Certification of Minimal Approximant Bases

Pascal Giorgi ${ }^{1}$, Vincent Neiger ${ }^{2}$

${ }^{1}$ Université de Montpellier, France

${ }^{2}$ Université de Limoges, France
$4 \begin{aligned} & \text { Université } \\ & \text { de Limoges }\end{aligned}$
de Limoges
xlim

ISSAC'2018, New York, USA
July 17, 2018

Approximant Bases

Let $F \in \mathbb{K}[X]^{m \times n}$ a matrix of power series truncated at order $\mathbf{d}=\left(d_{1}, \ldots, d_{n}\right)$ columnwise : $\forall 1 \leq j \leq n, \operatorname{deg} F_{*, j}<d_{j}$

- approximant of F at order \mathbf{d} :

$$
p \in \mathbb{K}[X]^{1 \times m} \text { s.t. } p F=[0, \ldots, 0] \bmod X^{\left(d_{1}, \ldots, d_{n}\right)}
$$

- the set $\mathcal{A}_{\mathbf{d}}(F)$ of all approximants of F forms a free $\mathbb{K}[X]$-module of rank m [Van Barel, Bultheel 1992].

A basis $P \in \mathbb{K}[X]^{m \times m}$ of $\mathcal{A}_{\mathbf{d}}(F)$ is called an approximant basis

Minimal Approximant Bases

Minimality

 row-reduced over $\mathbb{K}[X]$, i.e. minimal row degree among all bases$$
P=\left[\begin{array}{ccc}
3 x^{3} & 2 x^{2} & x+3 \\
x^{3}+4 x^{2} & 2 x^{3}+3 x^{2} & 5 x^{2} \\
x^{3}+6 x^{2}+4 x & 2 x^{3}+8 x^{2}+5 & 6 x^{2}+3
\end{array}\right], \operatorname{rdeg}(P)=\left[\begin{array}{l}
3 \\
3 \\
3
\end{array}\right]
$$

Minimal Approximant Bases

Minimality

row-reduced over $\mathbb{K}[X]$, i.e. minimal row degree among all bases

$$
P=\left[\begin{array}{ccc}
3 x^{3} & 2 x^{2} & x+3 \\
x^{3}+4 x^{2} & 2 x^{3}+3 x^{2} & 5 x^{2} \\
x^{3}+6 x^{2}+4 x & 2 x^{3}+8 x^{2}+5 & 6 x^{2}+3
\end{array}\right], \operatorname{rdeg}(P)=\left[\begin{array}{l}
3 \\
3 \\
3
\end{array}\right]
$$

\Rightarrow row-reduction is related to the rdeg-leading matrix of P

$$
\left[\begin{array}{ccc}
1 & & \\
& 1 & \\
& -1 & 1
\end{array}\right] P=R=\left[\begin{array}{ccc}
3 x^{3} & 2 x^{2} & x+3 \\
x^{3}+4 x^{2} & 2 x^{3}+3 x^{2} & 5 x^{2} \\
2 x^{2}+4 x & 5 x^{2}+5 & x^{2}+3
\end{array}\right], \operatorname{rdeg}(R)=\left[\begin{array}{l}
3 \\
3 \\
2
\end{array}\right]
$$

Shifted Minimal Approximant Bases

Shifted row degree (or s-row degree)

degree measure for weighting the columns with a shift $\mathbf{s}=\left(s_{1}, \ldots, s_{m}\right)$

$$
\operatorname{rdeg}_{\mathbf{s}}(P)=\operatorname{rdeg}\left(P X^{\mathbf{s}}\right)=\operatorname{rdeg}\left(P\left[\begin{array}{lll}
X^{s_{1}} & & \\
& \ddots & \\
& & X^{s_{m}}
\end{array}\right]\right)
$$

s-minimal approximant bases

bases of $\mathcal{A}_{\mathbf{d}}(F)$ that have minimal s-row degree among all bases (s-reduced)

