Memory-efficient polynomial arithmetic

Pascal Giorgi ${ }^{1} \quad$ Bruno Grenet ${ }^{1} \quad$ Daniel S. Roche ${ }^{2}$
${ }^{1}$ LIRMM, Université de Montpellier
${ }^{2}$ CS Department, US Naval Academy

Multiplication of polynomials

- Input. $F=\sum_{i=0}^{n-1} F[i] X^{i}$ and $G=\sum_{j=0}^{n-1} G[j] X^{j}$
- Output. $H=F \times G=\sum_{k=0}^{2 n-2} H[k] X^{k}$

Multiplication of polynomials

- Input. $F=\sum_{i=0}^{n-1} F[i] X^{i}$ and $G=\sum_{j=0}^{n-1} G[j] X^{j}$
- Output. $H=F \times G=\sum_{k=0}^{2 n-2} H[k] X^{k}$

```
For i = 0 to n-1:
    For j = 0 to n-1:
        H[i+j] += F[i]*G[j]
```


Multiplication of polynomials

- Input. $F=\sum_{i=0}^{n-1} F[i] X^{i}$ and $G=\sum_{j=0}^{n-1} G[j] X^{j}$
- Output. $H=F \times G=\sum_{k=0}^{2 n-2} H[k] X^{k}$

For $\mathrm{i}=0$ to $\mathrm{n}-1$:
For $\mathrm{j}=0$ to $\mathrm{n}-1$:
$\mathrm{H}[\mathrm{i}+\mathrm{j}]+=\mathrm{F}[\mathrm{i}] * \mathrm{G}[\mathrm{j}]$

- Karatsuba's algorithm: $\left(f_{0}+X^{\frac{n}{2}} f_{1}\right) \cdot\left(g_{0}+X^{\frac{n}{2}} g_{1}\right)$ $=f_{0} g_{0}+\left(\left(f_{0}+f_{1}\right)\left(g_{0}+g_{1}\right)-f_{0} g_{0}-f_{1} g_{1}\right) X^{\frac{n}{2}}+f_{1} g_{1} X^{n}$

Multiplication of polynomials

- Input. $F=\sum_{i=0}^{n-1} F[i] X^{i}$ and $G=\sum_{j=0}^{n-1} G[j] X^{j}$
- Output. $H=F \times G=\sum_{k=0}^{2 n-2} H[k] X^{k}$

For $\mathrm{i}=0$ to $\mathrm{n}-1$:
For $\mathrm{j}=0$ to $\mathrm{n}-1$:
$\mathrm{H}[\mathrm{i}+\mathrm{j}]+=\mathrm{F}[\mathrm{i}] * \mathrm{G}[\mathrm{j}]$

- Karatsuba's algorithm: $\left(f_{0}+X^{\frac{n}{2}} f_{1}\right) \cdot\left(g_{0}+X^{\frac{n}{2}} g_{1}\right)$ $=f_{0} g_{0}+\left(\left(f_{0}+f_{1}\right)\left(g_{0}+g_{1}\right)-f_{0} g_{0}-f_{1} g_{1}\right) X^{\frac{n}{2}}+f_{1} g_{1} X^{n}$
- Toom-Cook algorithm: split F and G in three or more parts

Multiplication of polynomials

- Input. $F=\sum_{i=0}^{n-1} F[i] X^{i}$ and $G=\sum_{j=0}^{n-1} G[j] X^{j}$
- Output. $H=F \times G=\sum_{k=0}^{2 n-2} H[k] X^{k}$

For i $=0$ to $\mathrm{n}-1$:
For $\mathrm{j}=0$ to $\mathrm{n}-1$:
$H[i+j]+=F[i] * G[j]$

- Karatsuba's algorithm: $\left(f_{0}+X^{\frac{n}{2}} f_{1}\right) \cdot\left(g_{0}+X^{\frac{n}{2}} g_{1}\right)$
$=f_{0} g_{0}+\left(\left(f_{0}+f_{1}\right)\left(g_{0}+g_{1}\right)-f_{0} g_{0}-f_{1} g_{1}\right) X^{\frac{n}{2}}+f_{1} g_{1} X^{n}$
- Toom-Cook algorithm: split F and G in three or more parts
- FFT-based algorithms:
$(F, G) \xrightarrow{\text { eval. }}\left(F\left(\omega^{i}\right), G\left(\omega^{i}\right)\right)_{i} \xrightarrow{\text { mult. }} F G\left(\omega^{i}\right)_{i} \xrightarrow{\text { interp. }} F G$

