Solving Sparse Rational Linear Systems

Pascal Giorgi

University of Waterloo (Canada) / University of Perpignan (France)

joint work with
A. Storjohann, M. Giesbrecht (University of Waterloo),
W. Eberly (University of Calgary), G. Villard (ENS Lyon)

ISSAC'2006, Genova - July 11, 2006

Problem

Let A a non-singular matrix and b a vector defined over \mathbb{Z}.
Problem : Compute $x=A^{-1} b$ over the rational numbers

$$
\begin{gathered}
A=\left(\begin{array}{cccc}
289 & 237 & 79 & -268 \\
108 & -33 & -211 & 309 \\
-489 & 104 & -24 & -25 \\
308 & 99 & -108 & 66
\end{array}\right), b=\left(\begin{array}{c}
-131 \\
321 \\
147 \\
43
\end{array}\right) \\
x=A^{-1} b=\left(\begin{array}{c}
\frac{-5795449}{32845073} \\
\frac{15226251}{98535219} \\
\frac{428820914}{22991511} \\
\frac{1523701534}{689746533}
\end{array}\right)
\end{gathered}
$$

Main difficulty : expression swell

Problem

Let A a non-singular matrix and b a vector defined over \mathbb{Z}.
Problem : Compute $x=A^{-1} b$ over the rational numbers

$$
\begin{gathered}
A=\left(\begin{array}{cccc}
-289 & 0 & 0 & -268 \\
0 & -33 & 0 & 0 \\
-489 & 0 & -24 & -25 \\
0 & 0 & -108 & 66
\end{array}\right), b=\left(\begin{array}{c}
-131 \\
321 \\
147 \\
43
\end{array}\right) \\
x=A^{-1} b=\left(\begin{array}{c}
\frac{-378283}{1282641} \\
\frac{-107}{11} \\
\frac{-4521895}{15391692} \\
\frac{219038}{1282641}
\end{array}\right)
\end{gathered}
$$

Main difficulty : expression swell and take advantage of sparsity

Motivations

Large linear systems are involved in many mathematical applications
Over a finite field : integers factorization [Odlyzko 1999], discrete logarithm [Odlyzko 1999; Thomé 2003].

Over the integers: number theory [Cohen 1993], group theory [Newman 1972], integer programming [Aardal, Hurkens, Lenstra 1999].

Rational linear systems are central in recent linear algebra algorithms

- Determinant [Abbott, Bronstein, Mulders 1999 ; Storjohann 2005]
- Smith form [Giesbrecht 1995 ; Eberly, Giesbrecht, Villard 2000]
- Nullspace, Kernel [Chen, Storjohann 2005]

Algorithms for non-singular system solving

Dense matrices :

- Gaussian elimination and CRA
$\hookrightarrow O^{\sim}\left(n^{\omega+1} \log \|A\|\right)$ bit operations
- P-adic lifting [Monck, Carter 1979 ; Dixon 1982]
$\hookrightarrow O^{\sim}\left(n^{3} \log \|A\|\right)$ bit operations
- High order lifting [Storjohann 2005]
$\hookrightarrow O^{\sim}\left(n^{\omega} \log \|A\|\right)$ bit operations

Sparse matrices :

- P-adic lifting or CRA [Kaltofen, Saunders 1991]
$\hookrightarrow O^{\Omega}\left(\gamma n^{2} \log \|A\|\right)$ bit operations with γ non-zero elts.

P-adic algorithm with matrix inversion

Scheme to compute $A^{-1} b$ [Dixon 1982] :
(1-1) $\quad B:=A^{-1} \bmod p$
(1-2) $\quad r:=b$
for $i:=0$ to k
(2-1)
$x_{i}:=B . r \bmod p$
(2-2)
$r:=(1 / p)\left(r-A \cdot x_{i}\right)$
(3-1) $\quad x:=\sum_{i=0}^{k} x_{i} \cdot p^{i}$
(3-2) rational reconstruction on x