Shifted Minimal Approximant Bases

Shifted row degree (or s-row degree)

 degree measure for weighting the columns with a shift $\mathbf{s}=\left(s_{1}, \ldots, s_{m}\right)$$$
\operatorname{rdeg}_{s}(P)=\operatorname{rdeg}\left(P X^{\mathrm{s}}\right)=\operatorname{rdeg}\left(P\left[\begin{array}{lll}
X^{s_{1}} & & \\
& \ddots & \\
& & X^{s_{m}}
\end{array}\right]\right)
$$

s-minimal approximant bases

bases of $\mathcal{A}_{\mathbf{d}}(F)$ that have minimal s-row degree among all bases (s-reduced)

s-Popov approximant bases (uniqueness)

- rdeg $_{s}$-leading matrix \rightarrow unitary lower triangular matrix
- cdeg-leading matrix \rightarrow identity

Algorithms for Approximant Bases

- polynomial matrix $F \in \mathbb{K}[X]^{m \times n}$
- order $\mathbf{d}=\left(d_{1}, \ldots, d_{n}\right) \in \mathbb{Z}_{>0}^{n}$ with $D=|\mathbf{d}|=\sum_{j} d_{j}$
- shift $\mathbf{s} \in \mathbb{Z}^{m}$

Best known algorithms to date

cost in $O^{\sim}\left(m^{\omega} D / m\right)=O^{\sim}\left(m^{\omega-1} D\right)$

- minimal bases (unique order, no shift)
- s-minimal bases (unique order, small shifts)
- s-Popov bases (all orders/shifts)
[G., Jeannerod, Villard ISSAC'03]
[Zhou, Labahn ISSAC'12]
[Jeannerod et al. ISSAC'16]

Algorithms for Approximant Bases

- polynomial matrix $F \in \mathbb{K}[X]^{m \times n}$
- order $\mathbf{d}=\left(d_{1}, \ldots, d_{n}\right) \in \mathbb{Z}_{>0}^{n}$ with $D=|\mathbf{d}|=\sum_{j} d_{j}$
- shift $\mathbf{s} \in \mathbb{Z}^{m}$

Best known algorithms to date

cost in $O^{\sim}\left(m^{\omega} D / m\right)=O^{\sim}\left(m^{\omega-1} D\right)$

- minimal bases (unique order, no shift)
- s-minimal bases (unique order, small shifts)
[G., Jeannerod, Villard ISSAC'03]
- s-Popov bases (all orders/shifts)
[Zhou, Labahn ISSAC'12]
[Jeannerod et al. ISSAC'16]

These are deterministic non-optimal algorithms, i.e. $\operatorname{Size}(F)=m D$ when delegating computation \rightarrow hope for faster verification

Verifying outsourced computation

- generating the proof must be negiglible
- verifying the proof must be easier than computing $\mathscr{F}(x)$ \rightarrow different models: interactive or static

Verifying outsourced computation

- generating the proof must be negiglible
- verifying the proof must be easier than computing $\mathscr{F}(x)$ \rightarrow different models : interactive or static

Sometimes the proof is unnecessary :
\rightarrow Freivalds' verification of matrix mul. (uA)B=uC

Certifying linear algebra

Generic approaches exist

- Interactive proof for boolean circuits [Goldwasser, Kalai, Rothblum '08; Thaler '13]
- matrix mul. reduction \rightarrow rerun with Freivalds [Kaltofen, Nehrig, Saunders ISSAC'11]
X prover or verifier time might not be optimal

Certifying linear algebra

Generic approaches exist

- Interactive proof for boolean circuits [Goldwasser, Kalai, Rothblum '08; Thaler '13]
- matrix mul. reduction \rightarrow rerun with Freivalds [Kaltofen, Nehrig, Saunders ISSAC'11]
X prover or verifier time might not be optimal

Optimal ad'hoc verifications exist [Dumas,Kaltofen ISSAC'14]

\checkmark prover and verifier time can be "optimal"
\checkmark independent of the circuit (certifying result rather than execution)

Certifying linear algebra

Generic approaches exist

- Interactive proof for boolean circuits [Goldwasser, Kalai, Rothblum '08; Thaler '13]
- matrix mul. reduction \rightarrow rerun with Freivalds [Kaltofen, Nehrig, Saunders ISSAC'11]
X prover or verifier time might not be optimal

Optimal ad'hoc verifications exist [Dumas,Kaltofen ISSAC'14]

\checkmark prover and verifier time can be "optimal"
\checkmark independent of the circuit (certifying result rather than execution)

How to optimally certify/verify approximant bases?