Time complexity of polynomial arithmetic

- Multiplication: $\mathrm{M}(n)$
- Naïve: $O\left(n^{2}\right)$
- Karatsuba: $O\left(n^{\log _{2} 3}\right)=O\left(n^{1.585}\right)$

Karatsuba (1962)

- Toom-3: $O\left(n^{\log _{3} 5}\right)=O\left(n^{1.465}\right) \quad$ Toom (1963), Cook (1966)
- FFT-based:
- $O(n \log n)$ with $2 n$-th root of unity Cooley, Tukey (1965)
- $O(n \log n \log \log n)$

Schönhage, Strassen (1971)

Time complexity of polynomial arithmetic

- Multiplication: $\mathrm{M}(n)$
- Naïve: $O\left(n^{2}\right)$
- Karatsuba: $O\left(n^{\log _{2} 3}\right)=O\left(n^{1.585}\right)$

Karatsuba (1962)

- Toom-3: $O\left(n^{\log _{3} 5}\right)=O\left(n^{1.465}\right) \quad$ Toom (1963), Cook (1966)
- FFT-based:
- $O(n \log n)$ with $2 n$-th root of unity Cooley, Tukey (1965)
- $O(n \log n \log \log n)$

Schönhage, Strassen (1971)

- Other tasks:
- Euclidean division: $O(\mathrm{M}(n))$
- GCD: $O(\mathrm{M}(n) \log n)$
- Evaluation \& interpolation: $O(\mathrm{M}(n) \log n)$
- ...

Time complexity of polynomial arithmetic

- Multiplication: $\mathrm{M}(n)$
- Naïve: $O\left(n^{2}\right)$
- Karatsuba: $O\left(n^{\log _{2} 3}\right)=O\left(n^{1.585}\right)$

Karatsuba (1962)

- Toom-3: $O\left(n^{\log _{3} 5}\right)=O\left(n^{1.465}\right) \quad$ Toom (1963), Cook (1966)
- FFT-based:
- $O(n \log n)$ with $2 n$-th root of unity Cooley, Tukey (1965)
- $O(n \log n \log \log n)$

Schönhage, Strassen (1971)

- Other tasks:
- Euclidean division: $O(\mathrm{M}(n))$
- GCD: $O(\mathrm{M}(n) \log n)$
- Evaluation \& interpolation: $O(\mathrm{M}(n) \log n)$
- ...

What about space complexity?

Space complexity of polynomial arithmetic

First thought: count extra memory apart from input/output

- Naive algorithm: $O(1)$
- Karatsuba, Toom-3, FFT: O(n)
- Other tasks: often $O(n)$, sometime $O(n \log n)$

Space complexity of polynomial arithmetic

First thought: count extra memory apart from input/output

- Naive algorithm: $O(1)$
- Karatsuba, Toom-3, FFT: O(n)
- Other tasks: often $O(n)$, sometime $O(n \log n)$

However, need to precise the complexity model !!!

Space-complexity models

Algebraic-RAM machine:
\rightarrow Standard registers of size $O(\log n)$
\rightarrow Algebraic registers containing one coefficient

Space-complexity models

Algebraic-RAM machine:
\rightarrow Standard registers of size $O(\log n)$
\rightarrow Algebraic registers containing one coefficient

- Read-only input / write-only output
- (Close to) classical complexity theory
- Lower bound $\Omega\left(n^{2}\right)$ on time \times space for multiplication

Space-complexity models

Algebraic-RAM machine:
\rightarrow Standard registers of size $O(\log n)$
\rightarrow Algebraic registers containing one coefficient

- Read-only input / write-only output
- (Close to) classical complexity theory
- Lower bound $\Omega\left(n^{2}\right)$ on time \times space for multiplication
- Read-only input / read-write output
- Reasonable from a programmer's viewpoint

Space-complexity models

Algebraic-RAM machine:
\rightarrow Standard registers of size $O(\log n)$
\rightarrow Algebraic registers containing one coefficient

