Certification of Minimal Approximant Bases

Pascal Giorgi !, Vincent Neiger 2

YUniversité de Montpellier, France 2Université de Limoges, France

W im

ISSAC'2018, New York, USA
July 17, 2018

Approximant Bases

Let F € K[X]™*" a matrix of power series truncated at order d = (d, ..., d,)
columnwise : V1 < j < n,deg F,; < dj

@ approximant of F at order d :

p € KIX[**™ st. pF =]0,...,0] mod X ()

o the set Aq4(F) of all approximants of F forms a free K[X]-module of rank
m [Van Barel, Bultheel 1992].

A basis P € K[X]™*™ of Aq(F) is called an approximant basis

Minimal Approximant Bases

row-reduced over K[X], i.e. minimal row degree among all bases I

3x3 2x2 x+3 3
P=] x*+4x? 2x3 +3x? 5x2 | ,rdeg(P) = |3
X3 4+6x2+4x 2x34+8x2+5 6x2+3 3

Minimal Approximant Bases

row-reduced over K[X], i.e. minimal row degree among all bases I

3x3 3
P=1| x8 2x3 ,rdeg(P) = |3
x3 2x3 3

= row-reduction is related to the rdeg-leading matrix of P

1 3x3
1 P=R=|x} 2x3 ,rdeg(R) =
-1 1 2x° 5x? X2

N W W

Shifted Minimal Approximant Bases

Shifted row degree (or s-row degree)

degree measure for weighting the columns with a shift s = (s1,...,sp)
Xet

rdeg(P) = rdeg(PX®) = rdeg(P)

s-minimal approximant bases

bases of Aq4(F) that have minimal s-row degree among all bases (s-reduced)

Shifted Minimal Approximant Bases

Shifted row degree (or s-row degree)

degree measure for weighting the columns with a shift s = (s1,...,sp)
Xet
rdeg(P) = rdeg(PX®) = rdeg(P)

s-minimal approximant bases

bases of Aq4(F) that have minimal s-row degree among all bases (s-reduced)

s-Popov approximant bases (uniqueness)

@ rdeg.-leading matrix — unitary lower triangular matrix
@ cdeg-leading matrix — identity

Algorithms for Approximant Bases

- polynomial matrix F € K[X
- order d = (d1,...,d,) € ZZ, with D = |d[=}, d;
- shift s € Z™

]ITIX"

Best known algorithms to date
cost in O"(m*D/m) = O"(m“~1D)
@ minimal bases (unique order, no shift) [G., Jeannerod, Villard ISSAC'03]

@ s-minimal bases (unique order, small shifts) [Zhou, Labahn ISSAC'12]

@ s-Popov bases (all orders/shifts) [Jeannerod et al. ISSAC'16]

Algorithms for Approximant Bases

- polynomial matrix F € K[X
- order d = (d1,...,d,) € ZZ, with D = |d[=}, d;
- shift s € Z™

]ITIX"

Best known algorithms to date

cost in O"(m*D/m) = O"(m“~1D)

@ minimal bases (unique order, no shift) [G., Jeannerod, Villard ISSAC'03]
@ s-minimal bases (unique order, small shifts) [Zhou, Labahn ISSAC'12]
@ s-Popov bases (all orders/shifts) [Jeannerod et al. ISSAC'16]

These are deterministic non-optimal algorithms, i.e. Size(F) = mD
when delegating computation — hope for faster verification

Verifying outsourced computation

' Verifier
y=F (x), proof ©

@ generating the proof must be negiglible

e verifying the proof must be easier than computing .7 (x)
— different models : interactive or static

Verifying outsourced computation

' Verifier
y=F (x), proof ©

@ generating the proof must be negiglible

e verifying the proof must be easier than computing .7 (x)
— different models : interactive or static

Sometimes the proof is unnecessary :
— Freivalds’ verification of matrix mul. (vA)B = uC

Certifying linear algebra

Generic approaches exist

@ Interactive proof for boolean circuits [Goldwasser, Kalai, Rothblum 08 ; Thaler '13]

