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Polynomial multiplication

Arithmetic of polynomials has been widely studied, and its complexity is
well established:

Let f , g ∈ K[x ] two polynomials of degree d < n = 2k and K a field. One
can compute the product f .g ∈ K[x ] in

O(n2) op. in K [schoolbook method]

O(n1.58) op. in K [Karatsuba’s method]

O(nlogr+1(2r+1)) op. in K, ∀r > 0 [Toom-Cook method]

O(n log n) op. in K [DFT-based method] assuming K has a nth primitive
root of unity.

Remark

this result assumes that f , g are given in the monomial basis (1, x , x2, ...)
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Polynomial multiplication in R[x ]

All these methods works on polynomials over R[x ].

most of them use evaluation/interpolation technique

O(n log n) method needs to perform the computation in the
algebraic closure of R, which is C, to have primitive roots of unity.

Let f , g ∈ R[x ] with degree d < n = 2k ,

the sketch to compute h = fg is:

set ω = e
−2iπ

2n ∈ C and calculate

[f (1), f (ω), ..., f (ω2n−1)] ∈ Cn using DFT on f and ω

[g(1), g(ω), ..., g(ω2n−1)] ∈ Cn using DFT on g and ω

fg = f (0)g(0) + f (ω)g(ω)x + ... + f (ω2n−1)g(ω2n−1)x2n−1 ∈ C[x ]

[h0, h1, ..., h2n−1] ∈ Rn using DFT on fg and ω−1 plus scaling
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Discrete Fourier Transform DFT

Let f (x) = f0 + f1x + ... + fn−1x
n−1 ∈ R[x ].

The n-point Discrete Fourier Transform (DFTn) can be defined as follow :

DFTn(f ) = (Fk)k=0..n−1 such that Fk =
n−1∑
j=0

fje
−2iπ

n kj ∈ C

which is equivalent to say

DFTn(f ) = (f (0), f (ω), ..., f (ωn−1) with ω = e
−2iπ

n .



Fast Fourier Transform FFT

The Fast Fourier Transform (FFT) is a fast method based on a divide and
conquer approach [Gauss 19th, Cooley-Tuckey 1965] to compute the DFTn. It uses
the following property:

Let f = q0(x
n
2 − 1) + r0 and f = q1(x

n
2 + 1) + r1 s.t. deg r0, deg r1 < n

2
then ∀k ∈ N s.t. k < n

2

f (ω2k) = r0(ω
2k),

f (ω2k+1) = r1(ω
2k+1) = r̄1(ω

2k).

This means DFTn(f ) can be computed using DFT n
2
(r0) and DFT n

2
(r̄1),

yielding a recursive complexity of H(n) = 2H(n/2) + O(n) = O(n log n).



Polynomial multiplication in R[x ]

Asymptotic complexity is not reflecting real behaviour of algorithms in
practice, constant and lower terms in complexity does really matter !!!

Exact number of operations in R to multiply two polynomials of R[x ] with
degree d < n = 2k in monomial basis

Algorithm nbr of multiplication nbr of addition

Schoolbook n2 (n − 1)2

Karatsuba nlog 3 7nlog 3 − 7n + 2

DFT-based(∗) 3n log 2n − n + 6 9n log 2n − 12n + 12

(*) using real-valued FFT[Sorensen, Jones, Heaideman 1987] with 3/3 complex mult.
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Monomial basis for polynomial are not the only ones !!!

Chebyshev basis seems to be very useful
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In this presentation, I will assume that

polynomials have degree d = n − 1 where n = 2k .

formula will be using the degree d .

complexity estimate will be using the number of terms n.
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Chebyshev Polynomials: a short definition

Chebyshev polynomials of the first kind on [−1, 1] are defined as Tk(x)
s.t.

Tk(x) = cos(k arcos(x)), k ∈ N∗ and x ∈ [−1, 1]

These polynomials are orthogonal polynomials defined by the following
recurrence relation: T0(x) = 1

T1(x) = x
Tk(x) = 2xTk−1(x)− Tk−2(x), ∀k > 1

Therefore, they can be used to form a base of the R-vector space of R[x ].



Polynomials in Chebyshev basis

Every a ∈ R[x ] can be expressed as a linear combination of Tk :

a(x) =
a0

2
+

d∑
k=1

akTk(x)

Question:

How fast can we multiply polynomials in Chebyshev basis ?

Main difficulty

Ti (x).Tj(x) =
Ti+j (x)+T|i−j|(x)

2 , ∀i , j ∈ N
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Multiplication of polynomials in Chebyshev basis

Complexity results:

Let a, b ∈ R[x ] two polynomials of degree d = n − 1 given in Chebyshev
basis, one can compute the product a.b ∈ R[x ] in Chebyshev basis with

O(n2) op. in R [direct method]

O(n log n) op. in R [Baszenski, Tasche 1997]

O(M(n)) op. in R [Bostan, Salvy, Schost 2010] where M(n) is the cost of
the multiplication in monomial basis.