- Read-only input / write-only output
- (Close to) classical complexity theory
- Lower bound $\Omega\left(n^{2}\right)$ on time \times space for multiplication
- Read-only input / read-write output
- Reasonable from a programmer's viewpoint
- Read-write input and output
- Too permissive in general
- Variant: inputs must be restored at the end

Space-complexity models

Algebraic-RAM machine:
\rightarrow Standard registers of size $O(\log n)$
\rightarrow Algebraic registers containing one coefficient

- Read-only input / write-only output
- (Close to) classical complexity theory
- Lower bound $\Omega\left(n^{2}\right)$ on time \times space for multiplication
- Read-only input / read-write output
- Reasonable from a programmer's viewpoint
- Read-write input and output
- Too permissive in general
- Variant: inputs must be restored at the end

Previous results

Karatsuba's algorithm:

$$
\left(f_{0}+X^{\frac{n}{2}} f_{1}\right) \cdot\left(g_{0}+X^{\frac{n}{2}} g_{1}\right)=f_{0} g_{0}+\left(\left(f_{0}+f_{1}\right)\left(g_{0}+g_{1}\right)-f_{0} g_{0}-f_{1} g_{1}\right) X^{\frac{n}{2}}+f_{1} g_{1} X^{n}
$$

with some intuition space of $2 n$

Previous results

Karatsuba's algorithm:

$$
\left(f_{0}+X^{\frac{n}{2}} f_{1}\right) \cdot\left(g_{0}+X^{\frac{n}{2}} g_{1}\right)=f_{0} g_{0}+\left(\left(f_{0}+f_{1}\right)\left(g_{0}+g_{1}\right)-f_{0} g_{0}-f_{1} g_{1}\right) X^{\frac{n}{2}}+f_{1} g_{1} X^{n}
$$

with some intuition space of $2 n$

- Thomé (2002) : space of $n+O(\log n)$
\rightarrow careful use output $+n$ temp. registers $+O(\log n)$ stack

Previous results

Karatsuba's algorithm:

$$
\left(f_{0}+X^{\frac{n}{2}} f_{1}\right) \cdot\left(g_{0}+X^{\frac{n}{2}} g_{1}\right)=f_{0} g_{0}+\left(\left(f_{0}+f_{1}\right)\left(g_{0}+g_{1}\right)-f_{0} g_{0}-f_{1} g_{1}\right) X^{\frac{n}{2}}+f_{1} g_{1} X^{n}
$$

with some intuition space of $2 n$

- Thomé (2002) : space of $n+O(\log n)$
\rightarrow careful use output $+n$ temp. registers $+O(\log n)$ stack
- Roche (2009): space of only $O(\log n)$
\rightarrow half-additive version $\left(h \leftarrow h_{\ell}+f g\right.$ where $\left.\operatorname{deg}\left(h_{\ell}\right)<n\right)$

Previous results

FFT-based algorithms:

$$
(F, G) \rightarrow\left(F\left(\omega^{i}\right), G\left(\omega^{i}\right)\right)_{i} \rightarrow F G\left(\omega^{i}\right)_{i} \rightarrow F G
$$

Previous results

FFT-based algorithms:

$$
(F, G) \rightarrow\left(F\left(\omega^{i}\right), G\left(\omega^{i}\right)\right)_{i} \rightarrow F G\left(\omega^{i}\right)_{i} \rightarrow F G
$$

space of $2 n$: FFT is in-place (overwriting) but \# points $\approx 2 n$

Previous results

FFT-based algorithms:

$$
(F, G) \rightarrow\left(F\left(\omega^{i}\right), G\left(\omega^{i}\right)\right)_{i} \rightarrow F G\left(\omega^{i}\right)_{i} \rightarrow F G
$$

space of $2 n$: FFT is in-place (overwriting) but \# points $\approx 2 n$

- Roche (2009): space of $O(1)$ when $n=2^{k}$ and $\omega^{2 n}=1$
\rightarrow compute half of the result + recurse
- Harvey-Roche (2010): space of $O(1)$ when $\omega^{2 n}=1$
\rightarrow same with TFT v.d. Hoeven (2004)