P-adic algorithm with matrix inversion

Scheme to compute $A^{-1} b$ [Dixon 1982] :

$$
\begin{array}{ll}
(1-1) & B:=A^{-1} \bmod p \\
(1-2) & r:=b \\
& \text { for } i:=0 \text { to } k \\
(2-1) & x_{i}:=B \cdot r \bmod p \\
(2-2) & r:=(1 / p)\left(r-A \cdot x_{i}\right) \\
(3-1) & x:=\sum_{i=0}^{k} x_{i} \cdot p^{i}
\end{array}
$$

(3-2) rational reconstruction on x
$O^{\sim}\left(n^{3} \log \|A\|\right)$

$$
\begin{array}{r}
k=O^{\sim}(n) \\
O^{\sim}\left(n^{2} \log \|A\|\right) \\
O^{\sim}\left(n^{2} \log \|A\|\right)
\end{array}
$$

P-adic algorithm with matrix inversion

Scheme to compute $A^{-1} b$ [Dixon 1982] :
(1-1) $\quad B:=A^{-1} \bmod p$
(1-2) $\quad r:=b$
for $i:=0$ to k
(2-1) $\quad x_{i}:=B . r \bmod p$
(2-2) $\quad r:=(1 / p)\left(r-A \cdot x_{i}\right)$
(3-1) $\quad x:=\sum_{i=0}^{k} x_{i} \cdot p^{i}$
(3-2) rational reconstruction on x

Main operations : matrix inversion and matrix-vector products

Dense linear system solving in practice

Efficient implementations are available : LinBox 1.0 [www.linalg.org]

- Use tuned BLAS floating-point library for exact arithmetic
- matrix inversion over prime field [Dumas, Giorgi, Pernet 2004]
- BLAS matrix-vector product with CRT over the integers
- Rational number reconstruction
- half GCD [Schönage 1971]
- heuristic using integer multiplication [NTL library]
random dense linear system with 3 bits entries (P4-3.4Ghz)

n	500	1000	2000	3000	4000	5000
Time	0.6 s	4.3 s	31.1 s	99.6 s	236.8 s	449.2 s

performances improvement of a factor 10 over NTL's tuned implementation

What does happen when matrices are sparse?

We consider sparse matrices with $O(n)$ non zero elements
\hookrightarrow matrix-vector product needs only $O(n)$ operations.

Sparse linear system and P -adic lifting

Computing the modular inverse is proscribed due to fill-in
Solution [Kaltofen, Saunders 1991] :
\hookrightarrow use modular minimal polynomial instead of inverse

Sparse linear system and P-adic lifting

Computing the modular inverse is proscribed due to fill-in
Solution [Kaltofen, Saunders 1991] :
\hookrightarrow use modular minimal polynomial instead of inverse

Wiedemann approach (1986)

Let $A \in \mathbb{F}^{\mathrm{n} \times \mathrm{n}}$ of full rank and $b \in \mathbb{F}^{\mathrm{n}}$. Then $x=A^{-1} b$ can be expressed as a linear combination of the Krylov subspace $\left\{b, A b, \ldots, A^{n} b\right\}$

Let $f^{A}(\lambda)=f_{0}+f_{1} \lambda+\ldots+f_{d} \lambda^{d} \in \mathbb{F}[\lambda]$ be the minimal polynomial of A

Sparse linear system and P-adic lifting

Computing the modular inverse is proscribed due to fill-in
Solution [Kaltofen, Saunders 1991] :
\hookrightarrow use modular minimal polynomial instead of inverse

Wiedemann approach (1986)

Let $A \in \mathbb{F}^{\mathrm{n} \times \mathrm{n}}$ of full rank and $b \in \mathbb{F}^{\mathrm{n}}$. Then $x=A^{-1} b$ can be expressed as a linear combination of the Krylov subspace $\left\{b, A b, \ldots, A^{n} b\right\}$

Let $f^{A}(\lambda)=f_{0}+f_{1} \lambda+\ldots+f_{d} \lambda^{d} \in \mathbb{F}[\lambda]$ be the minimal polynomial of A

$$
A^{-1} b=\frac{-1}{f_{0}}\left(f_{1} b+f_{2} A b+\ldots+f_{d} A^{d-1} b\right)
$$