Remark:

M(n) method is using basis conversions which increase constant term in
the complexity estimate and probably introduce numerical errors.

My goal is to get a more direct reduction to the monomial case !!!
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Lets first recall existing algorithms ...



Multiplication in Chebyshev basis: the direct method

Derived from Ti (x).Tj(x) =
Ti+j (x)+T|i−j|(x)

2 , ∀i , j ∈ N

Let a, b ∈ R[x ] of degree d , given in Chebyshev basis, then

c(x) = a(x)b(x) =
c0

2
+

2d∑
k=1

ckTk(x)

is computed according to the following equation:

2ck =



a0b0 + 2
d∑

l=1

albl , for k = 0,

k∑
l=0

ak−lbl +
d−k∑
l=1

(albk+l + ak+lbl), for k = 1, ..., d − 1,

d∑
l=k−d

ak−lbl , for k = d , ..., 2d .

using n2 + 2n − 1 multiplications and (n−1)(3n−2)
2 additions in R.
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Yet another quadratic method

Lima, Panario and Wang [IEEE TC 2010] proposed another approach yielding
a quadratic complexity which lowers down the number of multiplications

n2 + 5n − 2

2
multiplications in R,

3n2 + nlog 3 − 6n + 2 additions in R.

Main idea

perform the multiplication on polynomials as if they were in monomial
basis and correct the result.

Interesting: this approach is almost halfway from a direct reduction to
monomial basis case !!!
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Yet another quadratic method [Lima, Panario, Wang 2010]

Let a(x) =
a0

2
+

d∑
k=1

akTk(x) and b(x) =
b0

2
+

d∑
k=1

bkTk(x).

Compute convolutions fk =
k∑

l=0

ak−lbl using Karatsuba algorithm.

Simplifying direct method to

2ck =



f0 + 2
d∑

l=1

albl for k = 0,

fk +
d−k∑
l=1

(albk+l + ak+lbl) for k = 1, ..., d − 1,

fk for k = d , ..., 2d .

still need to compute remaining part to get the result
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All the terms have been already computed together in convolutions fk .

could be recomputed but at an expensive cost

could use separation technique to retrieve them [Lima, Panario, Wang 2010]

Main idea

exploit the recursive three terms structure < a0b0, a0b1 + a1b0, a1b1 > of
Karatsuba’s algorithm to separate all the aik bjk + ajk bik

still needs O(n2) operations and O(nlog3) extra memory !!!
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Fast method - DCT-based [Baszenski, Tasche 1997]

Let f (x) = f0 + f1x + ... + fdxd ∈ R[x ], then

DFTn(f ) = (Fk)k=0..n−1 such that Fk =
n−1∑
j=0

fje
−2iπ

n kj

DCTn(f ) = (Fk)k=0..n−1 such that Fk = 2
n−1∑
j=0

fj cos

[
πk

2n
(2j + 1)

]

DCTn is almost the real part of a DFT2n of the even symmetrized input

Main idea

Use same approach as for monomial basis but with DCT instead of DFT.



Fast method - DCT-based [Baszenski, Tasche 1997]

Use evaluation/interpolation on the points µj = cos( jπ
n ), j = 0, . . . , n − 1

allows the use of DCT and its inverse.

Principle

Let a(x) =
a0

2
+

n∑
k=1

akTk(x).

Using Chebyshev polynomials definition we have

Tk(µj) = cos( kπj
n )

which gives

a(µj) =
n−1∑
k=0

ak cos(
kπj

n
).

This is basically a DCTn on coefficients of a(x).



Fast method - DCT-based [Baszenski, Tasche 1997]

Let a, b ∈ R[x ] given in Chebyshev basis with degree d < n = 2k

The method to compute c = ab is:

set µj = cos( jπ
n ), j = 0, . . . , 2n

[a(µ0), a(µ1), ..., a(µ2n)] ∈ R2n+1 using DCT on a

[b(µ0), b(µ1), ..., b(µ2n)] ∈ R2n+1 using DCT on b

ab = a(µ0)b(µ0) + a(µ1)b(µ1)x + ... + a(µ2n)b(µ2n)x
2n ∈ R[x ]

[c0, c1, ..., c2n] ∈ R2n using DCT on ab plus scaling

This method requires:

3n log 2n − 2n + 3 multiplications in R,

(9n + 3) log 2n − 12n + 12 additions in R.
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Polynomial multiplication in R[x ] (Chebyshev basis)

Exact number of operations in R to multiply two polynomials of R[x ] with
degree d < n = 2k in Chebyshev basis

Algorithm nbr of multiplication nbr of addition

Direct method n2 + 2n − 1 1.5n2 − 2.5n + 1

Lima et al. 0.5n2 + 2.5n − 1 3n2 + nlog3 − 6n + 2

DCT-based 3n log 2n − 2n + 3 (9n + 3) log 2n − 12n + 12



Polynomial multiplication in R[x ] (Chebyshev basis)
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Use same approach as in [Lima, Panario, Wang 2010]

Let a(x) =
a0

2
+

d∑
k=1

akTk(x) and b(x) =
b0

2
+

d∑
k=1

bkTk(x).