Previous results

Summary of complexities

Algorithms	Time complexity	Space complexity
naive	$2 n^{2}+2 n-1$	$O(1)$
Karatsuba ('62)	$<6.5 n^{\log (3)}$	$\leq 2 n+5 \log (n)$
Karatsuba (Thomé'02)	$<7 n^{\log (3)}$	$\leq n+5 \log (n)$
Karatsuba (Roche'09)	$<10 n^{\log (3)}$	$\leq 5 \log (n)$
Toom-3 ('63)	$<\frac{73}{4} n^{\log _{3}(5)}$	$\leq 2 n+5 \log _{3}(n)$
FFT (CT'65)	$9 n \log (2 n)+O(n)$	$2 n$
FFT (Roche'09)	$11 n \log (2 n)+O(n)$	$O(1)$
TFT (HR'10)	$O(n \log (n))$	$O(1)$

Our problematic

Can every polynomial multiplication algorithm be performed without extra memory?

Our problematic

Can every polynomial multiplication algorithm be performed without extra memory?

- O(1)-space Karatsuba's algorithm?
- What about Toom-Cook algorithm?

Our problematic

Can every polynomial multiplication algorithm be performed without extra memory?

- O(1)-space Karatsuba's algorithm?
- What about Toom-Cook algorithm?
- What about other products (short and middle)?

Our problematic

Can every polynomial multiplication algorithm be performed without extra memory?

- O(1)-space Karatsuba's algorithm?
- What about Toom-Cook algorithm?
- What about other products (short and middle)?

Results:

- Yes!
- Almost (for other products)

Outline

Polynomial products and linear maps

Space-preserving reductions

In-place algorithms from out-of-place algorithms

Polynomial products and linear maps

Short product

Short product

Short product

- Low short product: product of truncated power series
- Useful in other algorithms
- Time complexity: $\mathrm{M}(n)$
- Space complexity: $O(n)$

Middle product

Middle product

Middle product

- Useful for Newton iteration
- $G \leftarrow G(1-G F) \bmod X^{2 n}$ with $G F=1+X^{n} H$
- division, square root, ...
- Time complexity: $\mathrm{M}(n) \rightarrow$ Tellegen's transposition
- Space complexity: $O(n)$

Multiplications as linear maps

Example:

$$
\begin{gathered}
f=3 X^{2}+2 X+1 \\
g=X^{2}+2 X+4 \\
f g=3 X^{4}+8 X^{3}+17 X^{2}+10 X+4
\end{gathered}
$$

Multiplications as linear maps

Example:

$$
\begin{gathered}
f=3 X^{2}+2 X+1 \\
g=X^{2}+2 X+4 \\
f g=3 X^{4}+8 X^{3}+17 X^{2}+10 X+4
\end{gathered}
$$

$$
\left[\begin{array}{lll}
1 & & \\
2 & 1 & \\
3 & 2 & 1 \\
& 3 & 2 \\
& & 3
\end{array}\right]\left[\begin{array}{l}
4 \\
2 \\
1
\end{array}\right]=\left[\begin{array}{c}
4 \\
10 \\
17 \\
8 \\
3
\end{array}\right]
$$

Multiplications as linear maps

Full product:

Multiplications as linear maps

Short products:

Multiplications as linear maps

Middle product:

Multiplications as linear maps

Middle product:

Multiplications as linear maps

For simplicity in the presentation we assume

Full product
Short products
Middle product

Space-preserving reductions

Relative difficulties of products

- Without space restrictions:
- $\mathrm{SP} \leq \mathrm{FP}$ and $\mathrm{FP} \leq \mathrm{SP}_{1 \mathrm{o}}+S P_{\mathrm{hi}}$
- MP $\equiv \mathrm{FP}$ (transposition)
- $\mathrm{MP} \leq \mathrm{SP}_{\mathrm{lo}}+\mathrm{SP}_{\mathrm{hi}}+(n-1)$ additions

