assume
that N has k − 1 columns of degrees d1, . . . , dk−1 with vk

not belonging to the corresponding submodule. As for k =
1, there exists a column of N , linearly independent with
respect to the first k − 1 chosen ones, of degree bounded
by dk. Therefore N contains n distinct columns of degrees
bounded by d1, . . . dn and, by (10), in the kernel of [H − I].
Lemma 3.7 shows in conclusion that these n columns give
C, a column reduced form of A, in their first n rows.

We may notice that the result of the lemma would be true
as soon as σ > 2nd for the computation of an approximant
of type (d− 1, d) as defined in [2].

5

3.3 Cost of the Reduction
Our column reduction algorithm can be stated as follows.

Algorithm ColumnReduction(A)
Input: A ∈ K[x]n×n of degree d.
Output: C = AU a column reduced form of A.
Condition: A is nonsingular.

Choice of a random x0 in K;
if det A(x0) = 0 then fail; /* A is probably singular */
B := A(x + x0);

h := (n− 1)d + 1;
H :=

(
B−1 − (B−1 mod xh)

)
/xh mod x2d+1;

TC−1 := a Padé approximant of H mod x2d+1;
return C(x− x0);

Its complexity follows from Lemma 3.4 concerning the com-
putation of the first terms of H, and from Theorem 2.4 con-
cerning the computation of the n(2d+1)-basis of Lemma 3.7.

Theorem 3.8. A column reduced form of a nonsingular
matrix A of degree d in K[x]n×n can be computed by a Las
Vegas (certified) algorithm in O(MM(n, d) log n+MM′(n, d)+
MM′′(n, d)) +O (̃n2d) or O (̃nωd) operations in K.

4. MATRIX PRODUCT & DETERMINANT
The link between matrix multiplication and determinant

computation over a field K is well known. We may refer
to [5, Chap.16] for a survey of the question. If we have
an algorithm for multiplying two matrices with MM(n) op-
erations in K then we have an algorithm (algebraic Ram)
for computing the determinant with O(MM(n)) operations
in K [4]. Conversely, the exponents (computation trees) of
matrix multiplication and of determinant computation co-
incide [19, 1]. Furthermore, if we have a randomized Monte
Carlo algorithm which computes the determinant with D(n)
operations in K then we have a Monte Carlo algorithm for
multiplying two matrices with O(D(n)) operations in K [8,
Theorem 1.3].

In this section we show that similar results hold for poly-
nomial matrices of degree d. In Section 4.1, using a slight
extension of Baur and Strassen’s idea [1, Corollary 5], we
propose a reduction of polynomial matrix multiplication to
determinant computation. Then in Section 4.2, based on
the techniques in [16, 17, 22, 10], we investigate the reverse
reduction.

We use two models of computation, algebraic straight-line
programs or algorithms on an algebraic Ram.

4.1 Polynomial Matrix Multiplication
Baur and Strassen [1, Corollary 5] in conjunction with [19,

4] have shown that a straight-line program of length D(n)
for computing the determinant of a matrix A in Kn×n can be
transformed into a program of length bounded by O(D(n))
for matrix multiplication. Indeed, the problem of multiply-
ing two matrices can be reduced to matrix inversion [19, 4].
Then matrix inversion is reduced to the problem of com-
puting the determinant by differentiation of the program of
length D(n) [12, 1].

The complexity estimate O(D(n)) for matrix multiplica-
tion relies on the computation of the partial derivatives of
the determinant as a function in K[a1,1, . . . , ai,j , . . . , an,n].

The ai,j ’s are indeterminates standing for the entries of the
input matrix. It was not clear how to extend the result to
polynomial matrices. The output of a program of length
D(n, d) over K which computes the determinant of a poly-
nomial matrix is a function in K[x, a1,1, . . . , ai,j , . . . , an,n],
that is, a set of functions in K[a1,1, . . . , ai,j , . . . , an,n]. A
straightforward idea could be to differentiate at least d such
functions, but it is not known how to do it without increas-
ing the complexity estimate O(D(n, d)).

Here we remark that having only one particular coefficient
of the polynomial matrix determinant is sufficient for recov-
ering the first d + 1 coefficients of the polynomial entries of
the adjoint matrix A∗ = (det A)A−1 ∈ K[x]n×n. Hence we
first compute A∗ modulo xd+1 and from there, the multipli-
cation of two matrices of degree d is easily deduced.