Using any polynomial multiplication algorithms (monomial basis) to
compute convolutions:

fk =
k∑

l=0

ak−lbl

2ck =



f0 + 2
d∑

l=1

albl for k = 0,

fk +
d−k∑
l=1

(albk+l + ak+lbl) for k = 1, ..., d − 1,

fk for k = d , ..., 2d .

so we do for the remaining part !!!
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Correcting by monomial basis multiplication

We need to compute:
d∑

l=1

albl

d−k∑
l=1

albk+l

d−k∑
l=1

ak+lbl

for k = 1, . . . , d − 1

which can be deduced from convolutions

gd

+k

=
d∑

l=0

rd−lbl

gd+k =
d−k∑
l=0

rd−lbk+l

gd−k =
d−k∑
l=0

rd−k−lbl

with an extra cost of O(n) operations,
where al = rd−l
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A direct reduction : PM-Chebyshev

Let a(x), b(x) ∈ R[x ] of degree d = n − 1 given in Chebyshev basis and
r(x) the reverse polynomial of a(x).

Use any monomial basis algorithms to compute convolutions:

fk =
k∑

l=0

ak−lbl and gk =
k∑

l=0

rk−lbl

Computation of c(x) = a(x)b(x) in Chebyshev basis is deduced from :

2ck =



f0 + 2(gd − a0b0) for k = 0,

fk + gd−k + gd+k − a0bk − akb0 for k = 1, ..., d − 1,

fk for k = d , ..., 2d .

at a cost of 2M(n) + O(n) operations in R.
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Analysis of the complexity

Let M(n) be the cost of polynomial multiplication in monomial basis with
polynomials of degree d < n.

PM-Chebyshev algorithm costs exactly 2M(n) + 8n − 10 op. in R.

Optimization trick

Setting a0 = b0 = 0 juste before computation of coefficients gk gives

2ck =



f0 + 2gd for k = 0,

fk + gd−k + gd+k for k = 1, ..., d − 1,

fk for k = d , ..., 2d .

reducing the cost to 2M(n) + 4n − 3 op. in R.
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Analysis of the complexity

Exact number of operations in R to multiply two polynomials of R[x ] with
degree d < n = 2k given in Chebyshev basis

M(n) nb. of multiplication nb. of addition

Schoolbook 2n2 + 2n − 1 2n2 − 2n

Karatsuba 2nlog 3 + 2n − 1 14nlog 3 − 12n + 2

DFT-based(∗) 6n log 2n − 6n + 11 18n log 2n − 22n + 22

(*) using real-valued FFT[Sorensen, Jones, Heaideman 1987] with 3/3 complex mult.



Special case of DFT-based multiplication

PM-Chebyshev algorithm can be degenerated to reduce the constant term

It involves 2 multiplications with only 3 different operands.

↪→ one DFT is computed twice

1/6th of the computation can be saved

giving a complexity in this case of

• 5n log 2n − 3n + 9 multiplications in R,

• 15n log 2n − 17n + 18 additions in R.
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Special case of DFT-based multiplication

We can trade another DFT for few linear operations. Indeed, we need to
compute :

DFT2n(ā(x)) and DFT2n(r̄(x)) where

ā(x) = a0 + a1x + . . . + adxd and
r̄(x) = ad + ad−1x + . . . + a0x

d = ā(x−1)xd .

Assuming ω = e
−2iπ

2n , we know that

DFT2n(ā) = [ ā(ωk) ]k=0...2n−1, (1)

DFT2n(r̄) = [ ā(ω2n−k) ωkd ]k=0...2n−1. (2)

(1) and (2) are equivalent modulo 4n − 2 multiplications in C.



Special case of DFT-based multiplication

Almost 1/3th of the computation can be saved

giving a complexity in this case of

• 4n log 2n + 12n + 1 multiplications,

• 12n log 2n + 8 additions.