Relative difficulties of products

- Without space restrictions:
- $\mathrm{SP} \leq \mathrm{FP}$ and $\mathrm{FP} \leq \mathrm{SP}_{1 \mathrm{o}}+S P_{\mathrm{hi}}$
- MP $\equiv \mathrm{FP}$ (transposition)
- $\mathrm{MP} \leq \mathrm{SP}_{\mathrm{lo}_{0}}+\mathrm{SP}_{\mathrm{hi}}+(n-1)$ additions
- Size of inputs and outputs:
- FP : $(n, n) \rightarrow 2 n-1$
- $\mathrm{SP}_{\mathrm{lo}}:(n, n) \rightarrow n$
- $\mathrm{SP}_{\mathrm{hi}}:(n-1, n-1) \rightarrow n-1$
- MP : $(2 n-1, n) \rightarrow n$

Relative difficulties of products

- Without space restrictions:
- $\mathrm{SP} \leq \mathrm{FP}$ and $\mathrm{FP} \leq \mathrm{SP}_{\mathrm{lo}}+\mathrm{SP}_{\mathrm{hi}}$
- MP $\equiv \mathrm{FP}$ (transposition)
- $\mathrm{MP} \leq \mathrm{SP}_{\mathrm{lo}_{0}}+\mathrm{SP}_{\mathrm{hi}}+(n-1)$ additions
- Size of inputs and outputs:
- FP : $(n, n) \rightarrow 2 n-1$
- $\mathrm{SP}_{\mathrm{lo}}:(n, n) \rightarrow n$
- $\mathrm{SP}_{\mathrm{hi}}:(n-1, n-1) \rightarrow n-1$
- MP : $(2 n-1, n) \rightarrow n$
x Reductions unusable in space-restricted settings!

Relative difficulties of products

- Without space restrictions:
- $\mathrm{SP} \leq \mathrm{FP}$ and $\mathrm{FP} \leq \mathrm{SP}_{\mathrm{lo}}+\mathrm{SP}_{\mathrm{hi}}$
- MP $\equiv \mathrm{FP}$ (transposition)
- $\mathrm{MP} \leq \mathrm{SP}_{\mathrm{lo}}+\mathrm{SP}_{\mathrm{hi}}+(n-1)$ additions
- Size of inputs and outputs:
- FP : $(n, n) \rightarrow 2 n-1$
- $\mathrm{SP}_{\mathrm{lo}}:(n, n) \rightarrow n$
- $\mathrm{SP}_{\mathrm{hi}}:(n-1, n-1) \rightarrow n-1$
- MP : $(2 n-1, n) \rightarrow n$
X Reductions unusable in space-restricted settings!
\checkmark We provide space/time preserving reductions

A relevant notion of reduction

Definitions

- $\operatorname{TISP}(t(n), s(n)):$ computable in time $t(n)$ and space $s(n)$
- $A \leq_{c} B: A$ is computable with oracle B
if $B \in \operatorname{TISP}(t(n), s(n))$ then

$$
A \in \operatorname{TISP}(c t(n)+o(t(n)), s(n)+O(1))
$$

- $A \equiv{ }_{c} B: A \leq_{c} B$ and $B \leq_{c} A$

A relevant notion of reduction

Definitions

- $\operatorname{TISP}(t(n), s(n)):$ computable in time $t(n)$ and space $s(n)$
- $A \leq_{c} B: A$ is computable with oracle B
if $B \in \operatorname{TISP}(t(n), s(n))$ then

$$
A \in \operatorname{TISP}(c t(n)+o(t(n)), s(n)+O(1))
$$

- $A \equiv{ }_{c} B: A \leq_{c} B$ and $B \leq_{c} A$

Example

$A \equiv{ }_{1} B$ means A and B are equivalent for both time and space

First results in a nutshell

Theorem

Visual proof

Use of fake padding (in input, not in output!)

- $\mathrm{SP}_{\mathrm{lo}}(n) \leq \mathrm{MP}(n) ; \mathrm{SP}_{\text {hi }}(n) \leq \mathrm{MP}(n-1)$

Visual proof

Use of fake padding (in input, not in output!)