Sparse linear system and P -adic lifting

Computing the modular inverse is proscribed due to fill-in
Solution [Kaltofen, Saunders 1991] :
\hookrightarrow use modular minimal polynomial instead of inverse

Wiedemann approach (1986)

Let $A \in \mathbb{F}^{\mathrm{n} \times \mathrm{n}}$ of full rank and $b \in \mathbb{F}^{\mathrm{n}}$. Then $x=A^{-1} b$ can be expressed as a linear combination of the Krylov subspace $\left\{b, A b, \ldots, A^{n} b\right\}$

Let $f^{A}(\lambda)=f_{0}+f_{1} \lambda+\ldots+f_{d} \lambda^{d} \in \mathbb{F}[\lambda]$ be the minimal polynomial of A

$$
A^{-1} b=\underbrace{\frac{-1}{f_{0}}\left(f_{1} b+f_{2} A b+\ldots+f_{d} A^{d-1} b\right)}_{x}
$$

Applying minpoly in each lifting steps cost $O^{\sim}(n d)$ field operations, then giving a worst case complexity of $O^{\sim}\left(n^{3} \log \|A\|\right)$ bit operations.

Sparse linear system solving in practice

use of LinBox library on Itanium II - 1.3Ghz, 128Gb RAM

- random systems with 3 bits entries and 10 elts/row (plus identity)

	system order				
	400	900	1600	2500	3600
Maple	64.7 s	849 s	11098 s	-	-
CRA-Wied	14.8 s	168 s	1017 s	3857 s	11452 s
P-adic-Wied	10.2 s	113 s	693 s	2629 s	8034 s
Dixon	$\mathbf{0 . 9 s}$	$\mathbf{1 0 s}$	42 s	$\mathbf{1 7 8 s}$	429 s

Sparse linear system solving in practice

use of LinBox library on Itanium II - 1.3Ghz, 128Gb RAM

- random systems with 3 bits entries and 10 elts/row (plus identity)

system order				
400	900	1600	2500	3600

Maple	64.7 s	849 s	11098 s	-	-
CRA-Wied	14.8 s	168 s	1017 s	3857s	11452 s
P-adic-Wied	10.2 s	113 s	693s	2629 s	8034 s
Dixon	$\mathbf{0 . 9 s}$	$\mathbf{1 0 s}$	42s	$\mathbf{1 7 8 s}$	$\mathbf{4 2 9 \mathrm { s }}$

main difference :

$$
\begin{array}{llr}
(2-1) & x_{i}=B . r \bmod p & \text { (Dixon) } \\
(2-1) & x_{i}:=\frac{-1}{f_{0}} \sum_{i=1}^{\operatorname{deg} f^{A}} f_{i} A^{i-1} r \bmod p & (P \text {-adic-Wied) }
\end{array}
$$

Remark:

n sparse matrix applications is far from level 2 BLAS in practice.

Our objectives

In practice :
Integrate level 2 and 3 BLAS in integer sparse solver

In theory :
Improve bit complexity of sparse linear system solving
$\Longrightarrow O^{\sim}\left(n^{\delta}\right)$ bits operations with $\delta<3$?

Our alternative to Block Wiedemann

Express the inverse of the sparse matrix through a structured form \hookrightarrow block Hankel/Toeplitz structures

Let $u \in \mathbb{F}^{\mathrm{s} \times \mathrm{n}}$ and $v \in \mathbb{F}^{\mathrm{n} \times \mathrm{s}}$ s.t. following matrices are non-singular

$$
U=\left(\begin{array}{c}
u \\
u A \\
\vdots \\
u A^{m-1}
\end{array}\right), V=\left(v|A v| \ldots \mid A^{m-1} v\right) \in \mathbb{F}^{\mathrm{n} \times \mathrm{n}}
$$

Our alternative to Block Wiedemann

Express the inverse of the sparse matrix through a structured form \hookrightarrow block Hankel/Toeplitz structures

