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Approximant Bases

Let F ∈ K[X ]m×n a matrix of power series truncated at order d = (d1, . . . , dn)
columnwise : ∀1 ≤ j ≤ n, deg F∗,j < dj

approximant of F at order d :

p ∈ K[X ]1×m s.t. pF = [0, . . . , 0] mod X (d1,...,dn)

the set Ad(F ) of all approximants of F forms a free K[X ]-module of rank
m [Van Barel, Bultheel 1992].

A basis P ∈ K[X ]m×m of Ad(F ) is called an approximant basis



Minimal Approximant Bases

Minimality

row-reduced over K[X ], i.e. minimal row degree among all bases

P =

 3x3 2x2 x + 3
x3 + 4x2 2x3 + 3x2 5x2

x3 + 6x2 + 4x 2x3 + 8x2 + 5 6x2 + 3

 , rdeg(P) =

3
3
3



⇒ row-reduction is related to the rdeg-leading matrix of P
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Shifted Minimal Approximant Bases

Shifted row degree (or s-row degree)

degree measure for weighting the columns with a shift s = (s1, . . . , sm)

rdegs(P) = rdeg(PX s) = rdeg(P

X
s1

. . .

X sm

)

s-minimal approximant bases

bases of Ad(F ) that have minimal s-row degree among all bases (s-reduced)

s-Popov approximant bases (uniqueness)

rdegs-leading matrix → unitary lower triangular matrix

cdeg-leading matrix → identity
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Algorithms for Approximant Bases

- polynomial matrix F ∈ K[X ]m×n

- order d = (d1, . . . , dn) ∈ Zn
>0 with D = |d| =

∑
j dj

- shift s ∈ Zm

Best known algorithms to date

cost in O (̃mωD/m) = O (̃mω−1D)

minimal bases (unique order, no shift) [G., Jeannerod, Villard ISSAC’03]

s-minimal bases (unique order, small shifts) [Zhou, Labahn ISSAC’12]

s-Popov bases (all orders/shifts) [Jeannerod et al. ISSAC’16]

These are deterministic non-optimal algorithms, i.e. Size(F ) = mD
when delegating computation → hope for faster verification
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Verifying outsourced computation

VerifierProver
F, x

y=F (x), proof 

generating the proof must be negiglible

verifying the proof must be easier than computing F (x)
→ different models : interactive or static

Sometimes the proof is unnecessary :
→ Freivalds’ verification of matrix mul. (uA)B = uC
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Certifying linear algebra

Generic approaches exist

Interactive proof for boolean circuits [Goldwasser, Kalai, Rothblum ’08 ; Thaler ’13]

matrix mul. reduction → rerun with Freivalds [Kaltofen, Nehrig, Saunders ISSAC’11]

7 prover or verifier time might not be optimal

Optimal ad’hoc verifications exist [Dumas,Kaltofen ISSAC’14]

3 prover and verifier time can be “optimal”

3 independent of the circuit (certifying result rather than execution)

How to optimally certify/verify approximant bases ?
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Main result

Given P a s-minimal basis of Ad(F ) with Size(P) = O(mD)

Static proof for s-minimal approximant bases

additional effort :O(mω−1D) prover

Monte Carlo verification : O(mD + mω−1(m + n)) verifier

probability of error ≤ D
#S for S ⊂ K.

⇒ almost optimal certificate (D � m2 often the case in practice)
⇒ total prover time remains in O (̃mω−1D)



Main result

Given P a s-minimal basis of Ad(F ) with Size(P) = O(mD)

Size(P) = O(mD) not in general

⇒ but bases computed by best known algorithms have such property

|rdeg(P)| ∈ O(D) [Van Barel, Bultheel ’92 ; Zhou, Labahn ISSAC’12]

|cdeg(P)| ≤ D (s-Popov) [Jeannerod et al. ISSAC’16]
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3 Basis : rows of P generate Ad(F )
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This amounts to check non-singularity of the rdegs-leading matrix of P
⇒ can be done at a cost O(mω)
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How to certify approximant basis

1 Minimal : P is s-reduced
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...
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Horner’s intermediate values for αδ−1rev(uP) on X = α−1
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1 Minimal : P is s-reduced

2 Approximant : PF = 0 mod X (d1,...,dn)

3 Basis : rows of P generate Ad(F )

Proposed lemma

rows of P generate Ad(F ) if and only if

PF = 0 mod X d

det(P) = X δ for 0 < δ ≤ D [Beckermann, Labahn ’97]

the matrix
[
P(0) C

]
∈ Km×(m+n) has full rank, where

C = PFX−d mod X (our certificate)

Idea of proof :
Ad(F ) ' ker(

[
F
−X d

]
)

PF = 0 mod X d ⇐⇒
[
P PFX−d

] [ F
−X d

]
= 0



Our protocol for certifying approximant bases

Prover (compute)

1 compute P a s-minimal basis of Ad(F )

2 compute C = PFX−d mod X

⇒ send (P,C) to the verifier

O (̃mω−1D)

↪→ O (̃mω−1D)

? ? ?