- $\mathrm{SP}_{\mathrm{lo}}(n) \leq \mathrm{MP}(n) ; \mathrm{SP}_{\mathrm{hi}}(n) \leq \mathrm{MP}(n-1)$

- $\mathrm{FP}(n) \leq \mathrm{SP}_{\mathrm{hi}}(n)+\mathrm{SP}_{\mathrm{lo}}(n) \leq \mathrm{MP}(n)+\mathrm{MP}(n-1)$

Half-additive full product: $h \leftarrow h+f \cdot g$

Half-additive full product: $h \leftarrow h+f \cdot g$

Half-additive full product: $h \leftarrow h+f \cdot g$

Remark $\mathrm{FP}_{\mathrm{lo}}^{+} \equiv_{1} \mathrm{FP}_{\text {hi }}^{+}$using reversal polynomials

Half-additive full product: $h \leftarrow h+f \cdot g$

Remark $\mathrm{FP}_{\mathrm{lo}}^{+} \equiv_{1} \mathrm{FP}_{\text {hi }}^{+}$using reversal polynomials
Theorem $\mathrm{FP}^{+} \leq_{2} \mathrm{SP}$ and $\mathrm{SP} \leq_{3 / 2} \mathrm{FP}^{+}$

From SP to FP^{+}

From SP to FP^{+}

From SP to FP^{+}

From SP to FP^{+}

From SP to FP^{+}

$$
\mathrm{FP}_{10}^{+}(n) \leq \mathrm{SP}_{10}(n)+\mathrm{SP}_{\text {hi }}(n)+n-1
$$

From FP^{+}to SP

$$
\left(f_{0}+X^{\lceil n / 2\rceil} f_{1}\right) \cdot\left(g_{0}+X^{\lceil n / 2\rceil} g_{1}\right)=f_{0} g_{0}+X^{[n / 2\rceil}\left(f_{0} g_{1}+f_{1} g_{0}\right) \quad \bmod X^{n}
$$

From FP^{+}to SP

$$
\left(f_{0}+X^{\lceil n / 2\rceil} f_{1}\right) \cdot\left(g_{0}+X^{\lceil n / 2\rceil} g_{1}\right)=f_{0} g_{0}+X^{\lceil n / 2\rceil}\left(f_{0} g_{1}+f_{1} g_{0}\right) \bmod X^{n}
$$

From FP^{+}to SP

$$
\left(f_{0}+X^{\lceil n / 2\rceil} f_{1}\right) \cdot\left(g_{0}+X^{\lceil n / 2\rceil} g_{1}\right)=f_{0} g_{0}+X^{\lceil n / 2\rceil}\left(f_{0} g_{1}+f_{1} g_{0}\right) \bmod X^{n}
$$

From FP^{+}to SP

$$
\left(f_{0}+X^{\lceil n / 2\rceil} f_{1}\right) \cdot\left(g_{0}+X^{\lceil n / 2\rceil} g_{1}\right)=f_{0} g_{0}+X^{\lceil n / 2\rceil}\left(f_{0} g_{1}+f_{1} g_{0}\right) \bmod X^{n}
$$

From FP^{+}to SP

$$
\left(f_{0}+X^{\lceil n / 2\rceil} f_{1}\right) \cdot\left(g_{0}+X^{\lceil n / 2\rceil} g_{1}\right)=f_{0} g_{0}+X^{[n / 2\rceil}\left(f_{0} g_{1}+f_{1} g_{0}\right) \bmod X^{n}
$$

From FP^{+}to SP

$$
\left(f_{0}+X^{\lceil n / 2\rceil} f_{1}\right) \cdot\left(g_{0}+X^{\lceil n / 2\rceil} g_{1}\right)=f_{0} g_{0}+X^{\lceil n / 2\rceil}\left(f_{0} g_{1}+f_{1} g_{0}\right) \quad \bmod X^{n}
$$

From FP^{+}to SP

$$
\left(f_{0}+X^{\lceil n / 2\rceil} f_{1}\right) \cdot\left(g_{0}+X^{\lceil n / 2\rceil} g_{1}\right)=f_{0} g_{0}+X^{\lceil n / 2\rceil}\left(f_{0} g_{1}+f_{1} g_{0}\right) \quad \bmod X^{n}
$$

From FP^{+}to SP

$$
\left(f_{0}+X^{\lceil n / 2\rceil} f_{1}\right) \cdot\left(g_{0}+X^{\lceil n / 2\rceil} g_{1}\right)=f_{0} g_{0}+X^{\lceil n / 2\rceil}\left(f_{0} g_{1}+f_{1} g_{0}\right) \quad \bmod X^{n}
$$

$$
\mathrm{SP}_{\mathrm{lo}}(n) \leq \mathrm{FP}(\lfloor n / 2\rfloor)+\mathrm{FP}_{\mathrm{lo}}^{+}(\lfloor n / 2\rfloor)+\mathrm{FP}_{\mathrm{hi}}^{+}(\lceil n / 2\rceil)
$$

Converse directions?