Main result

Given P a s-minimal basis of $\mathcal{A}_{\mathbf{d}}(F)$ with $\operatorname{Size}(P)=O(m D)$

Static proof for s-minimal approximant bases

- additional effort : $O\left(m^{\omega-1} D\right)$
prover
- Monte Carlo verification: $O\left(m D+m^{\omega-1}(m+n)\right) \quad$ verifier
- probability of error $\leq \frac{D}{\# S}$ for $S \subset \mathbb{K}$.
\Rightarrow almost optimal certificate ($D \gg m^{2}$ often the case in practice)
\Rightarrow total prover time remains in $O^{\sim}\left(m^{\omega-1} D\right)$

Main result

Given P a s-minimal basis of $\mathcal{A}_{\mathbf{d}}(F)$ with $\operatorname{Size}(P)=O(m D)$

Size $(P)=O(m D)$ not in general

\Rightarrow but bases computed by best known algorithms have such property

- $|\operatorname{rdeg}(P)| \in O(D)$
[Van Barel, Bultheel '92; Zhou, Labahn ISSAC'12]
- $|\operatorname{cdeg}(P)| \leq D$ (s-Popov)

How to certify approximant basis

(1) Minimal : P is s-reduced
(2) Approximant: $P F=0 \bmod X\left(d_{1}, \ldots, d_{n}\right)$
(3) Basis : rows of P generate $\mathcal{A}_{\mathbf{d}}(F)$

How to certify approximant basis

(1) Minimal : P is s-reduced

This amounts to check non-singularity of the rdeg ${ }_{s}$-leading matrix of P \Rightarrow can be done at a cost $O\left(m^{\omega}\right)$

How to certify approximant basis

(2) Approximant: $P F=0 \bmod X^{\left(d_{1}, \ldots, d_{n}\right)}$
not trivial \rightarrow computing $P F \bmod X^{\left(d_{1}, \ldots, d_{n}\right)}$ costs $O^{\sim}\left(m^{\omega-1} D\right)$.

How to certify approximant basis

(2) Approximant : $P F=0 \bmod X^{\left(d_{1}, \ldots, d_{n}\right)}$
not trivial \rightarrow computing PF mod $X^{\left(d_{1}, \ldots, d_{n}\right)}$ costs $O^{\sim}\left(m^{\omega-1} D\right)$.

Proposition: Freivalds + [G. '18]

 verify $P F=G \bmod X^{\left(d_{1}, \ldots, d_{n}\right)}$ at optimal cost $O(m D)$
How to certify approximant basis

(2) Approximant: $P F=0 \bmod X^{\left(d_{1}, \ldots, d_{n}\right)}$ not trivial \rightarrow computing PF mod $X^{\left(d_{1}, \ldots, d_{n}\right)}$ costs $O^{\sim}\left(m^{\omega-1} D\right)$.

```
Proposition: Freivalds + [G. '18]
verify PF =G mod X (d, ,.,\mp@subsup{d}{n}{})}\mathrm{ at optimal cost O(mD)
```

- check $(u P) F=u G \bmod X^{\left(d_{1}, \ldots, d_{n}\right)}$ for a random vector u

How to certify approximant basis

(2) Approximant : $P F=0 \bmod X^{\left(d_{1}, \ldots, d_{n}\right)}$ not trivial \rightarrow computing $P F \bmod X^{\left(d_{1}, \ldots, d_{n}\right)}$ costs $O^{\sim}\left(m^{\omega-1} D\right)$.

