Conjugacy of morphisms and Lyndon decomposition of standard Sturmian words

An answer to a question of G. Melançon
Gwénaël Richomme

LaRIA, UPJV, Amiens, France gwenael.richomme@u-picardie.fr

Outline

- Preliminaries
- Standard Sturmian words
- Melançon's result: decomposition in Lyndon words
- Melançon's question
- Tools
- Sturmian morphisms
- Strong conjugacy
- Key result
- Main result: answer to Melançon's question
- Another consequence of Strong conjugacy
- Conclusion

Standard Sturmian words

- Definition: An infinite word w over $\{a, b\}$ is called standard Sturmian if and only if there exists a sequence $\left(d_{n}\right)_{n \geq 1}$ of integers such that $d_{1} \geq 0, d_{k} \geq 1$ for $k \geq 2$ and

$$
w=\lim _{n \rightarrow \infty} s_{n}
$$

where $s_{-1}=b, s_{0}=a, s_{n}=s_{n-1}^{d_{n}} s_{n-2}$ for $n \geq 1$.

Standard Sturmian words

- Definition: An infinite word w over $\{a, b\}$ is called standard Sturmian if and only if there exists a sequence $\left(d_{n}\right)_{n \geq 1}$ of integers such that $d_{1} \geq 0, d_{k} \geq 1$ for $k \geq 2$ and

$$
w=\lim _{n \rightarrow \infty} s_{n}
$$

where $s_{-1}=b, s_{0}=a, s_{n}=s_{n-1}^{d_{n}} s_{n-2}$ for $n \geq 1$.

- Notation: $w\left(\left(d_{n}\right)_{n \geq 1}\right)$

Standard Sturmian words

- Definition: An infinite word w over $\{a, b\}$ is called standard Sturmian if and only if there exists a sequence $\left(d_{n}\right)_{n \geq 1}$ of integers such that $d_{1} \geq 0, d_{k} \geq 1$ for $k \geq 2$ and

$$
w=\lim _{n \rightarrow \infty} s_{n}
$$

where $s_{-1}=b, s_{0}=a, s_{n}=s_{n-1}^{d_{n}} s_{n-2}$ for $n \geq 1$.

- Notation: $w\left(\left(d_{n}\right)_{n \geq 1}\right)$
- Example: $w\left((1)_{n \geq 1}\right)$ is the Fibonacci word.

Standard Sturmian words

- Definition: An infinite word w over $\{a, b\}$ is called standard Sturmian if and only if there exists a sequence $\left(d_{n}\right)_{n \geq 1}$ of integers such that $d_{1} \geq 0, d_{k} \geq 1$ for $k \geq 2$ and

$$
w=\lim _{n \rightarrow \infty} s_{n}
$$

where $s_{-1}=b, s_{0}=a, s_{n}=s_{n-1}^{d_{n}} s_{n-2}$ for $n \geq 1$.

- Notation: $w\left(\left(d_{n}\right)_{n \geq 1}\right)$
- Example: $w\left((1)_{n \geq 1}\right)$ is the Fibonacci word.
- Example: $w\left((2)_{n \geq 1}\right): s_{n}=s_{n-1} s_{n-1} s_{n-2}$

Standard Sturmian words

- Definition: An infinite word w over $\{a, b\}$ is called standard Sturmian if and only if there exists a sequence $\left(d_{n}\right)_{n \geq 1}$ of integers such that $d_{1} \geq 0, d_{k} \geq 1$ for $k \geq 2$ and

$$
w=\lim _{n \rightarrow \infty} s_{n}
$$

where $s_{-1}=b, s_{0}=a, s_{n}=s_{n-1}^{d_{n}} s_{n-2}$ for $n \geq 1$.

