Certification of Minimal Approximant Bases

Pascal Giorgi $^{\rm 1}$, Vincent Neiger $^{\rm 2}$

¹Université de Montpellier, France

²Université de Limoges, France

ISSAC'2018, New York, USA July 17, 2018

Approximant Bases

Let $F \in \mathbb{K}[X]^{m \times n}$ a matrix of power series truncated at order $\mathbf{d} = (d_1, \dots, d_n)$ columnwise : $\forall 1 \leq j \leq n, \deg F_{*,j} < d_j$

• approximant of F at order d :

$$p \in \mathbb{K}[X]^{1 imes m}$$
 s.t. $pF = [0, \dots, 0] mod M odd X^{(d_1, \dots, d_n)}$

• the set $\mathcal{A}_{d}(F)$ of all approximants of F forms a free $\mathbb{K}[X]$ -module of rank m [Van Barel, Bultheel 1992].

A basis $P \in \mathbb{K}[X]^{m \times m}$ of $\mathcal{A}_{d}(F)$ is called an approximant basis

Minimal Approximant Bases

Minimality

row-reduced over $\mathbb{K}[X]$, i.e. minimal row degree among all bases

$$P = \begin{bmatrix} 3x^3 & 2x^2 & x+3\\ x^3 + 4x^2 & 2x^3 + 3x^2 & 5x^2\\ x^3 + 6x^2 + 4x & 2x^3 + 8x^2 + 5 & 6x^2 + 3 \end{bmatrix}, \operatorname{rdeg}(P) = \begin{bmatrix} 3\\ 3\\ 3\\ 3\end{bmatrix}$$

Minimal Approximant Bases

Minimality

row-reduced over $\mathbb{K}[X]$, i.e. minimal row degree among all bases

$$P = \begin{bmatrix} 3x^3 & 2x^2 & x+3\\ x^3 + 4x^2 & 2x^3 + 3x^2 & 5x^2\\ x^3 + 6x^2 + 4x & 2x^3 + 8x^2 + 5 & 6x^2 + 3 \end{bmatrix}, \operatorname{rdeg}(P) = \begin{bmatrix} 3\\ 3\\ 3\\ 3\end{bmatrix}$$

 \Rightarrow row-reduction is related to the rdeg-leading matrix of P

$$\begin{bmatrix} 1 & & \\ & 1 & \\ & -1 & 1 \end{bmatrix} P = R = \begin{bmatrix} 3x^3 & 2x^2 & x+3 \\ x^3 + 4x^2 & 2x^3 + 3x^2 & 5x^2 \\ 2x^2 + 4x & 5x^2 + 5 & x^2 + 3 \end{bmatrix}, \operatorname{rdeg}(R) = \begin{bmatrix} 3 \\ 3 \\ 2 \end{bmatrix}$$

Shifted Minimal Approximant Bases

s-minimal approximant bases

bases of $A_d(F)$ that have minimal s-row degree among all bases (s-reduced)

Shifted Minimal Approximant Bases

s-minimal approximant bases

bases of $A_d(F)$ that have minimal s-row degree among all bases (s-reduced)

s-Popov approximant bases (uniqueness)

- $\bullet\ \mathrm{rdeg}_{s}\text{-leading matrix}\to \mathsf{unitary}\ \mathsf{lower}\ \mathsf{triangular}\ \mathsf{matrix}$
- $\bullet \ cdeg-leading \ matrix \rightarrow identity$

Algorithms for Approximant Bases

- polynomial matrix $F \in \mathbb{K}[X]^{m imes n}$
- order $\mathbf{d} = (d_1, \dots, d_n) \in \mathbb{Z}_{>0}^n$ with $D = |\mathbf{d}| = \sum_i d_i$
- shift $\mathbf{s} \in \mathbb{Z}^m$

Best known algorithms to date

cost in $O^{\sim}(m^{\omega}D/m) = O^{\sim}(m^{\omega-1}D)$

- minimal bases (unique order, no shift)
- s-minimal bases (unique order, small shifts)
- s-Popov bases (all orders/shifts)

[G., Jeannerod, Villard ISSAC'03]

[Zhou, Labahn ISSAC'12]

[Jeannerod et al. ISSAC'16]