Verifier (check)

1 non-singularity of leadmatrdegs(P)

2 full rank of
[
P(0) C

]
3 det(P(α)) = det(P(1))α|rdegs(P)|−|s|

with α random in S ⊂ K
4 PF = CX d mod X (d1+1,...,dn+1)

O(mD + mω−1(m + n))

↪→ O(mω)

↪→ O(mω−1n)

↪→ O(mD + mω)

↪→ O(mD)



How to efficiently generate the certificate

Compute C as the term of degree 0 in PFX−d :
→ goal : no more than O (̃mω−1D)

Easy when n = m and d = (D/m, . . . ,D/m),

C =

D/m∑
k=1

PkFD/m−k

⇒ this costs at most D/m · O(mω) = O(mω−1D)



How to efficiently generate the certificate

Taking care of unbalanced degrees d = (d1, . . . , dn), with D = |d| =
∑

dj

all columns in F cannot have large degree, i.e. |cdeg(F )| = D

same remark on the rows of P when |rdeg(P)| = O(D) 1

Extracting non-zero values according to the degrees

# of rows in P with degree ≥ k is no more than D/k

# of columns in F with degree ≥ k is no more than D/k

C =

max(d)∑
k=1

P∗k F
∗
d−k

- ∀k < D/m each product costs O(mω)
- ∀k ≥ D/m each product costs O((D/k)ω−1m)

Total cost in O(mω−1D)

1. similar idea with |cdeg(P)| ≤ D
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Verifier

1 check non-singularity of leadmatrdegs(P)

2 check full rank of
[
P(0) C

]
3 check det(P(α)) = det(P(1))α|rdegs(P)|−|s|

with α random in S ⊂ K
4 check PF = CX d mod X (d1+1,...,dn+1)

O(mD + mω−1(m + n))

↪→ O(mω)

↪→ O(mω−1n)

↪→ O(mD + mω)
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Conclusion

Almost optimal non-interactive certificate

negligeable overhead for the Prover, only O(mω−1D)

verification time in O(mD) + checking rank/det over K
probability of error ≤ D

S for S ⊂ K [Freivalds ; Schwartz, Zippel]

certificate space is small, i.e. O(mn)

Remark

turn “easily” into optimal interactive protocol by [Dumas, Kaltofen ISSAC’14]

a LinBox’s implementation should be available soon
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Thank You



Certificate : sketch of proof

[Zhou, Labahn ISSAC’13, Neiger’s PhD ’16]

Ad(F ) ' ker(

[
F
−X d

]
)

PF = 0 mod X d ⇐⇒
[
P Q

] [ F
−X d

]
= 0

Column image of kernel bases :

ker(

[
F
−X d

]
) =

[
0m×n Im

]
V with V ∈ GLm+n(K[X ])

P basis :[
P Q

]
= ker(

[
F
−X d

]
) =⇒ rank(

[
P Q

]
) = rank(

[
P(0) Q(0)

]
) = m

P not basis :[
P Q

]
= U

[
A AFX−d

]
with det(U) = X δ

=⇒ rank(
[
P(0) Q(0)

]
) < m



Verifying truncated polynomial matrix product

The polynomial case [G. ’18]

Let A = a0 + a1X + · · · + ak−1X
k−1 and B = b0 + b1X + · · · + bk−1X

k−1,
sampling random value X = α in C = AB mod X k corresponds to :

[
1 α . . . αk−1

]


a0

a1
. . .

...
. . .

. . .
ak−1 . . . a1 a0




b0
b1
...

bk−1

 =
[
1 α . . . αk−1

] 
c0
c1
...

ck−1
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Verifying truncated polynomial matrix product

The polynomial case [G. ’18]

Let A = a0 + a1X + · · · + ak−1X
k−1 and B = b0 + b1X + · · · + bk−1X

k−1,
sampling random value X = α in C = AB mod X k corresponds to :

[
A(α) . . . αk−j(A rem X j)(α) . . . αk−1a0

] 
b0
b1
...
bk

 = C (α)

⇒ verification in O(k) using Horner’s algo. on αk−1rev(A) with X = α−1

⇒ proba error < k
#S for S ⊂ K [Schwartz, Zippel ’79]



Verifying truncated polynomial matrix product

The polynomial matrix case

Let P ∈ K[X ]m×m, F ,G ∈ K[X ]m×n, t = (t1, . . . , tn) and δ = max(t)
How to check PF = G mod X t ?

1 shrink matrix row dimension a la Freidvalds, random u ∈ K1×m

→ p = uP ∈ K[x ]1×m and g = uG ∈ K[X ]1×n

2 apply idea of [G. ’18] with vector/matrix
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Verifying truncated polynomial matrix product

The polynomial matrix case

Let P ∈ K[X ]m×m, F ,G ∈ K[X ]m×n, t = (t1, . . . , tn) and δ = max(t)
How to check PF = G mod X t ?

1 shrink matrix row dimension a la Freidvalds, random u ∈ K1×m

→ p = uP ∈ K[x ]1×m and g = uG ∈ K[X ]1×n

2 apply idea of [G. ’18] with vector/matrix

[
p(α) . . . αδ−j(p rem X j)(α) . . . αδ−1p0
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∈K1×mδ


F0
F1
...

Fδ−1

 = g(α)

⇒ verification in O(size(P) + m
∑

ti )
⇒ proba error < δ

#S for S ⊂ K