- From FP to SP:
- problem with the output size
- without space restriction: is $\mathrm{SP}(n) \simeq \mathrm{FP}(n / 2)$?

Converse directions?

- From FP to SP:
- problem with the output size
- without space restriction: is $\mathrm{SP}(n) \simeq \mathrm{FP}(n / 2)$?
- From SP to MP:
- partial result:
- up to $\log (n)$ increase in time complexity
- techniques from next part
- without space restriction
- FP to MP through Tellegen's transposition principle

Summary of results so far

In-place algorithms from out-of-place algorithms

Framework

- In-place algorithms parametrized by out-of-place algorithm
- Out-of-place: uses cn extra space
- Constant c known to the algorithm

Framework

- In-place algorithms parametrized by out-of-place algorithm
- Out-of-place: uses cn extra space
- Constant c known to the algorithm
- Goal:
- Space complexity: $O(1)$
- Time complexity: closest to the out-of-place algorithm

Framework

- In-place algorithms parametrized by out-of-place algorithm
- Out-of-place: uses cn extra space
- Constant c known to the algorithm
- Goal:
- Space complexity: $O(1)$
- Time complexity: closest to the out-of-place algorithm
- Technique:
- Oracle calls in smaller size
- Fake padding
- Tail recursive call

Framework

- In-place algorithms parametrized by out-of-place algorithm
- Out-of-place: uses cn extra space
- Constant c known to the algorithm
- Goal:
- Space complexity: $O(1)$
- Time complexity: closest to the out-of-place algorithm
- Technique:
- Oracle calls in smaller size
- Fake padding
- Tail recursive call

Similar approach for matrix mul. : Boyer, Dumas, Pernet, Zhou (2009)

Tail recursion and fake padding

- Tail recursion:
- Only one recursive call + last (or first) instruction
- No need of recursive stack \rightsquigarrow avoid $O(\log n)$ extra space

Tail recursion and fake padding

- Tail recursion:
- Only one recursive call + last (or first) instruction
- No need of recursive stack \rightsquigarrow avoid $O(\log n)$ extra space
- Fake padding:
- Pretend to pad inputs with zeroes
- Make the data structure responsible for it
- $O(1)$ increase in memory
- Cf. strides in dense linear algebra
- OK in inputs, not in outputs!

Our results

- In-place full product (half additive) in time $(2 c+7) \mathrm{M}(n)$
- In-place short product in time $(2 c+5) \mathrm{M}(n)$
- In-place middle product in time $O(\mathrm{M}(n) \log n)$

In-place FP^{+}from out-of-place FP

$$
\left(f_{0}+X^{k} \hat{f}\right) \cdot\left(g_{0}+X^{k} \hat{g}\right)=f_{0} g_{0}+X^{k}\left(f_{0} \hat{g}+\hat{f} g_{0}\right)+X^{2 k} \hat{f} \hat{g}
$$

In-place FP^{+}from out-of-place FP

$$
\left(f_{0}+X^{k} \hat{f}\right) \cdot\left(g_{0}+X^{k} \hat{g}\right)=f_{0} g_{0}+X^{k}\left(f_{0} \hat{g}+\hat{f} g_{0}\right)+X^{2 k} \hat{f} \hat{g}
$$

In-place FP^{+}from out-of-place FP

$$
\left(f_{0}+X^{k} \hat{f}\right) \cdot\left(g_{0}+X^{k} \hat{g}\right)=f_{0} g_{0}+X^{k}\left(f_{0} \hat{g}+\hat{f} g_{0}\right)+X^{2 k} \hat{f} \hat{g}
$$

In-place FP^{+}from out-of-place FP

$$
\left(f_{0}+X^{k} \hat{f}\right) \cdot\left(g_{0}+X^{k} \hat{g}\right)=f_{0} g_{0}+X^{k}\left(f_{0} \hat{g}+\hat{f} g_{0}\right)+X^{2 k} \hat{f} \hat{g}
$$