- Notation: $w\left(\left(d_{n}\right)_{n \geq 1}\right)$
- Example: $w\left((1)_{n \geq 1}\right)$ is the Fibonacci word.
- Example: $w\left((2)_{n \geq 1}\right): s_{n}=s_{n-1} s_{n-1} s_{n-2}$
$s_{1}=a a b$

Standard Sturmian words

- Definition: An infinite word w over $\{a, b\}$ is called standard Sturmian if and only if there exists a sequence $\left(d_{n}\right)_{n \geq 1}$ of integers such that $d_{1} \geq 0, d_{k} \geq 1$ for $k \geq 2$ and

$$
w=\lim _{n \rightarrow \infty} s_{n}
$$

where $s_{-1}=b, s_{0}=a, s_{n}=s_{n-1}^{d_{n}} s_{n-2}$ for $n \geq 1$.

- Notation: $w\left(\left(d_{n}\right)_{n \geq 1}\right)$
- Example: $w\left((1)_{n \geq 1}\right)$ is the Fibonacci word.
- Example: $w\left((2)_{n \geq 1}\right): s_{n}=s_{n-1} s_{n-1} s_{n-2}$
$s_{1}=a a b$
$s_{2}=a a b a a b a$

Standard Sturmian words

- Definition: An infinite word w over $\{a, b\}$ is called standard Sturmian if and only if there exists a sequence $\left(d_{n}\right)_{n \geq 1}$ of integers such that $d_{1} \geq 0, d_{k} \geq 1$ for $k \geq 2$ and

$$
w=\lim _{n \rightarrow \infty} s_{n}
$$

where $s_{-1}=b, s_{0}=a, s_{n}=s_{n-1}^{d_{n}} s_{n-2}$ for $n \geq 1$.

- Notation: $w\left(\left(d_{n}\right)_{n \geq 1}\right)$
- Example: $w\left((1)_{n \geq 1}\right)$ is the Fibonacci word.
- Example: $w\left((2)_{n \geq 1}\right): s_{n}=s_{n-1} s_{n-1} s_{n-2}$
$s_{1}=a a b$
$s_{2}=a a b a a b a$
$s_{3}=a a b a a b a a a b a a b a a a b$

Standard Sturmian words

- Definition: An infinite word w over $\{a, b\}$ is called standard Sturmian if and only if there exists a sequence $\left(d_{n}\right)_{n \geq 1}$ of integers such that $d_{1} \geq 0, d_{k} \geq 1$ for $k \geq 2$ and

$$
w=\lim _{n \rightarrow \infty} s_{n}
$$

where $s_{-1}=b, s_{0}=a, s_{n}=s_{n-1}^{d_{n}} s_{n-2}$ for $n \geq 1$.

- Notation: $w\left(\left(d_{n}\right)_{n \geq 1}\right)$
- Example: $w\left((1)_{n \geq 1}\right)$ is the Fibonacci word.
- Example: $w\left((2)_{n \geq 1}\right): s_{n}=s_{n-1} s_{n-1} s_{n-2}$
$s_{1}=a a b$
$s_{2}=a a b a a b a$
$s_{3}=a a b a a b a a a b a a b a a a b$
$s_{4}=a a b a a b a a a b a a b a a a b a a b a a b a a a b a a b a a a b a a b a a b a$

Standard Sturmian words

- Definition: An infinite word w over $\{a, b\}$ is called standard Sturmian if and only if there exists a sequence $\left(d_{n}\right)_{n \geq 1}$ of integers such that $d_{1} \geq 0, d_{k} \geq 1$ for $k \geq 2$ and

$$
w=\lim _{n \rightarrow \infty} s_{n}
$$

where $s_{-1}=b, s_{0}=a, s_{n}=s_{n-1}^{d_{n}} s_{n-2}$ for $n \geq 1$.