@ matrix mul. reduction — rerun with Freivalds [Kaltofen, Nehrig, Saunders ISSAC'11]

X prover or verifier time might not be optimal

Certifying linear algebra

Generic approaches exist

@ Interactive proof for boolean circuits [Goldwasser, Kalai, Rothblum 08 ; Thaler '13]

@ matrix mul. reduction — rerun with Freivalds [Kaltofen, Nehrig, Saunders ISSAC'11]

X prover or verifier time might not be optimal

Optimal ad’hoc verifications exist [Dumas,Kaltofen ISSAC'14]

v/ prover and verifier time can be “optimal”

v/ independent of the circuit (certifying result rather than execution)

Certifying linear algebra

Generic approaches exist

@ Interactive proof for boolean circuits [Goldwasser, Kalai, Rothblum 08 ; Thaler '13]

@ matrix mul. reduction — rerun with Freivalds [Kaltofen, Nehrig, Saunders ISSAC'11]

X prover or verifier time might not be optimal

Optimal ad’hoc verifications exist [Dumas,Kaltofen ISSAC'14]

v/ prover and verifier time can be “optimal”

v/ independent of the circuit (certifying result rather than execution)

How to optimally certify/verify approximant bases ?

Main result

Given P a s-minimal basis of Aq4(F) with Size(P) = O(mD)

Static proof for s-minimal approximant bases

e additional effort :O(m“~1D) prover
e Monte Carlo verification : O(mD + m“~Y(m+ n)) verifier

@ probability of error <73 < for S C K.

= almost optimal certificate (D > m? often the case in practice)
= total prover time remains in O"(m*~1D)

Main result

Given P a s-minimal basis of Aq4(F) with Size(P) = O(mD)

Size(P) = O(mD) not in general

= but bases computed by best known algorithms have such property

e |rdeg(P)| € O(D) [Van Barel, Bultheel '92; Zhou, Labahn ISSAC'12]
@ |cdeg(P)| < D (s-Popov) [Jeannerod et al. ISSAC'16]

How to certify approximant basis

© Minimal : P is s-reduced
@ Approximant : PF = 0 mod X (d1;-..dh)
@ Basis : rows of P generate Aq4(F)

How to certify approximant basis

© Minimal : P is s-reduced

This amounts to check non-singularity of the rdeg-leading matrix of P
= can be done at a cost O(m*)

How to certify approximant basis

@ Approximant : PF = 0 mod X (d1;-..dh)

not trivial — computing PF mod X(%:%) costs O"(m*~1D).

How to certify approximant basis

@ Approximant : PF = 0 mod X (9t

not trivial — computing PF mod X(%:%) costs O"(m*~1D).

Proposition : Freivalds + [G. '18]

verify PF = G mod X () at optimal cost O(mD)

How to certify approximant basis

@ Approximant : PF = 0 mod X (9t

not trivial — computing PF mod X(%:%) costs O"(m*~1D).

Proposition : Freivalds + [G. '18]

verify PF = G mod X () at optimal cost O(mD)

o check (uP)F = uG mod X () for a random vector u

How to certify approximant basis

@ Approximant : PF = 0 mod X (9t

not trivial — computing PF mod X(%:%) costs O"(m*~1D).

Proposition : Freivalds + [G. '18]

verify PF = G mod X () at optimal cost O(mD)

o check (uP)F = uG mod X () for a random vector u
@ check for a random a € S C K, § = max(di,...,d,) that

UPO Fo UGO
sy | uPL " . v

UP(.§,1 UP.1 UPO F6_1 UG‘S_l

How to certify approximant basis

@ Approximant : PF = 0 mod X (9t

not trivial — computing PF mod X(%:%) costs O"(m*~1D).

Proposition : Freivalds + [G. '18]

verify PF = G mod X () at optimal cost O(mD)

o check (uP)F = uG mod X () for a random vector u
@ check for a random a € S C K, § = max(di,...,d,) that

UPO FO
1] u'Pl .| = uG(w)

UP;§,1 UP'1 UPO F6_1

How to certify approximant basis

@ Approximant : PF = 0 mod X (9t

not trivial — computing PF mod X(%:%) costs O"(m*~1D).