Proposition : Freivalds + [G. '18]

 verify $P F=G \bmod X^{\left(d_{1}, \ldots, d_{n}\right)}$ at optimal cost $O(m D)$- check $(u P) F=u G \bmod X^{\left(d_{1}, \ldots, d_{n}\right)}$ for a random vector u
- check for a random $\alpha \in S \subset \mathbb{K}, \delta=\max \left(d_{1}, \ldots, d_{n}\right)$ that

$$
\left[\begin{array}{llll}
1 & \alpha & \ldots & \alpha^{\delta-1}
\end{array}\right]\left[\begin{array}{cccc}
u P_{0} & & & \\
u P_{1} & \ddots & & \\
\vdots & \ddots & \ddots & \\
u P_{\delta-1} & \ldots & u P_{1} & u P_{0}
\end{array}\right]\left[\begin{array}{c}
F_{0} \\
F_{1} \\
\vdots \\
F_{\delta-1}
\end{array}\right]=\left[\begin{array}{llll}
1 & \alpha & \ldots & \alpha^{\delta-1}
\end{array}\right]\left[\begin{array}{c}
u G_{0} \\
u G_{1} \\
\vdots \\
u G_{\delta-1}
\end{array}\right]
$$

How to certify approximant basis

(2) Approximant : $P F=0 \bmod X^{\left(d_{1}, \ldots, d_{n}\right)}$
not trivial \rightarrow computing $P F \bmod X^{\left(d_{1}, \ldots, d_{n}\right)}$ costs $O^{\sim}\left(m^{\omega-1} D\right)$.

Proposition : Freivalds + [G. '18]

verify $P F=G \bmod X^{\left(d_{1}, \ldots, d_{n}\right)}$ at optimal cost $O(m D)$

- check $(u P) F=u G \bmod X^{\left(d_{1}, \ldots, d_{n}\right)}$ for a random vector u
- check for a random $\alpha \in S \subset \mathbb{K}, \delta=\max \left(d_{1}, \ldots, d_{n}\right)$ that

$$
\left[\begin{array}{llll}
1 & \alpha & \ldots & \alpha^{\delta-1}
\end{array}\right]\left[\begin{array}{cccc}
u P_{0} & & & \\
u P_{1} & \ddots & & \\
\vdots & \ddots & \ddots & \\
u P_{\delta-1} & \ldots & u P_{1} & u P_{0}
\end{array}\right]\left[\begin{array}{c}
F_{0} \\
F_{1} \\
\vdots \\
F_{\delta-1}
\end{array}\right]=u G(\alpha)
$$

How to certify approximant basis

(2) Approximant : $P F=0 \bmod X^{\left(d_{1}, \ldots, d_{n}\right)}$
not trivial \rightarrow computing PF mod $X^{\left(d_{1}, \ldots, d_{n}\right)}$ costs $O^{\sim}\left(m^{\omega-1} D\right)$.

Proposition : Freivalds + [G. '18]

verify $P F=G \bmod X^{\left(d_{1}, \ldots, d_{n}\right)}$ at optimal cost $O(m D)$

- check $(u P) F=u G \bmod X^{\left(d_{1}, \ldots, d_{n}\right)}$ for a random vector u
- check for a random $\alpha \in S \subset \mathbb{K}, \delta=\max \left(d_{1}, \ldots, d_{n}\right)$ that

$$
\left[u P(\alpha) \ldots \alpha^{\delta-j} u\left(P \operatorname{rem} X^{j}\right)(\alpha) \ldots \alpha^{\delta-1} u P_{0}\right]\left[\begin{array}{c}
F_{0} \\
F_{1} \\
\vdots \\
F_{\delta-1}
\end{array}\right]=u G(\alpha)
$$

Horner's intermediate values for $\alpha^{\delta-1} \operatorname{rev}(u P)$ on $X=\alpha^{-1}$

How to certify approximant basis

(3) Basis : rows of P generate $\mathcal{A}_{\mathbf{d}}(F)$

How to certify approximant basis

(3) Basis : rows of P generate $\mathcal{A}_{\mathbf{d}}(F)$

Proposed lemma

 rows of P generate $\mathcal{A}_{\mathbf{d}}(F)$ if and only if- $P F=0 \bmod X^{\mathrm{d}}$
- $\operatorname{det}(P)=X^{\delta}$ for $0<\delta \leq D$
[Beckermann, Labahn '97]
- the matrix $[P(0) \quad C] \in \mathbb{K}^{m \times(m+n)}$ has full rank, where $C=P F X^{-\mathrm{d}} \bmod X$