Let A ∈ K[x]n×n have degree d and denote its (i, j) entry

by ai,j =
∑d

k=0 ai,j,kxk. Let further a∗i,j =
∑nd−d

k=0 a∗i,j,kxk

be the (i, j) entry of the adjoint matrix A∗ of A and let ∆ =∑nd
l=0 ∆lx

l be the determinant of A. We have the following
relation between the partial derivatives of coefficient ∆l and
some of the a∗i,j,k’s.

Lemma 4.1. The partial derivatives of the coefficients of
the determinant and the coefficients of the adjoint matrix
satisfy

a∗j,i,l−k =
∂∆l

∂ai,j,k
, 0 ≤ l ≤ nd, 0 ≤ k ≤ d.

where, by convention, a∗j,i,k = 0 if k < 0 or k > nd− d.

Proof. By Cramer’s rule and since ∂ai,j/∂ai,j,k = xk,
we have ∂∆/∂ai,j,k = xka∗j,i. On the other hand, for 1 ≤ k ≤
d the coefficients ∆0, . . . , ∆k−1 do not depend on variable
ai,j,k and thus ∂∆/∂ai,j,k =

∑nd
l=k(∂∆l/∂ai,j,k)xl. There-

fore

nd−d∑
l=0

a∗j,i,lx
k+l =

nd−k∑
l=0

∂∆k+l

∂ai,j,k
xk+l

and the result follows by identifying the coefficients.

The theorem below is given for programs over K which
compute the particular coefficient ∆d. It thus remains valid
for programs over K which compute the whole determinant
in K[x].

Theorem 4.2. If there is a straight-line program of length
D(n, d) over K which computes the (d + 1)st coefficient of
the determinant of an n × n matrix of degree d, then there
is a straight-line program of length no more than 8D(n, d)
which multiplies two n× n matrices of degree d.

Proof. It follows from Lemma 4.1 with l = d that the
first d + 1 coefficients of a∗j,i are given by

a∗j,i,d−k =
∂∆d

∂ai,j,k
, 0 ≤ k ≤ d.

By computing the partial derivatives [12, 1] of the given
program for the determinant coefficient ∆d we thus have a
program of length bounded by 4D(n, d) for computing A∗

mod xd+1. We conclude by applying this result twice to the
well known 3n× 3n matrix

A =

 In A1

In A2

In

 with A1, A2 ∈ K[x]n×n of degree d.

6

The associated adjoint matrix is the matrix of degree 2d

A∗ =

 In −A1 A1A2

In −A2

In

 .

One can thus recover A1A2 mod xd+1 from A∗ mod xd+1.
To get higher order terms, notice that if A1A2 = xdH + L
then H = A1A2 mod xd+1 where M =

∑d
i=0 Md−ix

i is the

reciprocal matrix polynomial of M =
∑d

i=0 Mix
i. Therefore

H and thus H can be recovered from A
∗

mod xd+1.

Following Giesbrecht [8, Theorem 1.3] we may state an
analogous result for algorithms on an algebraic Ram: if we
have a randomized Monte Carlo algorithm which computes
∆d with D(n, d) operations in K then we have a Monte
Carlo algorithm for multiplying two matrices of degree d
with O(D(n, d)) operations in K.

4.2 Polynomial Matrix Determinant
Over K, algorithms for reducing determinant computation

to matrix multiplication work recursively in O(log n) steps.
Roughly, step i involves n/2i products of 2i × 2i matrices.
(See for example [18, 4].) When looking for the determinant
of an n × n polynomial matrix of degree d, both Storjo-
hann’s algorithm [16, 17] and the straight-line program we
derive below from our previous studies in [22, 10], also work
in O(log n) steps. They involve polynomial matrices of di-
mensions 2i × 2i and degree nd/2i (this accounts for the
definition of function MM′′(n, d) in introduction).

In this section we study the costs of these two differ-
ent methods for the polynomial matrix determinant. The
first one is Storjohann’s high order lifting on an algebraic
Ram [16, 17]. We recall the result briefly in Section 4.2.1 for
the sake of completeness. We then present in Section 4.2.2
an alternative approach for straight-line programs, which
has been developed independently [22, 10]. The complexity
estimates are given in terms of MM′(n, d) and MM′′(n, d)
and they all reduce to O (̃nωd) when taking, for instance,
MM(n, d) = Θ(nωd log d log log d).

4.2.1 Lifting Determinant Algorithms
Storjohann gives in [17, Proposition 41] a Las Vegas algo-

rithm for computing the determinant of a polynomial matrix
in O (̃nωd) operations.