- Notation: $w\left(\left(d_{n}\right)_{n \geq 1}\right)$
- Example: $w\left((1)_{n \geq 1}\right)$ is the Fibonacci word.
- General remark:

$$
\text { for } n \geq 1, s_{2 n} \text { ends with } a \text {. }
$$

Notation: $s_{2 n} a^{-1}=s_{2 n}$ without its last a

Decomposition in Lyndon words

- Lyndon word: word strictly smaller than all its suffixes

Decomposition in Lyndon words

- Lyndon word: word strictly smaller than all its suffixes
- Siromoney et al. (1994): any infinite word can be decomposed uniquely as a nonincreasing (with respect to the lexicographic order \preceq) product of Lyndon words

Decomposition in Lyndon words

- Lyndon word: word strictly smaller than all its suffixes
- Siromoney et al. (1994): any infinite word can be decomposed uniquely as a nonincreasing (with respect to the lexicographic order \preceq) product of Lyndon words
- Melançon (2000): decomposition of standard Sturmian words
- $w\left(\left(d_{n}\right)_{n \geq 1}\right)=\prod_{n \geq 0} \ell_{n}^{d_{2 n+1}}$
where for $n \geq 0, \ell_{n}=a s_{2 n}^{d_{2 n+1}-1} s_{2 n-1} s_{2 n} a^{-1}$
- ℓ_{n} is a Lyndon word (for any $n \geq 0$)
- $\ell_{n-1} \succeq \ell_{n}$ (for any $n \geq 0$)

Decomposition in Lyndon words

- Melançon (2000): decomposition of standard Sturmian words
- $w\left(\left(d_{n}\right)_{n \geq 1}\right)=\prod_{n \geq 0} \ell_{n}{ }^{d_{2 n+1}}$
where for $n \geq 0, \ell_{n}=a s_{2 n}^{d_{2 n+1}-1} s_{2 n-1} s_{2 n} a^{-1}$
- ℓ_{n} is a Lyndon word (for any $n \geq 0$)
- $\ell_{n-1} \succeq \ell_{n}$ (for any $n \geq 0$)
- Example:
$w\left((2)_{n \geq 1}\right)=$
aabaabaaabaabaaabaabaabaaabaabaaabaabaaba...

Decomposition in Lyndon words

- Melançon (2000): decomposition of standard Sturmian words
- $w\left(\left(d_{n}\right)_{n \geq 1}\right)=\prod_{n \geq 0} \ell_{n}^{d_{2 n+1}}$
where for $n \geq 0, \ell_{n}=a s_{2 n}^{d_{2 n+1}-1} s_{2 n-1} s_{2 n} a^{-1}$
- ℓ_{n} is a Lyndon word (for any $n \geq 0$)
- $\ell_{n-1} \succeq \ell_{n}$ (for any $n \geq 0$)
- Example:
$w\left((2)_{n \geq 1}\right)=$
aabaabaaabaabaaabaabaabaaabaabaaabaabaaba...
$s_{-1}=b$
$s_{0}=a$

$$
\ell_{0}=a s_{0}^{d_{1}-1} s_{-1} s_{0} a^{-1}=a a b a a^{-1}=a a b
$$

Decomposition in Lyndon words

- Melançon (2000): decomposition of standard Sturmian words
- $w\left(\left(d_{n}\right)_{n \geq 1}\right)=\prod_{n \geq 0} \ell_{n}^{d_{2 n+1}}$
where for $n \geq 0, \ell_{n}=a s_{2 n}^{d_{2 n+1}-1} s_{2 n-1} s_{2 n} a^{-1}$
- ℓ_{n} is a Lyndon word (for any $n \geq 0$)
- $\ell_{n-1} \succeq \ell_{n}$ (for any $n \geq 0$)
- Example:
$w\left((2)_{n \geq 1}\right)=$
aab|aab|aaabaabaaabaabaabaaabaabaaabaabaaba...
$s_{-1}=b$
$s_{0}=a$