Let $u \in \mathbb{F}^{\mathrm{s} \times \mathrm{n}}$ and $v \in \mathbb{F}^{\mathrm{n} \times \mathrm{s}}$ s.t. following matrices are non-singular

$$
U=\left(\begin{array}{c}
u \\
u A \\
\vdots \\
u A^{m-1}
\end{array}\right), V=\left(v|A v| \ldots \mid A^{m-1} v\right) \in \mathbb{F}^{\mathrm{n} \times \mathrm{n}}
$$

then we can define the block Hankel matrix

$$
H=U A V=\left(\begin{array}{cccc}
\alpha_{1} & \alpha_{2} & \cdots & \alpha_{m} \\
\alpha_{2} & \alpha_{3} & \cdots & \alpha_{m+1} \\
\vdots & & & \\
\alpha_{m} & \alpha_{m} & \cdots & \alpha_{2 m-1}
\end{array}\right), \quad \alpha_{i}=u A^{i} v \in \mathbb{F}^{\mathrm{s} \times \mathrm{s}}
$$

and thus we have $A^{-1}=V H^{-1} U$

Alternative to Block Wiedemann

- Nice property on block Hankel matrix inverse [Gohberg, Krupnik 1972, Labahn, Choi, Cabay 1990]

$$
H^{-1}=\underbrace{\left(\begin{array}{ccc}
* & \ldots & * \\
\vdots & . & \\
* & &
\end{array}\right)}_{H_{1}} \underbrace{\left(\begin{array}{ccc}
* & \ldots & * \\
& \ddots & \vdots \\
& & *
\end{array}\right)}_{T_{1}}-\underbrace{\left(\begin{array}{ccc}
* & \ldots & * \\
\vdots & . & \\
* & &
\end{array}\right)}_{H_{2}} \underbrace{\left(\begin{array}{ccc}
* & \ldots & * \\
& \ddots & \vdots \\
& & *
\end{array}\right)}_{T_{2}}
$$

where H_{1}, H_{2} are block Hankel matrices and T_{1}, T_{2} are block Toeplitz matrices

Alternative to Block Wiedemann

- Nice property on block Hankel matrix inverse [Gohberg, Krupnik 1972, Labahn, Choi, Cabay 1990]

where H_{1}, H_{2} are block Hankel matrices and T_{1}, T_{2} are block Toeplitz matrices
- Block coefficients in $H_{1}, H_{2}, T_{1}, T_{2}$ come from Hermite Pade approximants of $H(z)=\alpha_{1}+\alpha_{2} z+\ldots+\alpha_{2 m-1} z^{2 m-2}$ [Labahn, Choi, Cabay 1990].
- Complexity of H^{-1} reduces to polynomial matrix multiplication [Giorgi, Jeannerod, Villard 2003].

Alternative to Block Wiedemann

Scheme to compute $A^{-1} b$:
(1-1) $H(z):=\sum_{i=1}^{2 m-1} u A^{i} v . z^{i-1} \bmod p$
(1-2) compute $H^{-1} \bmod p$ from $H(z)$
(1-3) $\quad r:=b$

$$
\text { for } i:=0 \text { to } k
$$

(2-1) $\quad x_{i}:=V H^{-1} U . r \bmod p$
(2-2) $\quad r:=(1 / p)\left(r-A \cdot x_{i}\right)$
(3-1) $\quad x:=\sum_{i=0}^{k} x_{i} \cdot p^{i}$
(3-2) rational reconstruction on x

Alternative to Block Wiedemann

Scheme to compute $A^{-1} b$:
(1-1) $H(z):=\sum_{i=1}^{2 m-1} u A^{i} v . z^{i-1} \bmod p$
(1-2) compute $H^{-1} \bmod p$ from $H(z)$
(1-3) $\quad r:=b$

$$
\begin{aligned}
& \text { for } i \\
& :=0 \text { to } k \\
(2-1) & x_{i} \\
\text { (2-2) } & r:=V H^{-1} U \cdot r \bmod p \\
(3-1) & x:=\sum_{i=0}^{k} x_{i} \cdot p^{i}
\end{aligned}
$$