Algorithms for Approximant Bases

- polynomial matrix $\pmb{F} \in \mathbb{K}[X]^{m imes n}$
- order $\mathbf{d} = (d_1, \dots, d_n) \in \mathbb{Z}_{>0}^n$ with $D = |\mathbf{d}| = \sum_j d_j$
- shift $\mathbf{s} \in \mathbb{Z}^m$

Best known algorithms to date

cost in $O^{\sim}(m^{\omega}D/m) = O^{\sim}(m^{\omega-1}D)$

- minimal bases (unique order, no shift)
- s-minimal bases (unique order, small shifts)
- s-Popov bases (all orders/shifts)

[G., Jeannerod, Villard ISSAC'03]

[Zhou, Labahn ISSAC'12]

[Jeannerod et al. ISSAC'16]

These are deterministic non-optimal algorithms, i.e. Size(F) = mDwhen delegating computation \rightarrow hope for faster verification

Verifying outsourced computation

- generating the proof must be negiglible
- verifying the proof must be easier than computing $\mathscr{F}(x)$ \rightarrow different models : interactive or static

Verifying outsourced computation

- generating the proof must be negiglible
- verifying the proof must be easier than computing $\mathscr{F}(x)$ \rightarrow different models : interactive or static

Sometimes the proof is unnecessary :

 \rightarrow Freivalds' verification of matrix mul. (*uA*)*B* = *uC*

Certifying linear algebra

Generic approaches exist

- Interactive proof for boolean circuits [Goldwasser, Kalai, Rothblum '08; Thaler '13]
- $\bullet\,$ matrix mul. reduction $\rightarrow\,$ rerun with Freivalds [Kaltofen, Nehrig, Saunders ISSAC'11]

 \boldsymbol{X} prover or verifier time might not be optimal

Certifying linear algebra

Generic approaches exist

- Interactive proof for boolean circuits [Goldwasser, Kalai, Rothblum '08; Thaler '13]
- $\bullet\,$ matrix mul. reduction $\rightarrow\,$ rerun with Freivalds [Kaltofen, Nehrig, Saunders ISSAC'11]
- **X** prover or verifier time might not be optimal

Optimal ad'hoc verifications exist [Dumas,Kaltofen ISSAC'14]

- prover and verifier time can be "optimal"
- / independent of the circuit (certifying result rather than execution)

Certifying linear algebra

Generic approaches exist

- Interactive proof for boolean circuits [Goldwasser, Kalai, Rothblum '08; Thaler '13]
- $\bullet\,$ matrix mul. reduction $\rightarrow\,$ rerun with Freivalds [Kaltofen, Nehrig, Saunders ISSAC'11]
- **X** prover or verifier time might not be optimal

Optimal ad'hoc verifications exist [Dumas,Kaltofen ISSAC'14]

- / prover and verifier time can be "optimal"
- independent of the circuit (certifying result rather than execution)

How to optimally certify/verify approximant bases?

Main result

Given P a s-minimal basis of $A_d(F)$ with Size(P) = O(mD)

Static proof for s -minimal approximant bases	
• additional effort : $O(m^{\omega-1}D)$	prover
• Monte Carlo verification : $O(mD + m^{\omega-1}(m+n))$	verifier
• probability of error $\leq rac{D}{\#S}$ for $S \subset \mathbb{K}$.	

⇒ almost optimal certificate ($D \gg m^2$ often the case in practice) ⇒ total prover time remains in $O^{\sim}(m^{\omega-1}D)$

Main result

Given P a s-minimal basis of $A_d(F)$ with Size(P) = O(mD)

Size(P) = O(mD) not in general \Rightarrow but bases computed by best known algorithms have such property• $|rdeg(P)| \in O(D)$ [Van Barel, Bultheel '92; Zhou, Labahn ISSAC'12]• $|cdeg(P)| \leq D$ (s-Popov)[Jeannerod et al. ISSAC'16]

- Minimal : P is s-reduced
- Approximant : $PF = 0 \mod X^{(d_1, \dots, d_n)}$
- Basis : rows of P generate $\mathcal{A}_{d}(F)$

Minimal : P is s-reduced

This amounts to check non-singularity of the $rdeg_s$ -leading matrix of P \Rightarrow can be done at a cost $O(m^{\omega})$

```
• Approximant : PF = 0 \mod X^{(d_1, \dots, d_n)}
```

not trivial \rightarrow computing *PF* mod $X^{(d_1,...,d_n)}$ costs $O^{\sim}(m^{\omega-1}D)$.