$$
\ell_{0}=a s_{0}^{d_{1}-1} s_{-1} s_{0} a^{-1}=a a b a a^{-1}=a a b
$$

Decomposition in Lyndon words

- Melançon (2000): decomposition of standard Sturmian words
- $w\left(\left(d_{n}\right)_{n \geq 1}\right)=\prod_{n \geq 0} \ell_{n}^{d_{2 n+1}}$
where for $n \geq 0, \ell_{n}=a s_{2 n}^{d_{2 n+1}-1} s_{2 n-1} s_{2 n} a^{-1}$
- ℓ_{n} is a Lyndon word (for any $n \geq 0$)
- $\ell_{n-1} \succeq \ell_{n}$ (for any $n \geq 0$)
- Example:
$w\left((2)_{n \geq 1}\right)=$
aab|aab|aaabaabaaabaabaabaaabaabaaabaabaaba...
$s_{-1}=b$
$s_{0}=a$
$\ell_{0}=a s_{0}^{d_{1}-1} s_{-1} s_{0} a^{-1}=a a b a a^{-1}=a a b$
$s_{1}=a a b$
$s_{2}=a a b a a b a \quad \ell_{1}=a s_{2} s_{1} s_{2} a^{-1}=a a a b a a b a a a b a a b a a b$

Decomposition in Lyndon words

- Melançon (2000): decomposition of standard Sturmian words
- $w\left(\left(d_{n}\right)_{n \geq 1}\right)=\prod_{n \geq 0} \ell_{n}^{d_{2 n+1}}$
where for $n \geq 0, \ell_{n}=a s_{2 n}^{d_{2 n+1}-1} s_{2 n-1} s_{2 n} a^{-1}$
- ℓ_{n} is a Lyndon word (for any $n \geq 0$)
- $\ell_{n-1} \succeq \ell_{n}$ (for any $n \geq 0$)
- Example:
$w\left((2)_{n \geq 1}\right)=$
aab|aab|aaabaabaaabaabaab|aaabaabaaabaabaab|a...
$s_{-1}=b$
$s_{0}=a$
$\ell_{0}=a s_{0}^{d_{1}-1} s_{-1} s_{0} a^{-1}=a a b a a^{-1}=a a b$
$s_{1}=a a b$
$s_{2}=a a b a a b a \quad \ell_{1}=a s_{2} s_{1} s_{2} a^{-1}=a a a b a a b a a a b a a b a a b$

Decomposition in Lyndon words

- Example:

$$
\begin{array}{ll}
w\left((2)_{n \geq 1}\right)= & \\
a a b|a a b| a a a b a a b a a a b a a b a a b|a a a b a a b a a a b a a b a a b| a \ldots \\
s_{-1}=b & \\
s_{0}=a & \ell_{0}=a s_{0}^{d_{1}-1} s_{-1} s_{0} a^{-1}=a a b a a^{-1}=a a b \\
s_{1}=a a b & \\
s_{2}=a a b a a b a & \ell_{1}=a s_{2} s_{1} s_{2} a^{-1}=a a a b a a b a a a b a a b a a b
\end{array}
$$

- Remark on the example (Melançon 2000):

$$
\text { for any } n \geq 1, \ell_{n}=f\left(\ell_{n-1}\right)
$$

where $f:\left\{\begin{array}{l}a \mapsto a a a b a a b \\ b \mapsto a a b\end{array}\right.$

Melançon's question (2000)

- When is the sequence $\left(\ell_{n}\right)_{n \geq 0}$ morphic?
that is
When does there exist a morphism f such that for all $n \geq 1, \ell_{n}=f\left(\ell_{n-1}\right)$?

Melançon's question (2000)

- When is the sequence $\left(\ell_{n}\right)_{n \geq 0}$ morphic? that is
When does there exist a morphism f such that for all $n \geq 1, \ell_{n}=f\left(\ell_{n-1}\right)$?
- Remark (still Melançon (2000)):

Such a morphism exists when the sequence $\left(d_{n}\right)_{n \geq 1}$ is constant.