We will now refer to our algorithm as PM-Chebyshev(XXX),
where XXX represents underlying monomial basis algorithm.
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Polynomial multiplication in Chebyshev basis (theoretical)
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Software Implementation

My goal

provide efficient code for multiplication in Chebyshev basis

evaluate performances of existing algorithms

My method

use C++ for generic, easy, efficient code

re-use as much as possible existing efficient code
↪→ especially for DFT/DCT based code [Spiral project, FFTW library]



Implementing PM-Chebyshev algorithm

Easy as simple calls to monomial multiplication

template<c l a s s T, vo id mulM( vec to r<T>&,
const vec to r<T>&,
const vec to r<T>&)>

vo id mulC ( vec to r<T>& c , const vec to r<T>& a , const vec to r<T>& b){
s i z e t da , db , dc , i ;
da=a . s i z e ( ) ; db=b . s i z e ( ) ; dc=c . s i z e ( ) ;

v e c to r<T> r ( db ) , g ( dc ) ;

f o r ( i =0; i<db ; i++)
r [ i ]=b [ db−1− i ] ;

mulM( c , a , b ) ;
mulM(g , a , r ) ;

f o r ( i =0; i<dc;++ i )
c [ i ]∗=0.5 ;

c [0]+=c2 [ da−1]−a [ 0 ]∗ b [ 0 ] ;

f o r ( i =1; i<da−1; i++)
c [ i ]+= 0 .5∗ ( g [ da−1+i ]+g [ da−1− i ]−a [ 0 ]∗ b [ i ] −a [ i ]∗ b [ 0 ] ) ;

}



Implementation of multiplication in monomial basis

Remark

no standard library available for R[x ]

My codes

naive implementations of Schoolbook and Karatsuba (recursive)

highly optimized DFT-based method using FFTW librarya

↪→ use hermitian symmetry of DFT on real inputs

ahttp://www.fftw.org/



Implementation of multiplication in Chebshev basis

C++ based code

naive implementation of direct method

optimized DCT-based method of [Tasche, Baszenski 1997] using FFTW

Remark

No implementation of [Lima, Panario, Wang 2010] method, since

needs almost as many operations as direct method

requires O(nlog 3) extra memory

no explicit algorithm given, sounds quite tricky to implement

My feelings

it would not be efficient in practice !!!
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A note on DCT in FFTW

Numerical accuracy

Faster algorithms using pre/post processed read DFT suffer from instability
issues. In practice, prefer to use:

smaller optimized DCT-I codelet

doubled size DFT

According to this, our PM-Chebyshev(DFT-based) should really be
competitive.

But, is our code numerically correct ???
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Insight on the numerical accuracy

We experimentally check the relative error of each methods.

Relative error on polynomial multiplication

Let a, b ∈ Fl[x ] given in Chebyshev basis.

Consider ĉ ≈ a.b ∈ Fl[x ] and c = a.b ∈ R[x ], then the relative error is

E (ĉ) =
‖c − ĉ‖2

‖c‖2

We use GMP library1 :

to get exact result as a rational rumber,

to almost compute the relative error as a rational rumber.

1gmplib.org

gmplib.org
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Experimental relative error

Average error on random polynomials with entries lying in [−50, 50].
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Lets now see practical performances ...

based on average time estimation



Polynomial multiplication in Chebyshev basis:
experimental performance on Intel Xeon 2GHz
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Conclusion

Main contribution

Provide a direct method to multiply polynomials given in Chebyshev basis
which reduces to monomial basis multiplication:

better complexity than using basis conversions,

easy implementation offering good performances,

probably as accurate as any other direct methods,

offer the use of FFT instead of DCT-I.

Would be interesting to

compare with optimized Karatsuba’s implementation,

further investigation on stability issues,

discover similarity with finite fields (Dickson Polynomials) and see
applications in cryptography [Hasan, Negre 2008].
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Times of polynomial multiplication in Chebyshev basis (given in µs) on
Intel Xeon 2GHz platform.

n Direct DCT-based DCT-based (FFT) PM-Cheby (Kara) PM-Cheby (DFT) PM-Cheby (DFT accur)

2 0.18 1.08 0.38 0.39 0.57 0.46

4 0.28 1.15 0.48 0.58 0.66 0.54

8 0.57 1.58 0.74 0.80 0.93 0.80

16 1.13 2.43 1.47 1.56 1.52 1.38

32 3.73 4.33 2.65 4.74 2.75 2.59

64 13.44 7.56 8.11 14.93 5.09 4.94

128 50.06 15.76 14.04 61.68 12.84 15.52

256 185.48 32.29 29.69 171.78 23.58 24.70

512 716.51 69.00 62.13 489.29 52.46 57.07

1024 2829.78 146.94 135.47 1427.82 104.94 112.40

2048 11273.20 304.55 317.35 4075.72 234.41 249.88

4096 47753.40 642.17 679.50 12036.00 520.56 566.43

8192 194277.00 1397.42 1437.42 35559.60 1125.40 1185.41

PM-Cheby stands for PM-Chebyshev algorithm.
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