• Approximant :
$$PF = 0 \mod X^{(d_1, \dots, d_n)}$$

not trivial \rightarrow computing *PF* mod $X^{(d_1,...,d_n)}$ costs $O^{\sim}(m^{\omega-1}D)$.

Proposition : Freivalds + [G. '18]

verify $PF = G \mod X^{(d_1,...,d_n)}$ at optimal cost O(mD)

not trivial \rightarrow computing *PF* mod $X^{(d_1,...,d_n)}$ costs $O^{\sim}(m^{\omega-1}D)$.

Proposition : Freivalds + [G. '18] verify $PF = G \mod X^{(d_1,...,d_n)}$ at optimal cost O(mD)

• check $(uP)F = uG \mod X^{(d_1,...,d_n)}$ for a random vector u

not trivial \rightarrow computing *PF* mod $X^{(d_1,...,d_n)}$ costs $O^{\sim}(m^{\omega-1}D)$.

Proposition : Freivalds + [G. '18]

verify $PF = G \mod X^{(d_1,...,d_n)}$ at optimal cost O(mD)

- check $(uP)F = uG \mod X^{(d_1,...,d_n)}$ for a random vector u
- check for a random $lpha \in \mathcal{S} \subset \mathbb{K}$, $\delta = \max\left(d_1, \ldots, d_n\right)$ that

$$\begin{bmatrix} 1 \ \alpha \ \dots \ \alpha^{\delta-1} \end{bmatrix} \begin{bmatrix} uP_0 \\ uP_1 & \ddots \\ \vdots & \ddots & \ddots \\ uP_{\delta-1} \ \dots \ uP_1 \ uP_0 \end{bmatrix} \begin{bmatrix} F_0 \\ F_1 \\ \vdots \\ F_{\delta-1} \end{bmatrix} = \begin{bmatrix} 1 \ \alpha \ \dots \ \alpha^{\delta-1} \end{bmatrix} \begin{bmatrix} uG_0 \\ uG_1 \\ \vdots \\ uG_{\delta-1} \end{bmatrix}$$

not trivial \rightarrow computing *PF* mod $X^{(d_1,...,d_n)}$ costs $O^{\sim}(m^{\omega-1}D)$.

Proposition : Freivalds + [G. '18]

verify $PF = G \mod X^{(d_1,...,d_n)}$ at optimal cost O(mD)

- check $(uP)F = uG \mod X^{(d_1,...,d_n)}$ for a random vector u
- check for a random $lpha \in \mathcal{S} \subset \mathbb{K}$, $\delta = \max\left(d_1, \ldots, d_n\right)$ that

$$\begin{bmatrix} 1 \ \alpha \ \dots \ \alpha^{\delta-1} \end{bmatrix} \begin{bmatrix} uP_0 \\ uP_1 & \ddots \\ \vdots & \ddots & \ddots \\ uP_{\delta-1} \ \dots \ uP_1 \ uP_0 \end{bmatrix} \begin{bmatrix} F_0 \\ F_1 \\ \vdots \\ F_{\delta-1} \end{bmatrix} = uG(\alpha)$$

2 Approximant :
$$PF = 0 \mod X^{(d_1, \dots, d_n)}$$

not trivial \rightarrow computing *PF* mod $X^{(d_1,...,d_n)}$ costs $O^{\sim}(m^{\omega-1}D)$.

Proposition : Freivalds + [G. '18]

verify $PF = G \mod X^{(d_1,...,d_n)}$ at optimal cost O(mD)

- check $(uP)F = uG \mod X^{(d_1,...,d_n)}$ for a random vector u
- check for a random $lpha \in \mathcal{S} \subset \mathbb{K}$, $\delta = \max\left(d_1, \ldots, d_n\right)$ that

$$\begin{bmatrix} uP(\alpha) \ \dots \ \alpha^{\delta-j}u(P \operatorname{rem} X^{j})(\alpha) \ \dots \ \alpha^{\delta-1}uP_{0} \end{bmatrix} \begin{bmatrix} F_{0} \\ F_{1} \\ \vdots \\ F_{\delta-1} \end{bmatrix} = uG(\alpha)$$

Horner's intermediate values for $\alpha^{\delta-1} \operatorname{rev}(uP)$ on $X = \alpha^{-1}$