Theorem 4.3. [17] The determinant of an n×n polyno-
mial matrix of degree d can be computed by a Las Vegas al-
gorithm in O(MM(n, d) log2 n+

∑log n
i=0 2iMM′′(2−in, 2id))+

O (̃n2d) or O (̃nωd) operations in K.

The term involving MM′′ comes from the integrality cer-
tificate and the Smith form computations of [17, Proposi-
tions 21 & 40]. The term in O(MM(n, d) log2 n) comes from
the high-order lifting of [17, Prop. 17] performed at each
step of the O(log n) steps of the main iteration [17, §17].

4.2.2 Straight-line Determinant
Given A ∈ K[x]n×n of degree d and sufficiently generic,

the straight-line approach presented in [22, 10] computes
the inverse of A as A−1 = B−1U where U ∈ K[x]n×n and
B ∈ K[x]n×n is diagonal of degree nd. One can further
recover the determinant of A from B alone as explained be-
low. By definition of the inverse, U = (det A)−1BA∗ where

A∗ is the adjoint matrix of A. Generically, deg det A =
deg B = nd and det A is coprime with each entry a∗i,j of
A∗. It follows that the diagonal entries bi,i of B are nonzero
constant multiples of det A. Since det A(0) is generically
nonzero, the determinant of a generic A is thus equal to
(det A(0))bi,i/bi,i(0) for 1 ≤ i ≤ n.

In [10], Algorithm Inverse computes B by diagonalizing
the input matrix in log n steps of the form

A → UA =

[
U
U

][
AL AR

]
=

[
UAL

UAR

]
(11)

where AL, AR ∈ K[x]n×n/2 and where U, U ∈ K[x]n/2×n

are minimal bases of the left kernels of AR, AL respectively.
These minimal bases are as in Theorem 3.5, for left kernels.

Now for computing det A we only need the (1, 1) entry of
B and log n “compression” steps of the form

A → UAL

thus suffice. Hence the algorithm below, kindly suggested
by one of the referees.

Algorithm Determinant(A)
Input: A ∈ K[x]n×n of degree d.
Output: det A.
Condition: det A(0) 6= 0, gcd(a∗i,j , det A) = 1, log n ∈ N.

B := copy(A);
m := n;
for i from 1 to log n do

/* B is m×m */

U := a minimal basis of ker B(1:m,1:m/2);

B := UB(1:m,m/2+1:m);
m := m/2;

od;
return (det A(0))b1,1/b1,1(0);

The analysis of this algorithm is similar to the one of the in-
version algorithm in [10] and we simply recall the key point
for complexity: although the minimal bases in (11) can have
degrees as large as nd, they generically have degrees equal to
d — a property which carries over the next step — and can
then be recovered from the rows of any σ-bases of AL, AR

with σ ≥ n(2d + 1) [10, Properties 1 and 2]. Step i in
Algorithm Determinant thus generically computes a B of
dimensions 2−in×2−in and degree 2id; it then follows from
Theorem 2.4 that at step i + 1 the minimal basis U and the
update of B can both be computed in O(MM′(2−in, 2id))
operations in K.

When n is not a power of two, one may augment A as

A =

[
A
X I2p−n

]
where 2p−1 < n < 2p.

When both A and X are generic polynomial matrices of
degree d, the p minimal bases in Determinant(A) will have
degrees bounded by d, 2d, 4d, . . . , 2p−1d and the asymptotic
complexity of computing these bases remains the same as in
the previous paragraph.

Recalling that the cost of computing det A(0) is bounded
by O(MM(n)), we thus have the following for any positive
integer n.

Theorem 4.4. The determinant of an n × n polynomial
matrix of degree d can be computed by a straight-line program
over K of length O(

∑log n
i=0 MM′(2−in, 2id)) or O (̃nωd).

7

5. CONCLUSION
In this paper we reduced polynomial matrix multiplica-

tion to determinant computation and conversely, under the
straight-line model. Under the algebraic Ram model, we re-
duced the tasks of computing a σ-basis and column reduced
form to the one of multiplying square polynomial matrices;
as we have seen, similar reductions follow from [17] for the
problems of computing the determinant and the Smith nor-
mal form.

However, in K[x]n×n it is still unclear whether

- Hermite and Frobenius normal forms,

- associated transformation matrices (even for the col-
umn reduced form),

- the characteristic polynomial

can be computed in O (̃MM(n, d)) or O (̃nωd) operations in
K as well. Another related question is whether the straight-
line approach of Section 4.2.2 yields a O (̃n3d) algorithm for
computing the inverse of a polynomial matrix.