Proposition : Freivalds + [G. 18]

verify PF = G mod X () at optimal cost O(mD)

o check (uP)F = uG mod X () for a random vector u
@ check for a random a € S C K, § = max(di,...,d,) that

Fo
, . Fy
[uP() ... a®Ju(Prem X/)(a) ... a®"1uPy] - | =uG(a)
Fs_1

Horner's intermediate values for a’~*rev(uP) on X = a~!

How to certify approximant basis

@ Basis : rows of P generate Aq4(F)

How to certify approximant basis

@ Basis : rows of P generate Aq4(F)

Proposed lemma

rows of P generate Aq4(F) if and only if
@ PF =0 mod X4
o det(P) =X for0< o <D [Beckermann, Labahn '97]

o the matrix [P(0) C| € K™ (™" has full rank, where
C = PFX~% mod X (our certificate)

v

How to certify approximant basis

@ Basis : rows of P generate Aq4(F)

Proposed lemma

rows of P generate Aq4(F) if and only if
e PF =0 mod X¢

o det(P) =X for0< o <D [Beckermann, Labahn '97]
o the matrix [P(0) C| € K™ (™" has full rank, where
C = PFX~% mod X (our certificate)

v

Idea of proof :

Ad(F)

12
>
3
|

>x M
L

Our protocol for certifying approximant bases

Prover (compute) 0" (m“~'D)
© compute P a s-minimal basis of Aq4(F) < O"(m“~'D)
@ compute C = PFX~¢ mod X 777

= send (P, C) to the verifier

Verifier (check) O(mD + mwfl(m +n))
@ non-singularity of leadmat;geg, (P) — O(m*)
@ full rank of [P(0) (] — O(m“~'n)
Q det(P(a)) = det(P(1))aldees(P)I=Isl = O(mD + m®)

with « random in S C K

© PF = CX% mod X(@+1imdntD) — O(mD)

How to efficiently generate the certificate

Compute C as the term of degree 0 in PFX~9 :
— goal : no more than O"(m“~1D)

Easy when n=mand d = (D/m,...,D/m),

D/m

C=> PcFp/mx
k=1

= this costs at most D/m - O(m*) = O(m“~'D)

How to efficiently generate the certificate

Taking care of unbalanced degrees d = (d1,...,d,), with D =|d| =>"d|
@ all columns in F cannot have large degree, i.e. |cdeg(F)| = D
@ same remark on the rows of P when |rdeg(P)| = O(D)?!

1. similar idea with |cdeg(P)| < D

How to efficiently generate the certificate

Taking care of unbalanced degrees d = (d1,...,d,), with D =|d| =>"d|
@ all columns in F cannot have large degree, i.e. |cdeg(F)| = D
@ same remark on the rows of P when |rdeg(P)| = O(D)?!

Extracting non-zero values according to the degrees

@ # of rows in P with degree > k is no more than D/k

@ # of columns in F with degree > k is no more than D/k

c_ =y pr - Yk < D/m each product costs O(m*)
- ; kTd—k - Vk > D/m each product costs O((D/k)“~1m)

Total cost in O(m“~1D)

1. similar idea with |cdeg(P)| < D

Our protocol for certifying approximant bases

Prover

© compute P a s-minimal basis of Aq4(F)
@ compute C = PFX % mod X

= send (P, C) to the verifier

Verifier
@ check non-singularity of leadmat,qcg, (P)
@ check full rank of [P(0) C]

@ check det(P(a)) = det(P(1))a/*dees(P=lsl
with a random in S C K

@ check PF = CXY mod X(d1tL:dnt1)

O (m“~ D)

< O"(m“~'D)
— O(m*~'D)

O(mD + m‘”il(m +n))

— O(m*)
— O(m“~'n)

— O(mD + m“)

— O(mD)

Conclusion

Almost optimal non-interactive certificate

e negligeable overhead for the Prover, only O(m“~1D)
e verification time in O(mD) + checking rank/det over K
@ probability of error < 2 for § C K [Freivalds; Schwartz, Zippel]

e certificate space is small, i.e. O(mn)