Sturmian morphisms

- Sturmian morphisms: elements of $\left\{L_{a}, L_{b}, R_{a}, R_{b}, E\right\}^{*}$

$$
\begin{aligned}
& L_{a}:\left\{\begin{array}{l}
a \mapsto a \\
b \mapsto a b
\end{array} L_{b}:\left\{\begin{array}{l}
a \mapsto b a \\
b \mapsto b
\end{array} \text { b: } \begin{array}{l}
a \mapsto b \\
b \mapsto a
\end{array}\right.\right. \\
& R_{a}:\left\{\begin{array}{l}
a \mapsto a \\
b \mapsto b a
\end{array} R_{b}:\left\{\begin{array}{l}
a \mapsto a b \\
b \mapsto b
\end{array}\right.\right.
\end{aligned}
$$

Sturmian morphisms

- Sturmian morphisms: elements of $\left\{L_{a}, L_{b}, R_{a}, R_{b}, E\right\}^{*}$

$$
\begin{aligned}
& L_{a}:\left\{\begin{array}{l}
a \mapsto a \\
b \mapsto a b
\end{array} L_{b}:\left\{\begin{array}{l}
a \mapsto b a \\
b \mapsto b
\end{array} \quad E:\left\{\begin{array}{l}
a \mapsto b \\
b \mapsto a
\end{array}\right.\right.\right. \\
& R_{a}:\left\{\begin{array}{l}
a \mapsto a \\
b \mapsto b a
\end{array} R_{b}:\left\{\begin{array}{l}
a \mapsto a b \\
b \mapsto b
\end{array}\right.\right.
\end{aligned}
$$

- Remark (See Berstel, Séébold in Lothaire II):
for any $n \geq 0,\left\{\begin{array}{l}s_{2 n}=f_{n}(a) \\ s_{2 n-1}=f_{n}(b)\end{array}\right.$
where $f_{n}=L_{a}^{d_{1}} L_{b}^{d_{2}} \ldots L_{a}^{d_{2 n-1}} L_{b}^{d_{2 n}}$

Sturmian morphisms

- Sturmian morphisms: elements of $\left\{L_{a}, L_{b}, R_{a}, R_{b}, E\right\}^{*}$

$$
\begin{aligned}
& L_{a}:\left\{\begin{array}{l}
a \mapsto a \\
b \mapsto a b
\end{array} L_{b}:\left\{\begin{array}{l}
a \mapsto b a \\
b \mapsto b
\end{array} \quad E:\left\{\begin{array}{l}
a \mapsto b \\
b \mapsto a
\end{array}\right.\right.\right. \\
& R_{a}:\left\{\begin{array}{l}
a \mapsto a \\
b \mapsto b a
\end{array} \quad R_{b}:\left\{\begin{array}{l}
a \mapsto a b \\
b \mapsto b
\end{array}\right.\right.
\end{aligned}
$$

- Remark (See Berstel, Séébold in Lothaire II):
for any $n \geq 0,\left\{\begin{array}{l}s_{2 n}=f_{n}(a) \\ s_{2 n-1}=f_{n}(b)\end{array}\right.$
where $f_{n}=L_{a}^{d_{1}} L_{b}^{d_{2}} \ldots L_{a}^{d_{2 n-1}} L_{b}^{d_{2 n}}$
- Example: $w\left((2)_{n \geq 1}\right): f_{n}=\left(L_{a} L_{a} L_{b} L_{b}\right)^{n}$

Sturmian morphisms

- Sturmian morphisms: elements of $\left\{L_{a}, L_{b}, R_{a}, R_{b}, E\right\}^{*}$

$$
\begin{aligned}
& L_{a}:\left\{\begin{array}{l}
a \mapsto a \\
b \mapsto a b
\end{array} L_{b}:\left\{\begin{array}{l}
a \mapsto b a \\
b \mapsto b
\end{array} \quad E:\left\{\begin{array}{l}
a \mapsto b \\
b \mapsto a
\end{array}\right.\right.\right. \\
& R_{a}:\left\{\begin{array}{l}
a \mapsto a \\
b \mapsto b a
\end{array} R_{b}:\left\{\begin{array}{l}
a \mapsto a b \\
b \mapsto b
\end{array}\right.\right.
\end{aligned}
$$