How to certify approximant basis

(3) Basis: rows of P generate $\mathcal{A}_{\mathbf{d}}(F)$

Proposed lemma

rows of P generate $\mathcal{A}_{\mathbf{d}}(F)$ if and only if

- $P F=0 \bmod X^{d}$
- $\operatorname{det}(P)=X^{\delta}$ for $0<\delta \leq D$
[Beckermann, Labahn '97]
- the matrix $\left[\begin{array}{ll}P(0) & C\end{array}\right] \in \mathbb{K}^{m \times(m+n)}$ has full rank, where

$$
C=P F X^{-\mathbf{d}} \bmod X
$$

Idea of proof:

$$
\begin{array}{ccc}
\mathcal{A}_{\mathbf{d}}(F) & \simeq & \operatorname{ker}\left(\left[\begin{array}{c}
F \\
-X^{\mathrm{d}}
\end{array}\right]\right) \\
P F=0 \bmod X^{\mathbf{d}} & \Longleftrightarrow & {\left[\begin{array}{ll}
P & P F X^{-\mathrm{d}}
\end{array}\right]\left[\begin{array}{c}
F \\
-X^{\mathbf{d}}
\end{array}\right]=0}
\end{array}
$$

Our protocol for certifying approximant bases

Prover (compute)

(1) compute P a s-minimal basis of $\mathcal{A}_{\mathrm{d}}(F)$
(2) compute $C=P F X^{-\mathrm{d}} \bmod X$
\Rightarrow send (P, C) to the verifier

Verifier (check)
(1) non-singularity of leadmat rdeg $_{s}(P)$
(2) full rank of $\left[\begin{array}{ll}P(0) & C\end{array}\right]$
(3) $\operatorname{det}(P(\alpha))=\operatorname{det}(P(1)) \alpha^{\left|\operatorname{rdeg}_{\mathbf{s}}(P)\right|-|\mathbf{s}|}$ with α random in $S \subset \mathbb{K}$
(9) $P F=C X^{\mathrm{d}} \bmod X^{\left(d_{1}+1, \ldots, d_{n}+1\right)}$

$$
O^{\sim}\left(m^{\omega-1} D\right)
$$

$$
\hookrightarrow O^{\sim}\left(m^{\omega-1} D\right)
$$

???
$O\left(m D+m^{\omega-1}(m+n)\right)$
$\hookrightarrow O\left(m^{\omega}\right)$
$\hookrightarrow O\left(m^{\omega-1} n\right)$
$\hookrightarrow O\left(m D+m^{\omega}\right)$
$\hookrightarrow O(m D)$

How to efficiently generate the certificate

Compute C as the term of degree 0 in $P F X^{-d}$:
\rightarrow goal : no more than $O^{\sim}\left(m^{\omega-1} D\right)$

Easy when $n=m$ and $\mathbf{d}=(D / m, \ldots, D / m)$,

$$
C=\sum_{k=1}^{D / m} P_{k} F_{D / m-k}
$$

\Rightarrow this costs at most $D / m \cdot O\left(m^{\omega}\right)=O\left(m^{\omega-1} D\right)$

How to efficiently generate the certificate

Taking care of unbalanced degrees $\mathbf{d}=\left(d_{1}, \ldots, d_{n}\right)$, with $D=|\mathbf{d}|=\sum d_{j}$

- all columns in F cannot have large degree, i.e. $|\operatorname{cdeg}(F)|=D$
- same remark on the rows of P when $|\operatorname{rdeg}(P)|=O(D)^{1}$

1. similar idea with $|\operatorname{cdeg}(P)| \leq D$

How to efficiently generate the certificate

Taking care of unbalanced degrees $\mathbf{d}=\left(d_{1}, \ldots, d_{n}\right)$, with $D=|\mathbf{d}|=\sum d_{j}$

- all columns in F cannot have large degree, i.e. $|\operatorname{cdeg}(F)|=D$
- same remark on the rows of P when $|\operatorname{rdeg}(P)|=O(D)^{1}$