(a) Basis : rows of *P* generate $\mathcal{A}_{d}(F)$

• Basis : rows of *P* generate $\mathcal{A}_{d}(F)$

Proposed lemma

rows of P generate $\mathcal{A}_{d}(F)$ if and only if

- $PF = 0 \mod X^d$
- $det(P) = X^{\delta}$ for $0 < \delta \le D$

[Beckermann, Labahn '97]

• the matrix $\begin{bmatrix} P(0) & C \end{bmatrix} \in \mathbb{K}^{m \times (m+n)}$ has full rank, where $C = PFX^{-d} \mod X$ (our certificate)

• Basis : rows of *P* generate $\mathcal{A}_{d}(F)$

Proposed lemma

rows of P generate $\mathcal{A}_{d}(F)$ if and only if

- $PF = 0 \mod X^d$
- $det(P) = X^{\delta}$ for $0 < \delta \leq D$

[Beckermann, Labahn '97]

• the matrix $\begin{bmatrix} P(0) & C \end{bmatrix} \in \mathbb{K}^{m \times (m+n)}$ has full rank, where $C = PFX^{-d} \mod X$ (our certificate)

Idea of proof :

$$\frac{PFOOT}{PF} \stackrel{!}{\longrightarrow} \mathcal{A}_{\mathbf{d}}(F) \simeq \ker\left(\begin{bmatrix}F\\-X^{\mathbf{d}}\end{bmatrix}\right)$$
$$PF = 0 \mod X^{\mathbf{d}} \iff \begin{bmatrix}P & PFX^{-\mathbf{d}}\end{bmatrix} \begin{bmatrix}F\\-X^{\mathbf{d}}\end{bmatrix} = 0$$

Our protocol for certifying approximant bases

 $PF = CX^{\mathsf{d}} \mod X^{(d_1+1,\ldots,d_n+1)}$

How to efficiently generate the certificate

Compute C as the term of degree 0 in PFX^{-d} : \rightarrow goal : no more than $O^{\sim}(m^{\omega-1}D)$

Easy when n = m and $\mathbf{d} = (D/m, \dots, D/m)$,

$$C = \sum_{k=1}^{D/m} P_k F_{D/m-k}$$

 \Rightarrow this costs at most $D/m \cdot O(m^{\omega}) = O(m^{\omega-1}D)$

How to efficiently generate the certificate

Taking care of unbalanced degrees $\mathbf{d} = (d_1, \dots, d_n)$, with $D = |\mathbf{d}| = \sum d_j$

- all columns in F cannot have large degree, i.e. |cdeg(F)| = D
- same remark on the rows of P when $|rdeg(P)| = O(D)^1$

1. similar idea with $|cdeg(P)| \leq D$

How to efficiently generate the certificate

Taking care of unbalanced degrees $\mathbf{d} = (d_1, \dots, d_n)$, with $D = |\mathbf{d}| = \sum d_j$

- all columns in F cannot have large degree, i.e. |cdeg(F)| = D
- same remark on the rows of P when $|rdeg(P)| = O(D)^{1}$

Extracting non-zero values according to the degrees

- # of rows in P with degree $\geq k$ is no more than D/k
- # of columns in F with degree $\geq k$ is no more than D/k

$$C = \sum_{k=1}^{\max(\mathbf{d})} P_k^* F_{\mathbf{d}-k}^* \qquad \begin{array}{l} - \forall k < D/m \text{ each product costs } O(m^{\omega}) \\ - \forall k \ge D/m \text{ each product costs } O((D/k)^{\omega-1}m) \end{array}$$

Total cost in $O(m^{\omega-1}D)$

^{1.} similar idea with $|cdeg(P)| \leq D$

Our protocol for certifying approximant bases

Conclusion

Almost optimal non-interactive certificate

- negligeable overhead for the *Prover*, only $O(m^{\omega-1}D)$
- verification time in O(mD) + checking rank/det over \mathbb{K}
- probability of error $\leq rac{D}{S}$ for $S \subset \mathbb{K}$ [Freivalds; Schwartz, Zippel]
- certificate space is small, i.e. O(mn)

Conclusion

Almost optimal non-interactive certificate

- negligeable overhead for the *Prover*, only $O(m^{\omega-1}D)$
- verification time in O(mD) + checking rank/det over \mathbb{K}
- probability of error $\leq \frac{D}{5}$ for $S \subset \mathbb{K}$ [Freivalds; Schwartz, Zippel]
- certificate space is small, i.e. O(mn)