(3-2) rational reconstruction on x

Alternative to Block Wiedemann

Scheme to compute $A^{-1} b$:

Not yet satisfying : applying matrices U and V is too costly

Applying block Krylov subspaces

$$
v=\left(v|A v| \ldots A^{m-1} v\right) \in \mathbb{F}^{\mathrm{n} \times \mathrm{n}} \text { and } \mathrm{v} \in \mathbb{F}^{\mathrm{n} \times \mathrm{s}}
$$

can be rewrite as

$$
v=(v \mid \quad)+A(|v|)+\ldots+A^{m-1}(\quad v)
$$

Therefore, applying V to a vector corresponds to :

- $m-1$ linear combinations of columns of v
- $m-1$ applications of A

Applying block Krylov subspaces

$$
v=\left(v|A v| \ldots A^{m-1} v\right) \in \mathbb{F}^{\mathrm{n} \times \mathrm{n}} \text { and } \mathrm{v} \in \mathbb{F}^{\mathrm{n} \times \mathrm{s}}
$$

can be rewrite as
$v=(v \mid)+A(|v|)+\ldots+A^{m-1}(\quad v)$

Therefore, applying V to a vector corresponds to :

- $m-1$ linear combinations of columns of $v \quad O(m \times s n \log \|A\|)$
- $m-1$ applications of A

Applying block Krylov subspaces

$$
v=\left(v|A v| \ldots A^{m-1} v\right) \in \mathbb{F}^{\mathrm{n} \times \mathrm{n}} \text { and } \mathrm{v} \in \mathbb{F}^{\mathrm{n} \times \mathrm{s}}
$$

can be rewrite as
$V=(v \mid)+A(|v|)+\ldots+A^{m-1}\left(\begin{array}{l|l} & v)\end{array}\right)$

Therefore, applying V to a vector corresponds to :

- $m-1$ linear combinations of columns of $v \quad O(m \times s n \log \|A\|)$
- m-1 applications of A

How to improve the complexity?

Applying block Krylov subspaces

$$
v=\left(v|A v| \ldots \mid A^{m-1} v\right) \in \mathbb{F}^{\mathrm{n} \times \mathrm{n}} \text { and } \mathrm{v} \in \mathbb{F}^{\mathrm{n} \times \mathrm{s}}
$$

can be rewrite as
$v=(v \mid)+A(|v|)+\ldots+A^{m-1}(\quad v)$

Therefore, applying V to a vector corresponds to :

- $m-1$ linear combinations of columns of $v \quad O(m \times s n \log \|A\|)$
- $m-1$ applications of A

How to improve the complexity?
\Rightarrow using special block projections u and v

Candidates as suitable block projections

Considering $A \in \mathbb{F}^{\mathrm{n} \times \mathrm{n}}$ non-singular and $n=m \times s$.
Let us denote $\mathcal{K}(A, v):=\left[v|A v| \cdots \mid A^{m-1} v\right] \in \mathbb{F}^{\mathrm{n} \times \mathrm{n}}$

Conjecture :

for any non-singular $A \in \mathbb{F}^{\mathrm{n} \times \mathrm{n}}$ and $s \mid n$ there exists a suitable block projection $(R, u, v) \in \mathbb{F}^{\mathrm{n} \times \mathrm{n}} \times \mathbb{F}^{\mathrm{s} \times \mathrm{n}} \times \mathbb{F}^{\mathrm{n} \times \mathrm{s}}$
such that :

1. $\mathcal{K}(R A, v)$ and $\mathcal{K}\left((R A)^{T}, u^{T}\right)$ are non-singular,
2. R can be applied to a vector with $O^{\sim}(n)$ operations,
3. u, u^{T}, v and v^{T} can be applied to a vector with $O^{\sim}(n)$ operations.