- Remark (See Berstel, Séébold in Lothaire II):
for any $n \geq 0,\left\{\begin{array}{l}s_{2 n}=f_{n}(a) \\ s_{2 n-1}=f_{n}(b)\end{array}\right.$
where $f_{n}=L_{a}^{d_{1}} L_{b}^{d_{2}} \ldots L_{a}^{d_{2 n-1}} L_{b}^{d_{2 n}}$
- Remark: $\ell_{n} a=a s_{2 n}^{d_{2 n+1}-1} s_{2 n-1} s_{2 n}=a f_{n}\left(a^{d_{2 n+1}-1} b a\right)$

Strong conjugacy

- Definition: two morphisms f and g are said u-conjugated for a word u if for all words x, $f(x) u=u g(x)$

Strong conjugacy

- Definition: two morphisms f and g are said u-conjugated for a word u if for all words x, $f(x) u=u g(x)$
- $L_{a} L_{b}:\left\{\begin{array}{l}a \mapsto a b a \\ b \mapsto a b\end{array}\right.$ and $R_{a} L_{b}:\left\{\begin{array}{l}a \mapsto b a a \\ b \mapsto b a\end{array}\right.$ are a-conjugated

Strong conjugacy

- Definition: two morphisms f and g are said u-conjugated for a word u if for all words x, $f(x) u=u g(x)$
- $L_{a} L_{b}:\left\{\begin{array}{l}a \mapsto a b a \\ b \mapsto a b\end{array}\right.$ and $R_{a} L_{b}:\left\{\begin{array}{l}a \mapsto b a a \\ b \mapsto b a\end{array}\right.$ are a-conjugated
- f and g are strongly u-conjugated if moreover

$$
f(a)=u a \text { and } g(a)=a u
$$

Strong conjugacy

- Definition: two morphisms f and g are said u-conjugated for a word u if for all words x, $f(x) u=u g(x)$
- $L_{a} L_{b}:\left\{\begin{array}{l}a \mapsto a b a \\ b \mapsto a b\end{array}\right.$ and $R_{a} L_{b}:\left\{\begin{array}{l}a \mapsto b a a \\ b \mapsto b a\end{array}\right.$
are a-conjugated (but not strongly conjugated)
- f and g are strongly u-conjugated if moreover

$$
f(a)=u a \text { and } g(a)=a u
$$

- $L_{a} L_{b}:\left\{\begin{array}{l}a \mapsto a b a \\ b \mapsto a b\end{array}\right.$ and $L_{a} R_{b}:\left\{\begin{array}{l}a \mapsto a a b \\ b \mapsto a b\end{array}\right.$
are strongly $a b$-conjugated

Strong conjugacy

- Definition: two morphisms f and g are said u-conjugated for a word u if for all words x,

$$
f(x) u=u g(x)
$$

- f and g are strongly u-conjugated if moreover

$$
f(a)=u a \text { and } g(a)=a u
$$

- $L_{a} L_{b}:\left\{\begin{array}{l}a \mapsto a b a \\ b \mapsto a b\end{array}\right.$ and $L_{a} R_{b}:\left\{\begin{array}{l}a \mapsto a a b \\ b \mapsto a b\end{array}\right.$ are strongly $a b$-conjugated
- $f_{n}=L_{a}^{d_{1}} L_{b}^{d_{2}} \ldots L_{a}^{d_{2 n-1}} L_{b}^{d_{2 n}}$ is strongly conjugated to $g_{n}=L_{a}^{d_{1}} R_{b}^{d_{2}} \ldots L_{a}^{d_{2 n-1}} R_{b}^{d_{2 n}}$