Extracting non-zero values according to the degrees

- \# of rows in P with degree $\geq k$ is no more than D / k
- \# of columns in F with degree $\geq k$ is no more than D / k

$$
C=\sum_{k=1}^{\max (\mathbf{d})} P_{k}^{*} F_{\mathbf{d}-k}^{*}
$$

- $\forall k<D / m$ each product costs $O\left(m^{\omega}\right)$
- $\forall k \geq D / m$ each product costs $O\left((D / k)^{\omega-1} m\right)$

Total cost in $O\left(m^{\omega-1} D\right)$

1. similar idea with $|\operatorname{cdeg}(P)| \leq D$

Our protocol for certifying approximant bases

Prover
(1) compute P a s-minimal basis of $\mathcal{A}_{\mathrm{d}}(F)$
(2) compute $C=P F X^{-\mathrm{d}} \bmod X$
\Rightarrow send (P, C) to the verifier

Verifier
(1) check non-singularity of leadmat rdeg $_{s}(P)$
(2) check full rank of $\left[\begin{array}{ll}P(0) & C\end{array}\right]$
(3) check $\operatorname{det}(P(\alpha))=\operatorname{det}(P(1)) \alpha^{\left|\operatorname{rdeg}_{\mathbf{s}}(P)\right|-|\boldsymbol{s}|}$ with α random in $S \subset \mathbb{K}$
(9) check $P F=C X^{d} \bmod X^{\left(d_{1}+1, \ldots, d_{n}+1\right)}$

$$
\begin{aligned}
& O^{\sim}\left(m^{\omega-1} D\right) \\
& \hookrightarrow O^{\sim}\left(m^{\omega-1} D\right) \\
& \hookrightarrow O\left(m^{\omega-1} D\right)
\end{aligned}
$$

$$
O\left(m D+m^{\omega-1}(m+n)\right)
$$

$\hookrightarrow O\left(m^{\omega}\right)$
$\hookrightarrow O\left(m^{\omega-1} n\right)$
$\hookrightarrow O\left(m D+m^{\omega}\right)$
$\hookrightarrow O(m D)$

Conclusion

Almost optimal non-interactive certificate

- negligeable overhead for the Prover, only $O\left(m^{\omega-1} D\right)$
- verification time in $O(m D)+$ checking rank/det over \mathbb{K}
- probability of error $\leq \frac{D}{S}$ for $S \subset \mathbb{K}$ [Freivalds; Schwartz, Zippel]
- certificate space is small, i.e. $O(m n)$

Conclusion

Almost optimal non-interactive certificate

- negligeable overhead for the Prover, only $O\left(m^{\omega-1} D\right)$
- verification time in $O(m D)+$ checking rank/det over \mathbb{K}
- probability of error $\leq \frac{D}{S}$ for $S \subset \mathbb{K}$ [Freivalds; Schwartz, Zippel]
- certificate space is small, i.e. $O(m n)$

Remark

- turn "easily" into optimal interactive protocol by [Dumas, Kaltofen ISSAC'14]
- a LinBox's implementation should be available soon

Thank You

Certificate : sketch of proof

[Zhou, Labahn ISSAC'13, Neiger's PhD '16]

$$
\begin{array}{cc}
\mathcal{A}_{\mathbf{d}}(F) & \simeq \quad \operatorname{ker}\left(\left[\begin{array}{c}
F \\
-X^{\mathbf{d}}
\end{array}\right]\right) \\
P F=0 \bmod X^{\mathbf{d}} & \Longleftrightarrow\left[\begin{array}{ll}
P & Q
\end{array}\right]\left[\begin{array}{c}
F \\
-X^{\mathbf{d}}
\end{array}\right]=0
\end{array}
$$

Column image of kernel bases :

$$
\operatorname{ker}\left(\left[\begin{array}{c}
F \\
-X^{\mathrm{d}}
\end{array}\right]\right)=\left[\begin{array}{ll}
0_{m \times n} & I_{m}
\end{array}\right] V \text { with } \quad V \in \mathrm{GL}_{m+n}(\mathbb{K}[X])
$$