Remark

- turn "easily" into optimal interactive protocol by [Dumas, Kaltofen ISSAC'14]
- a LinBox's implementation should be available soon

THANK YOU

Certificate : sketch of proof

$$\mathcal{A}_{\mathbf{d}}(F) \simeq \ker\left(\begin{bmatrix} F\\ -X^{\mathbf{d}} \end{bmatrix}\right)$$
$$PF = 0 \mod X^{\mathbf{d}} \iff \begin{bmatrix} P & Q \end{bmatrix} \begin{bmatrix} F\\ -X^{\mathbf{d}} \end{bmatrix} = 0$$

Column image of kernel bases :

$$\operatorname{ker}\begin{pmatrix} \mathsf{F} \\ -X^{\mathsf{d}} \end{bmatrix}) = \begin{bmatrix} 0_{m \times n} & I_m \end{bmatrix} V \text{ with } V \in \operatorname{GL}_{m+n}(\mathbb{K}[X])$$

- *P* basis : $\begin{bmatrix} P & Q \end{bmatrix} = \ker(\begin{bmatrix} F \\ -X^{d} \end{bmatrix}) \Longrightarrow \operatorname{rank}(\begin{bmatrix} P & Q \end{bmatrix}) = \operatorname{rank}(\begin{bmatrix} P(0) & Q(0) \end{bmatrix}) = m$
- *P* not basis : $\begin{bmatrix} P & Q \end{bmatrix} = U \begin{bmatrix} A & AFX^{-d} \end{bmatrix} \text{ with } \det(U) = X^{\delta}$ $\implies \operatorname{rank}(\begin{bmatrix} P(0) & Q(0) \end{bmatrix}) < m$

The polynomial case [G. '18]

Let $A = a_0 + a_1X + \cdots + a_{k-1}X^{k-1}$ and $B = b_0 + b_1X + \cdots + b_{k-1}X^{k-1}$, sampling random value $X = \alpha$ in $C = AB \mod X^k$ corresponds to :

$$\begin{bmatrix} 1 \ \alpha \ \dots \ \alpha^{k-1} \end{bmatrix} \begin{bmatrix} a_0 & & \\ a_1 \ \ddots & \\ \vdots \ \ddots \ \ddots & \\ a_{k-1} \ \dots \ a_1 \ a_0 \end{bmatrix} \begin{bmatrix} b_0 \\ b_1 \\ \vdots \\ b_{k-1} \end{bmatrix} = \begin{bmatrix} 1 \ \alpha \ \dots \ \alpha^{k-1} \end{bmatrix} \begin{bmatrix} c_0 \\ c_1 \\ \vdots \\ c_{k-1} \end{bmatrix}$$

The polynomial case [G. '18]

Let $A = a_0 + a_1X + \cdots + a_{k-1}X^{k-1}$ and $B = b_0 + b_1X + \cdots + b_{k-1}X^{k-1}$, sampling random value $X = \alpha$ in $C = AB \mod X^k$ corresponds to :

$$\begin{bmatrix} 1 \ \alpha \ \dots \ \alpha^{k-1} \end{bmatrix} \begin{bmatrix} a_0 & & \\ a_1 & \ddots & \\ \vdots & \ddots & \ddots & \\ a_{k-1} \ \dots \ a_1 \ a_0 \end{bmatrix} \begin{bmatrix} b_0 \\ b_1 \\ \vdots \\ b_{k-1} \end{bmatrix} = C(\alpha)$$

The polynomial case [G. '18]

Let $A = a_0 + a_1 X + \cdots + a_{k-1} X^{k-1}$ and $B = b_0 + b_1 X + \cdots + b_{k-1} X^{k-1}$, sampling random value $X = \alpha$ in $C = AB \mod X^k$ corresponds to :

$$\begin{bmatrix} A(\alpha) \ \dots \ \alpha^{k-j} (A \operatorname{rem} X^j)(\alpha) \ \dots \ \alpha^{k-1} a_0 \end{bmatrix} \begin{bmatrix} b_0 \\ b_1 \\ \vdots \\ b_k \end{bmatrix} = C(\alpha)$$

The polynomial case [G. '18]