Conclusion

Almost optimal non-interactive certificate

e negligeable overhead for the Prover, only O(m“~1D)
e verification time in O(mD) + checking rank/det over K
@ probability of error < 2 for § C K [Freivalds; Schwartz, Zippel]

e certificate space is small, i.e. O(mn)

turn “easily” into optimal interactive protocol by [Dumas, Kaltofen ISSAC'14]

a LinBox's implementation should be available soon

THANK YOU

Certificate : sketch of proof

Ad(F) = ker ({_I):(d])
PF=0mod X4 «— [P Q] {;d} =0

Column image of kernel bases :

e {_id}) = [Omxn h] V With V € GLonyn(K[X])

@ P basis :

[P Q] = ker([—I;(d}) — rank([P Q}) = rank([P(O) Q(O)]) =m
@ P not basis :

[P Q] =U[A AFX~9] with det(U) = X?

— rank([P(0) Q(0)]) <m

Verifying truncated polynomial matrix product

The polynomial case [G. '18]

Let A= a9+ a X+ + ak,lX"*l and B = bg + by X + --- + bk,lx"*l,
sampling random value X = a in C = AB mod X¥ corresponds to :
o bo ())
; by (o]
[1 . a"_l} 51.1 = [1 « ak_l]
ak._l 0 31. do bk*l Ck—1 y

Verifying truncated polynomial matrix product

The polynomial case [G. '18]

Let A= a9+ a X+ + ak,lX"*l and B = bg + by X + --- + bk,lx"*l,

sampling random value X = a in C = AB mod X¥ corresponds to :
do bO
. by
[1a... ok 1] a_l .| =C(e)

' C by—
dk—1 ... d1 4o k=1

Verifying truncated polynomial matrix product

The polynomial case [G. '18]

Let A= a9+ a X+ + ak,lX"*l and B = bg + by X + --- + bk,lx"*l,
sampling random value X = a in C = AB mod X¥ corresponds to :
bo
by

[A(@) ... a7 (Arem X/)(a) ... a*1ag] = C(w)

bi

Verifying truncated polynomial matrix product

The polynomial case [G. '18]

Let A= a9+ a X+ + ak,lX"*l and B = bg + by X + --- + bk,lx"*l,
sampling random value X = a in C = AB mod X¥ corresponds to :

bo
by

[A(@) ... a7 (Arem X/)(a) ... a*1ag] :
bi

= verification in O(k) using Horner's algo. on a*~trev(A) with X = o~}
= proba error < % for S C K [Schwartz, Zippel '79]

Verifying truncated polynomial matrix product

The polynomial matrix case

Let P € K[X]™*™, F,G € K[X]™*", t = (t1,...,t,) and & = max(t)
How to check PF = G mod Xt?

@ shrink matrix row dimension a la Freidvalds, random u € K1*m
— p=uP € K[x]**™ and g = uG € K[X]1*"
@ apply idea of [G. '18] with vector/matrix

Po Fo

Verifying truncated polynomial matrix product

The polynomial matrix case

Let P € K[X]™*™, F,G € K[X]™*", t = (t1,...,t,) and & = max(t)
How to check PF = G mod Xt?

@ shrink matrix row dimension a la Freidvalds, random u € K1*m
— p=uP € K[x]**™ and g = uG € K[X]1*"
@ apply idea of [G. '18] with vector/matrix

[p(a) ... a®F(prem Xi)(a) ... a®Ipo] | . | =g(a)

cK1xmé F671

Verifying truncated polynomial matrix product

The polynomial matrix case

Let P € K[X]™*™, F,G € K[X]™*", t = (t1,...,t,) and & = max(t)
How to check PF = G mod Xt?

@ shrink matrix row dimension a la Freidvalds, random u € K1*m
— p=uP € K[x]**™ and g = uG € K[X]1*"
@ apply idea of [G. '18] with vector/matrix

Fo
. : F1
[p(a) ... a®F(prem Xi)(a) ... a®Ipo] | . | =g(a)
cK1xmé F671

= verification in O(size(P) + m}_ t;)
= proba error < % for SCK