- P basis:

$$
\left[\begin{array}{ll}
P & Q
\end{array}\right]=\operatorname{ker}\left(\left[\begin{array}{c}
F \\
-X^{\mathrm{d}}
\end{array}\right]\right) \Longrightarrow \operatorname{rank}\left(\left[\begin{array}{ll}
P & Q
\end{array}\right]\right)=\operatorname{rank}\left(\left[\begin{array}{ll}
P(0) & Q(0)
\end{array}\right]\right)=m
$$

- P not basis :
$\left[\begin{array}{ll}P & Q\end{array}\right]=U\left[\begin{array}{ll}A & A F X^{-d}\end{array}\right]$ with $\operatorname{det}(U)=X^{\delta}$
$\Longrightarrow \operatorname{rank}\left(\left[\begin{array}{ll}P(0) & Q(0)\end{array}\right]\right)<m$

Verifying truncated polynomial matrix product

The polynomial case [G. '18]
Let $A=a_{0}+a_{1} X+\cdots+a_{k-1} X^{k-1}$ and $B=b_{0}+b_{1} X+\cdots+b_{k-1} X^{k-1}$, sampling random value $X=\alpha$ in $C=A B \bmod X^{k}$ corresponds to :

$$
\left[\begin{array}{llll}
1 & \alpha & \ldots & \alpha^{k-1}
\end{array}\right]\left[\begin{array}{ccc}
a_{0} & & \\
a_{1} & \ddots & \\
\vdots & \ddots & \ddots \\
a_{k-1} & \ldots & a_{1}
\end{array} a_{0}\right]\left[\begin{array}{c}
b_{0} \\
b_{1} \\
\vdots \\
b_{k-1}
\end{array}\right]=\left[\begin{array}{llll}
1 & \alpha & \ldots & \alpha^{k-1}
\end{array}\right]\left[\begin{array}{c}
c_{0} \\
c_{1} \\
\vdots \\
c_{k-1}
\end{array}\right]
$$

Verifying truncated polynomial matrix product

The polynomial case [G. '18]
Let $A=a_{0}+a_{1} X+\cdots+a_{k-1} X^{k-1}$ and $B=b_{0}+b_{1} X+\cdots+b_{k-1} X^{k-1}$, sampling random value $X=\alpha$ in $C=A B \bmod X^{k}$ corresponds to :

$$
\left[\begin{array}{llll}
1 & \alpha & \ldots & \alpha^{k-1}
\end{array}\right]\left[\begin{array}{cccc}
a_{0} & & & \\
a_{1} & \ddots & & \\
\vdots & \ddots & \ddots & \\
a_{k-1} & \cdots & a_{1} & a_{0}
\end{array}\right]\left[\begin{array}{c}
b_{0} \\
b_{1} \\
\vdots \\
b_{k-1}
\end{array}\right]=C(\alpha)
$$

Verifying truncated polynomial matrix product

The polynomial case [G. '18]
Let $A=a_{0}+a_{1} X+\cdots+a_{k-1} X^{k-1}$ and $B=b_{0}+b_{1} X+\cdots+b_{k-1} X^{k-1}$, sampling random value $X=\alpha$ in $C=A B \bmod X^{k}$ corresponds to :

$$
\left[A(\alpha) \ldots \alpha^{k-j}\left(A \operatorname{rem} X^{j}\right)(\alpha) \ldots \alpha^{k-1} a_{0}\right]\left[\begin{array}{c}
b_{0} \\
b_{1} \\
\vdots \\
b_{k}
\end{array}\right]=C(\alpha)
$$

Verifying truncated polynomial matrix product

The polynomial case [G. '18]

Let $A=a_{0}+a_{1} X+\cdots+a_{k-1} X^{k-1}$ and $B=b_{0}+b_{1} X+\cdots+b_{k-1} X^{k-1}$, sampling random value $X=\alpha$ in $C=A B \bmod X^{k}$ corresponds to :

$$
\left[A(\alpha) \ldots \alpha^{k-j}\left(A \operatorname{rem} X^{j}\right)(\alpha) \ldots \alpha^{k-1} a_{0}\right]\left[\begin{array}{c}
b_{0} \\
b_{1} \\
\vdots \\
b_{k}
\end{array}\right]=C(\alpha)
$$