Let $A = a_0 + a_1 X + \cdots + a_{k-1} X^{k-1}$ and $B = b_0 + b_1 X + \cdots + b_{k-1} X^{k-1}$, sampling random value $X = \alpha$ in $C = AB \mod X^k$ corresponds to :

$$\begin{bmatrix} A(\alpha) \ \dots \ \alpha^{k-j} (A \operatorname{rem} X^j)(\alpha) \ \dots \ \alpha^{k-1} a_0 \end{bmatrix} \begin{bmatrix} b_0 \\ b_1 \\ \vdots \\ b_k \end{bmatrix} = C(\alpha)$$

⇒ verification in O(k) using Horner's algo. on α^{k-1} rev(A) with $X = \alpha^{-1}$ ⇒ proba error $<\frac{k}{\#S}$ for $S \subset \mathbb{K}$ [Schwartz, Zippel '79]

The polynomial matrix case

Let $P \in \mathbb{K}[X]^{m \times m}$, $F, G \in \mathbb{K}[X]^{m \times n}$, $\mathbf{t} = (t_1, \dots, t_n)$ and $\delta = \max(\mathbf{t})$ How to check $PF = G \mod X^t$?

• shrink matrix row dimension *a la Freidvalds*, random $u \in \mathbb{K}^{1 \times m}$ $\rightarrow p = uP \in \mathbb{K}[x]^{1 \times m}$ and $g = uG \in \mathbb{K}[X]^{1 \times n}$

apply idea of [G. '18] with vector/matrix

$$\begin{bmatrix} 1 \ \alpha \ \dots \ \alpha^{\delta-1} \end{bmatrix} \begin{bmatrix} p_0 & & \\ p_1 & \ddots & \\ \vdots & \ddots & \ddots & \\ p_{\delta-1} \ \dots \ p_1 \ p_0 \end{bmatrix} \begin{bmatrix} F_0 \\ F_1 \\ \vdots \\ F_{\delta-1} \end{bmatrix} = g(\alpha)$$

The polynomial matrix case

Let $P \in \mathbb{K}[X]^{m \times m}$, $F, G \in \mathbb{K}[X]^{m \times n}$, $\mathbf{t} = (t_1, \dots, t_n)$ and $\delta = \max(\mathbf{t})$ How to check $PF = G \mod X^t$?

- shrink matrix row dimension *a la Freidvalds*, random $u \in \mathbb{K}^{1 \times m}$ $\rightarrow p = uP \in \mathbb{K}[x]^{1 \times m}$ and $g = uG \in \mathbb{K}[X]^{1 \times n}$
- apply idea of [G. '18] with vector/matrix

$$\underbrace{\left[p(\alpha) \ \dots \ \alpha^{\delta-j}(p \operatorname{rem} X^{j})(\alpha) \ \dots \ \alpha^{\delta-1}p_{0}\right]}_{\in \mathbb{K}^{1 \times m\delta}} \begin{bmatrix}F_{0}\\F_{1}\\\vdots\\F_{\delta-1}\end{bmatrix} = g(\alpha)$$

The polynomial matrix case

Let $P \in \mathbb{K}[X]^{m \times m}$, $F, G \in \mathbb{K}[X]^{m \times n}$, $\mathbf{t} = (t_1, \dots, t_n)$ and $\delta = \max(\mathbf{t})$ How to check $PF = G \mod X^t$?

- shrink matrix row dimension *a la Freidvalds*, random $u \in \mathbb{K}^{1 \times m}$ $\rightarrow p = uP \in \mathbb{K}[x]^{1 \times m}$ and $g = uG \in \mathbb{K}[X]^{1 \times n}$
- apply idea of [G. '18] with vector/matrix

$$\underbrace{\left[p(\alpha) \ \dots \ \alpha^{\delta-j}(p \operatorname{rem} X^{j})(\alpha) \ \dots \ \alpha^{\delta-1}p_{0}\right]}_{\in \mathbb{K}^{1 \times m\delta}} \begin{bmatrix}F_{0}\\F_{1}\\\vdots\\F_{\delta-1}\end{bmatrix} = g(\alpha)$$

 $\Rightarrow \text{ verification in } O(size(P) + m \sum t_i) \\ \Rightarrow \text{ proba error } < \frac{\delta}{\#S} \text{ for } S \subset \mathbb{K}$