6. REFERENCES
[1] W. Baur and V. Strassen. The complexity of partial

derivatives. Theoretical Computer Science, 22:317–330,
1983.

[2] B. Beckermann and G. Labahn. A uniform approach
for the fast computation of matrix-type Padé
approximants. SIAM Journal on Matrix Analysis and
Applications, 15(3):804–823, 1994.

[3] D. Bini and V.Y. Pan. Polynomial and Matrix
Computations, Vol 1: Fundamental Algorithms.
Birkhauser, Boston, 1994.

[4] J. Bunch and J. Hopcroft. Triangular factorization
and inversion by fast matrix multiplication.
Mathematics of Computation, 28:231–236, 1974.

[5] P. Bürgisser, M. Clausen, and M.A. Shokrollahi.
Algebraic Complexity Theory, volume 315 of
Grundlehren der mathematischen Wissenschaften.
Springer-Verlag, 1997.

[6] D.G. Cantor and E. Kaltofen. On fast multiplication
of polynomials over arbitrary algebras. Acta
Informatica, 28(7):693–701, 1991.

[7] D. Coppersmith. Solving homogeneous linear
equations over GF(2) via block Wiedemann algorithm.
Mathematics of Computation, 62(205):333–350, 1994.

[8] M. Giesbrecht. Nearly optimal algorithms for
canonical matrix forms. PhD thesis, Department of
Computer Science, University of Toronto, 1993.

[9] O.H. Ibarra, S. Moran, and R. Hui. A generalization
of the fast LUP matrix decomposition algorithm and
applications. Journal of Algorithms, 3:45–56, 1982.

[10] C.-P. Jeannerod and G. Villard. Straight-line
computation of the polynomial matrix inverse.
Research Report 2002-47, Laboratoire LIP, ENS Lyon,
France. http://www.ens-lyon.fr/LIP/Pub/rr2002.html.

[11] T. Kailath. Linear systems. Prentice Hall, 1980.

[12] S. Linnainmaa. Taylor expansion of the accumulated
rounding errors. BIT, 16:146–160, 1976.

[13] A. Lobo. Matrix-free linear system solving and
applications to symbolic computation. PhD thesis,
Dept. Comp. Sc., Rensselaer Polytech. Instit., Troy,
New York, Dec. 1995.

[14] T. Mulders and A. Storjohann. On lattice reduction
for polynomial matrices. Journal of Symbolic
Computation, 35(4):377–401, 2003.

[15] A. Storjohann. Algorithms for Matrix Canonical
Forms. PhD thesis, Institut für Wissenschaftliches
Rechnen, ETH-Zentrum, Zurich, Switzerland,
November 2000.

[16] A. Storjohann. High-order lifting (extended abstract).
In Internat. Symp. Symbolic Algebraic Comput., Lille,
France, pages 246–254. ACM Press, July 2002.

[17] A. Storjohann. High-order lifting and integrality
certification. Journal of Symbolic Computation, special
issue on papers of the 2002 Internat. Symp. Symbolic
Algebraic Comput., M. Giusti and L.M. Pardo,
editors, 2003. To appear, 44 pages.

[18] V. Strassen. Gaussian elimination is not optimal.
Numerische Mathematik, 13:354–356, 1969.

[19] V. Strassen. Vermeidung von Divisionen. J. Reine
Angew. Math., 264:182–202, 1973.

[20] E. Thomé. Subquadratic computation of vector
generating polynomials and improvement of the block
Wiedemann algorithm. Journal of Symbolic
Computation, special issue on papers of the 2001
Internat. Symp. Symbolic Algebraic Comput.,
33(5):757–775, 2002.

[21] W.J. Turner. Black box linear algebra with the LinBox
library. PhD thesis, North Carolina State University,
Raleigh, NC USA, May 2002.

[22] G. Villard. Computation of the inverse and
determinant of a matrix. Algorithms Seminar 2001 -
2002, F. Chyzak, editor. INRIA Rocquencourt,
France, 2003.

[23] G. Villard. Computing Popov and Hermite forms of
polynomial matrices. In Internat. Symp. Symbolic
Algebraic Comput., Zurich, Suisse, pages 250–258.
ACM Press, July 1996.

[24] G. Villard. Further analysis of Coppersmith’s block
Wiedemann algorithm for the solution of sparse linear
systems. In Internat. Symp. Symbolic Algebraic
Comput., Maui, Hawaii, USA, pages 32–39. ACM
Press, July 1997.

8