Key result

- For all $n \geq 0$,

$$
\ell_{n}=g_{n}\left(a^{d_{2 n+1}} b\right)=g_{n} L_{a}^{d_{2 n+1}}(b)
$$

Key result

- For all $n \geq 0$,

$$
\ell_{n}=g_{n}\left(a^{d_{2 n+1}} b\right)=g_{n} L_{a}^{d_{2 n+1}}(b)
$$

- Proof:

$$
\begin{array}{rl|l}
\ell_{n} a & =a f_{n}\left(a^{d_{2 n+1}} b a\right) & \\
& =a f_{n}\left(a^{d_{2 n+1}} b\right) u_{n} a & \\
& =a u_{n} g_{n}\left(a^{d_{2 n+1}} b\right) a & u_{n} \mid f_{n}(a)= \\
& =g_{n}\left(a^{d_{2 n+1}} b\right) a & \begin{array}{l}
f_{n} \text { et } g_{n} u_{n}-(\\
g_{n}(a)=a u_{n}
\end{array} ~
\end{array}
$$

Key result

- For all $n \geq 0$,

$$
\ell_{n}=g_{n}\left(a^{d_{2 n+1}} b\right)=g_{n} L_{a}^{d_{2 n+1}}(b)
$$

- Proof:

$$
\begin{array}{rl|l}
\ell_{n} a & =a f_{n}\left(a^{d_{2 n+1}} b a\right) & \text { already seen } \\
& =a f_{n}\left(a^{d_{2 n+1}} b\right) u_{n} a & u_{n} \mid f_{n}(a)=u_{n} a \\
& =a u_{n} g_{n}\left(a^{d_{2 n+1}} b\right) a & f_{n} \text { et } g_{n} u_{n} \text {-conjugated } \\
& =g_{n}\left(a^{d_{2 n+1}} b\right) a & g_{n}(a)=a u_{n}
\end{array}
$$

- Remark. A direct proof that: ℓ_{n} is a Lyndon word. Since $g_{n} L_{a}^{d_{2 n+1}}$ preserves Lyndon word (Richomme 2003)

Key result

- For all $n \geq 0$,

$$
\ell_{n}=g_{n}\left(a^{d_{2 n+1}} b\right)=g_{n} L_{a}^{d_{2 n+1}}(b)
$$

- Proof:

$$
\begin{array}{rl|l}
\ell_{n} a & =a f_{n}\left(a^{d_{2 n+1}} b a\right) & \text { already seen } \\
& =a f_{n}\left(a^{d_{2 n+1}} b\right) u_{n} a & u_{n} \mid f_{n}(a)=u_{n} a \\
& =a u_{n} g_{n}\left(a^{d_{2 n+1}} b\right) a & f_{n} \text { et } g_{n} u_{n} \text {-conjugated } \\
& =g_{n}\left(a^{d_{2 n+1}} b\right) a & g_{n}(a)=a u_{n}
\end{array}
$$

- Remark. A direct proof that: ℓ_{n} is a Lyndon word. Since $g_{n} L_{a}^{d_{2 n+1}}$ preserves Lyndon word (Richomme 2003)
- Remark. A direct proof that: $\ell_{n} \succeq \ell_{n-1}$.

Since g_{n} preserves the lexicographic order (Richomme 2003)

Answer to Melançon's question

There exists a morphism f such that

$$
\text { for all } n \geq 1, \ell_{n}=f\left(\ell_{n-1}\right)
$$

if and only if one of the two following cases hold
Case 1. $\left\{\begin{array}{l}1 \leq d_{1} \leq d_{3} \\ \left(d_{n}\right)_{n \geq 1}=\left(d_{1}, d_{2}, d_{3}, d_{2}, d_{3}, \ldots\right)\end{array}\right.$
In this case $\left\{\begin{array}{l}\ell_{0}=a^{d_{1}} b \\ f=L_{a}^{d_{1}} R_{b}^{d_{2}} L_{a}^{d_{3}-d_{1}}\end{array}\right.$
Case 2. $\left\{\begin{array}{l}d_{1}=0,1 \leq d_{2} \leq d_{4} \\ \left(d_{n}\right)_{n \geq 1}=\left(0, d_{2}, d_{3}, d_{4}, d_{3}, d_{4}, \ldots\right)\end{array}\right.$
In this case $\left\{\begin{array}{l}\ell_{0}=b \\ f=R_{b}^{d_{2}} L_{a}^{d_{3}} R_{b}^{d_{4}-d_{2}}\end{array}\right.$