\Rightarrow verification in $O(k)$ using Horner's algo. on $\alpha^{k-1} \operatorname{rev}(A)$ with $X=\alpha^{-1}$
\Rightarrow proba error $<\frac{k}{\# S}$ for $S \subset \mathbb{K}$ [Schwartz, Zippel '79]

Verifying truncated polynomial matrix product

The polynomial matrix case

Let $P \in \mathbb{K}[X]^{m \times m}, F, G \in \mathbb{K}[X]^{m \times n}, \mathbf{t}=\left(t_{1}, \ldots, t_{n}\right)$ and $\delta=\max (\mathbf{t})$ How to check $P F=G \bmod X^{\mathrm{t}}$?
(1) shrink matrix row dimension a la Freidvalds, random $u \in \mathbb{K}^{1 \times m}$

$$
\rightarrow p=u P \in \mathbb{K}[x]^{1 \times m} \text { and } g=u G \in \mathbb{K}[X]^{1 \times n}
$$

(2) apply idea of [G. '18] with vector/matrix

$$
\left[\begin{array}{llll}
1 & \alpha & \ldots & \alpha^{\delta-1}
\end{array}\right]\left[\begin{array}{cccc}
p_{0} & & & \\
p_{1} & \ddots & & \\
\vdots & \ddots & \ddots & \\
p_{\delta-1} & \ldots & p_{1} & p_{0}
\end{array}\right]\left[\begin{array}{c}
F_{0} \\
F_{1} \\
\vdots \\
F_{\delta-1}
\end{array}\right]=g(\alpha)
$$

Verifying truncated polynomial matrix product

The polynomial matrix case

Let $P \in \mathbb{K}[X]^{m \times m}, F, G \in \mathbb{K}[X]^{m \times n}, \mathbf{t}=\left(t_{1}, \ldots, t_{n}\right)$ and $\delta=\max (\mathbf{t})$ How to check $P F=G \bmod X^{\mathrm{t}}$?
(1) shrink matrix row dimension a la Freidvalds, random $u \in \mathbb{K}^{1 \times m}$

$$
\rightarrow p=u P \in \mathbb{K}[x]^{1 \times m} \text { and } g=u G \in \mathbb{K}[X]^{1 \times n}
$$

(2) apply idea of [G. '18] with vector/matrix

$$
\underbrace{\left[p(\alpha) \ldots \alpha^{\delta-j}\left(p \operatorname{rem} X^{j}\right)(\alpha) \ldots \alpha^{\delta-1} p_{0}\right]}_{\in \mathbb{K}^{1 \times m \delta}}\left[\begin{array}{c}
F_{0} \\
F_{1} \\
\vdots \\
F_{\delta-1}
\end{array}\right]=g(\alpha)
$$

Verifying truncated polynomial matrix product

The polynomial matrix case

Let $P \in \mathbb{K}[X]^{m \times m}, F, G \in \mathbb{K}[X]^{m \times n}, \mathbf{t}=\left(t_{1}, \ldots, t_{n}\right)$ and $\delta=\max (\mathbf{t})$ How to check $P F=G \bmod X^{\mathrm{t}}$?
(1) shrink matrix row dimension a la Freidvalds, random $u \in \mathbb{K}^{1 \times m}$

$$
\rightarrow p=u P \in \mathbb{K}[x]^{1 \times m} \text { and } g=u G \in \mathbb{K}[X]^{1 \times n}
$$

(2) apply idea of [G. '18] with vector/matrix

$$
\underbrace{\left[p(\alpha) \ldots \alpha^{\delta-j}\left(p \operatorname{rem} X^{j}\right)(\alpha) \ldots \alpha^{\delta-1} p_{0}\right]}_{\in \mathbb{K}^{1 \times m \delta}}\left[\begin{array}{c}
F_{0} \\
F_{1} \\
\vdots \\
F_{\delta-1}
\end{array}\right]=g(\alpha)
$$

\Rightarrow verification in $O\left(\operatorname{size}(P)+m \sum t_{i}\right)$
\Rightarrow proba error $<\frac{\delta}{\# S}$ for $S \subset \mathbb{K}$