In-place FP+ from out-of-place FP

$$
\left(f_{0}+X^{k} \hat{f}\right) \cdot\left(g_{0}+X^{k} \hat{g}\right)=f_{0} g_{0}+X^{k}\left(f_{0} \hat{g}+\hat{f} g_{0}\right)+X^{2 k} \hat{f} \hat{g}
$$

In-place FP^{+}from out-of-place FP

$$
\left(f_{0}+X^{k} \hat{f}\right) \cdot\left(g_{0}+X^{k} \hat{g}\right)=f_{0} g_{0}+X^{k}\left(f_{0} \hat{g}+\hat{f} g_{0}\right)+X^{2 k} \hat{f} \hat{g}
$$

Analysis

Analysis

- $c k+2 k-1 \leq n-k \Longrightarrow k \leq \frac{n+1}{c+3}$
- $T(n)=(2\lceil n / k\rceil-1)(\mathrm{M}(k)+2 k-1)+T(n-k)$

Analysis

- $c k+2 k-1 \leq n-k \Longrightarrow k \leq \frac{n+1}{c+3}$
- $T(n)=(2\lceil n / k\rceil-1)(\mathrm{M}(k)+2 k-1)+T(n-k)$

$$
T(n) \leq(2 c+7) \mathrm{M}(n)+o(\mathrm{M}(n))
$$

In-place short product

- $k \leq n /(c+2)$
- $T(n)=\lceil n / k\rceil \mathrm{M}(k)+(\lceil n / k\rceil-1) \mathrm{M}(k-1)+2 k(\lceil n / k\rceil-1)+T(n-k)$

In-place short product

- $k \leq n /(c+2)$
- $T(n)=\lceil n / k\rceil \mathrm{M}(k)+(\lceil n / k\rceil-1) \mathrm{M}(k-1)+2 k(\lceil n / k\rceil-1)+T(n-k)$

$$
T(n) \leq(2 c+5) \mathrm{M}(n)+o(\mathrm{M}(n))
$$

In-place middle product

In-place middle product

In-place middle product

In-place middle product

- Recursive call on chunks of $f \ldots$ but with full g !
- $T(n, m)=\lceil n / k\rceil \mathrm{M}(k)+T(n, m-k)$

In-place middle product

- Recursive call on chunks of $f \ldots$ but with full g !
- $T(n, m)=\lceil n / k\rceil \mathrm{M}(k)+T(n, m-k)$
$T(n, n) \leq \begin{cases}\mathrm{M}(n) \log _{\frac{c+2}{c+1}}(n)+o(\mathrm{M}(n) \log n) & \text { if } \mathrm{M}(n) \text { is quasi-linear } \\ O(\mathrm{M}(n)) & \text { otherwise }\end{cases}$

Other operations

Work in progress!

Other operations

Work in progress!

- Use our in-place algorithms as building blocks
- Newton iteration: division, square root, ...
- Evaluation \& interpolation
\rightarrow (at most) $\log (n)$ increase in complexity

Other operations

Work in progress!

- Use our in-place algorithms as building blocks
- Newton iteration: division, square root, ...
- Evaluation \& interpolation
\rightarrow (at most) $\log (n)$ increase in complexity

Remark

- In place: division with remainder
- Only quotient or only remainder: not clear
- Main difficulty: size of the output

Summary of the results

Conclusion

- TISP-reductions between polynomial products
- Self-reductions to obtain in-place algorithms

Conclusion

- TISP-reductions between polynomial products
- Self-reductions to obtain in-place algorithms

Comparisons

- Better use specialized in-place algorithms...
- ... when they exist!

Conclusion

- TISP-reductions between polynomial products
- Self-reductions to obtain in-place algorithms

Comparisons

- Better use specialized in-place algorithms...
- ... when they exist!

Main open problems

- Remove the $\log (n)$ for middle product or prove a lower bound
- General result on Tellegen's transposition principle
- What about integer multiplication?

Conclusion

- TISP-reductions between polynomial products
- Self-reductions to obtain in-place algorithms

Comparisons

- Better use specialized in-place algorithms...
- ... when they exist!

Main open problems

- Remove the $\log (n)$ for middle product or prove a lower bound
- General result on Tellegen's transposition principle
- What about integer multiplication?

Thank you!