Another consequence of Strong conjugacy

- Strong conjugacy between f_{n} and g_{n} implies:

$$
a f_{n}(a)=g_{n}(a) a
$$

Another consequence of Strong conjugacy

- Strong conjugacy between f_{n} and g_{n} implies:

$$
a f_{n}(a)=g_{n}(a) a
$$

- Hence

$$
a w\left(\left(d_{n}\right)_{n \geq 1}\right)=a \lim _{n \rightarrow \infty} f_{n}(a)=\lim _{n \rightarrow \infty} g_{n}(a)
$$

Another consequence of Strong conjugacy

- Strong conjugacy between f_{n} and g_{n} implies:

$$
a f_{n}(a)=g_{n}(a) a
$$

- Hence

$$
a w\left(\left(d_{n}\right)_{n \geq 1}\right)=a \lim _{n \rightarrow \infty} f_{n}(a)=\lim _{n \rightarrow \infty} g_{n}(a)
$$

- But g_{n} preserves Lyndon word (Richomme 2003)

Another consequence of Strong conjugacy

- Strong conjugacy between f_{n} and g_{n} implies:

$$
a f_{n}(a)=g_{n}(a) a
$$

- Hence

$$
a w\left(\left(d_{n}\right)_{n \geq 1}\right)=a \lim _{n \rightarrow \infty} f_{n}(a)=\lim _{n \rightarrow \infty} g_{n}(a)
$$

- But g_{n} preserves Lyndon word (Richomme 2003)
- So the word $\operatorname{aw}\left(\left(d_{n}\right)_{n \geq 1}\right)$ has an infinity of prefixes that are Lyndon words: it is an infinite Lyndon word.

Another consequence of Strong conjugacy

- Strong conjugacy between f_{n} and g_{n} implies:

$$
a f_{n}(a)=g_{n}(a) a
$$

- Hence

$$
a w\left(\left(d_{n}\right)_{n \geq 1}\right)=a \lim _{n \rightarrow \infty} f_{n}(a)=\lim _{n \rightarrow \infty} g_{n}(a)
$$

- But g_{n} preserves Lyndon word (Richomme 2003)
- So the word $\operatorname{aw}\left(\left(d_{n}\right)_{n \geq 1}\right)$ has an infinity of prefixes that are Lyndon words: it is an infinite Lyndon word.
- This proves a result of Borel and Laubie (1993)

For any standard Sturmian word w, $a w$ is an infinite Lyndon word

Conclusion

- This work shows the interest of conjugacy of morphisms (and morphisms preserving Lyndon words) to study problems concerning Sturmian words (and their relations with Lyndon words).

Conclusion

- This work shows the interest of conjugacy of morphisms (and morphisms preserving Lyndon words) to study problems concerning Sturmian words (and their relations with Lyndon words).
- Further work: for any Sturmian word, using its decomposition over Sturmian morphisms, we are looking for its decomposition in Lyndon words.

Conclusion

- This work shows the interest of conjugacy of morphisms (and morphisms preserving Lyndon words) to study problems concerning Sturmian words (and their relations with Lyndon words).
- Further work: for any Sturmian word, using its decomposition over Sturmian morphisms, we are looking for its decomposition in Lyndon words.
- Remark: recently, with F. Levé, we have obtained a characterization of the Sturmian words that are infinite Lyndon words : they are the non-quasiperiodic Sturmian words.