A structured block projection

Let v be defined as follow

$$
v^{T}=\left(\begin{array}{lllll}
v_{1} \ldots v_{m} & & & \\
& v_{m+1} \ldots v_{2 m} & & \\
& & \ddots & \\
& & & v_{n-m+1} \ldots v_{n}
\end{array}\right) \in \mathbb{F}^{\mathrm{s} \times \mathrm{n}}
$$

where v_{i} 's are chosen randomly from a sufficient large set.

A structured block projection

Let v be defined as follow

$$
v^{T}=\left(\begin{array}{cccc}
v_{1} \ldots v_{m} & & & \\
& v_{m+1} \ldots v_{2 m} & & \\
& & \ddots & \\
& & & v_{n-m+1} \ldots v_{n}
\end{array}\right) \in \mathbb{F}^{\mathrm{s} \times \mathrm{n}}
$$

where v_{i} 's are chosen randomly from a sufficient large set.
open question : Let R diagonal and v as defined above, is $\mathcal{K}(R A, v)$ necessarily non-singular?

We prooved it for case $s=2$ but answer is still unknown for $s>2$

Our new algorithm

Scheme to compute $A^{-1} b$:
(1-1) choose structured blocks u and v
(1-2) choose R and $A:=R . A, b:=$ R. b
(1-3) $H(z):=\sum_{i=1}^{2 m-1} u A^{i} v \cdot z^{i-1} \bmod p$
(1-4) compute $H^{-1} \bmod p$ from $H(z)$
(1-5) $r:=b$

$$
\text { for } i:=0 \text { to } k
$$

(2-1) $\quad x_{i}:=V H^{-1} U \cdot r \bmod p$
(2-2) $\quad r:=(1 / p)\left(r-A \cdot x_{i}\right)$
(3-1) $\quad x:=\sum_{i=0}^{k} x_{i} \cdot p^{i}$
(3-2) rational reconstruction on x

Our new algorithm

Scheme to compute $A^{-1} b$:
(1-1) choose structured blocks u and v
(1-2) choose R and $A:=R . A, b:=R . b$
(1-3) $H(z):=\sum_{i=1}^{2 m-1} u A^{i} v \cdot z^{i-1} \bmod p$
(1-4) compute $H^{-1} \bmod p$ from $H(z)$
(1-5) $r:=b$

$$
\text { for } i:=0 \text { to } k
$$

(2-1) $\quad x_{i}:=V H^{-1} U . r \bmod p$
(2-2) $\quad r:=(1 / p)\left(r-A \cdot x_{i}\right)$
(3-1) $\quad x:=\sum_{i=0}^{k} x_{i} \cdot p^{i}$
(3-2) rational reconstruction on x

$$
\begin{array}{r}
O^{\sim}\left(n^{2} \log \|A\|\right) \\
O^{\sim}\left(s^{2} n \log \|A\|\right) \\
k=O^{\sim}(n) \\
O^{\sim}((m n+s n) \log \|A\|) \\
O^{\sim}(n \log \|A\|)
\end{array}
$$

Our new algorithm

Scheme to compute $A^{-1} b$:
(1-1) choose structured blocks u and v
(1-2) choose R and $A:=R . A, b:=R . b$
(1-3) $H(z):=\sum_{i=1}^{2 m-1} u A^{i} v \cdot z^{i-1} \bmod p$
(1-4) compute $H^{-1} \bmod p$ from $H(z)$
(1-5) $r:=b$

$$
\text { for } i:=0 \text { to } k
$$

(2-1) $\quad x_{i}:=V H^{-1} U . r \bmod p$
$(2-2) \quad r:=(1 / p)\left(r-A \cdot x_{i}\right)$
(3-1) $\quad x:=\sum_{i=0}^{k} x_{i} \cdot p^{i}$
(3-2) rational reconstruction on x
taking the optimal $m=s=\sqrt{n}$ gives a complexity of $O^{\sim}\left(n^{2.5} \log \|A\|\right)$

High level implementation

LinBox project (Canada-France-USA) : www.linalg.org

Our tools:

- BLAS-based matrix multiplication and matrix-vector product
- polynomial matrix arithmetic (block Hankel inversion)
$\hookrightarrow F F T$, Karatsuba, middle product
- fast application of H^{-1} is needed to get $O^{\sim}\left(n^{2.5} \log \|A\|\right)$

High level implementation

LinBox project (Canada-France-USA) : www.linalg.org

Our tools:

- BLAS-based matrix multiplication and matrix-vector product
- polynomial matrix arithmetic (block Hankel inversion)
$\hookrightarrow F F T$, Karatsuba, middle product
- fast application of H^{-1} is needed to get $O^{\sim}\left(n^{2.5} \log \|A\|\right)$
- Lagrange's representation of H^{-1} at the beginning (Horner's scheme)
- use evaluation/interpolation on polynomial vectors
\hookrightarrow use Vandermonde matrix to have dense matrix operations

Is our new algorithm efficient in practice?

Comparing performances

use of LinBox library on Itanium II - 1.3Ghz, 128Gb RAM

- random systems with 3 bits entries and 10 elts/row (plus identity)

	900	1600	2500	3600	4900	
extra						
memory						
Maple 10	849 s	11098 s	-	-	-	$O(1)$
CRA-Wied	168 s	1017 s	3857 s	11452 s	$\approx 28000 \mathrm{~s}$	$O(n)$
P-adic-Wied	113 s	693 s	2629 s	8034 s	$\approx 20000 \mathrm{~s}$	$O(n)$
Dixon	$\mathbf{1 0 s}$	42 s	178 s	429 s	1257 s	$O\left(n^{2}\right)$
Our algo.	15 s	61 s	$\mathbf{1 7 5 s}$	$\mathbf{4 2 6 s}$	$\mathbf{9 3 7 s}$	$O\left(n^{1.5}\right)$

The expected \sqrt{n} improvement is unfortunately amortized by a high constant in the complexity.

Sparse solver vs Dixon's algorithm

Our algorithm performances are depending on matrix sparsity

Practical effect of blocking factors

\sqrt{n} blocking factor value is theoretically optimal
Is this still true in practice?

Practical effect of blocking factors

\sqrt{n} blocking factor value is theoretically optimal
Is this still true in practice?
system order $=\mathbf{1 0 0 0 0}$, optimal block $=100$

block size	80	125	200	400	500
timing	7213 s	5264 s	4059 s	3833 s	4332 s

system order $=20000$, optimal block ≈ 140

block size	125	160	200	500	800
timing	44720 s	35967 s	30854 s	28502 s	37318 s

Practical effect of blocking factors

\sqrt{n} blocking factor value is theoretically optimal

Is this still true in practice?
system order $=10$ 000, optimal block $=100$

block size	80	125	200	400	500
timing	7213 s	5264 s	4059 s	3833 s	4332 s

system order $=20000$, optimal block ≈ 140

block size	125	160	200	500	800
timing	44720 s	35967 s	30854 s	28502 s	37318 s

best practical blocking factor is dependent upon the ratio of sparse matrix/dense matrix operations efficiency

Conclusions

We provide a new approach for solving sparse integer linear systems :

- improve the complexty by a factor \sqrt{n} (heuristic).
- improve efficiency by minimizing sparse matrix operations and maximizing BLAS use.
drawback : not taking advantage of low degree minimal polynomial

We propose special block projections for sparse linear algebra \hookrightarrow inverse of sparse matrix in $O\left(n^{2.5}\right)$ field op.

Conclusions

We provide a new approach for solving sparse integer linear systems :

- improve the complexty by a factor \sqrt{n} (heuristic).
- improve efficiency by minimizing sparse matrix operations and maximizing BLAS use.
drawback : not taking advantage of low degree minimal polynomial

We propose special block projections for sparse linear algebra \hookrightarrow inverse of sparse matrix in $O\left(n^{2.5}\right)$ field op.

Ongoing work :

- provide an automatic choice of block dimension (non square ?)
- prove conjecture for our structured block projections
- handle the case of singular matrix
- introduce fast matrix multiplication in the complexity

Sparse solver vs Dixon's algorithm

The sparser the matrices are, the earlier the crossover appears

