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Introduction
Classification with the Support Vector Machines

Data Fusion
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Context
Data characteristics
Objectives of the work

Urban remote sensing data:

PLEIADES (0.75m/pix) IRS-1C (5m/pix)

Spatial resolution: 0.75 to 2.5 meter by pixel

Spectral resolution: 1 to more than 200 spectral bands
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Very High resolution urban remote sensing data:

Panchromatic Multispectral

Classification: a pattern recognition approach
1 Feature extraction: one vector of attributes extracted for every pixel
2 Pattern recognition algorithms: Maximum Likelihood, Neural Network . . .
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Original Data Ground-truth Thematic Map

Experimental Data Set: University Area, Pavia, Italy. [610× 340× 103],
1.5 m/pixel, 9 classes.
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High resolution spectral information:
↗ Fine physical description
↗ Directly accessible
v Curse of dimensionality
↘ No contextual information

High resolution spatial information:
↗ Fine description of

structure
v Not Directly accessible
↘ No spectral information
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Combine the different types of information for the classification

Why?

��

// Random permutation //

��
Spectral classification //

Same classification !!

Spectral classificationoo

Need to incorporate information from the spatial domain
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Combine the different types of information for the classification

Prior studies: 2 steps approach
1 Feature extraction: Morphological processing
2 Classification: Neural Network, Fuzzy Logic

Contribution:
1 Feature extraction: Extraction of

• Contextual information (self-complementary filter)
• Spectral feature (KPCA)

2 Classification:
• Support Vector Machines
• Transferability of the hyperplane

3 Data Fusion:
• at data level
• at decision level
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Outline:

1 Classification with the Support Vector Machines
Support Vector Machine (SVM)
Using spatial information with SVM
Discussion

2 Data Fusion
Motivation
Decision Fusion
Discussion

3 Conclusions and perspectives
Conclusions
Perspectives
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H (w, b) : {x|〈w,x〉+ b = 0}

Optimal separating hyperplane [Vapnik-98]:
• Minimize training errors over S
• Maximize the margin ⇐⇒ minimize ‖w‖2
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Kernel methods: Use kernel function k (positive semi-definite)

k(xi ,xj) = 〈Φ(xi),Φ(xj)〉H
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// k(xi ,xj) //
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Some kernels:
• Polynomial kernel: k(xi ,xj) =

(
〈xi ,xj〉+ q

)p

• Gaussian kernel: k(xi ,xj) = exp
(
− ‖x
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)
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Multiclass problem: m classes
1 One versus All: m binary classifiers

2 One versus One: m(m-1)/2 classifiers
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Classification in the spectral space: spatial & spectral

Gaussian ML (78%) Neural Network (67%) SVM (80%)
Classes: asphalt, meadow, gravel, tree, metal sheet, bare soil, bitumen, brick and shadow.
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Spatial information:
Statistical Information Geometrical Information
Inter-pixels dependency Shape
Texture Area
Gray level distribution Orientation

Histogram
Mean 107 136

Variance 35 48
Shape Rectangular Rectangular
Size 8049 9741
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Markov Random Field [Lafarge-05]: fixed neighborhood (cliques)

Contextual features [Camps-Valls-06; Bruzzone-06]: fixed neighborhood
(p × p square)

Texture features [Mercier-06] : two 1-D wavelets (on x and y)

Morphological processing [Benediktsson-03]: structures
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Not well suited to urban area data: discontinuity

Morphological Neighborhood: adapt the neighborhood to the structures

• Previous works: Granulometry with geodesic filters (Morphological profile
and its derivative).

Acts only on extrema structures

• Proposed works: Self-complementary filters.
Acts on structures whatever their gray-level
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Self-complementary area filter [Soille-05]: Remove all the structures that are
smaller than a given area threshold

1 Labelling all the flat zones that satisfy the area criterion λ,
2 Growing the labelled flat zones until an image partition is reached.

Extracting the inter-pixel dependency [Fauvel-07a]:
Υx = med(Ωx)
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How to use conjointly the spatial and the spectral information?
• Kernel approach: mixture of kernels
• SVM classifier

Combination of kernels: Spatio-spectral kernel (SS kernel)

µkspect + (1− µ)kspat

• kspect acts on the spectral information
• kspat acts on the spatial information
• µ control the amount of each type of information

Mathieu Fauvel Classification of Urban Remote Sensing Data 18/37



Introduction
Classification with the Support Vector Machines

Data Fusion
Conclusions and perspectives

Support Vector Machine (SVM)
Using spatial information with SVM
Discussion

Extension to hyperspectral data?

Ordering relation for pixels is needed: does not exit.
• Marginal ordering ⇒ by band filtering
• Total Pre-ordering ⇒ h : Rn → R1

Our approach: Dimension reduction with PCA.
1 Projection on the first PC
2 Area filtering and generalization of the neighborhood mask for each band
3 Spatial feature extraction
4 Classification with SS SVM

h : Rn → R1

x 7→ x = 〈x,v1
p〉Rn
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Experiments:
• EMP: Morphological approach (EMP): 3 PCs and 4 opening/closing.
• MRF: Markov Random Field (Potts model):
• SS SVM: Spatio-Spectral SVM

Parameters setting: Cross-validation

Multiclass strategy: One versus all.

Mathieu Fauvel Classification of Urban Remote Sensing Data 20/37



Introduction
Classification with the Support Vector Machines

Data Fusion
Conclusions and perspectives

Support Vector Machine (SVM)
Using spatial information with SVM
Discussion

Classification using spectral and spatial information: spectral only

EMP MRF SS SVM
Classes: asphalt, meadow, gravel, tree, metal sheet, bare soil, bitumen, brick and shadow.
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Classification accuracies:
% SVM EMP MRF SS SVM

Overall Accuracy 80 80 83 86
Average Accuracy 88 85 89 92
Kappa coefficient 75 74 79 82

Asphalt 80 93 92 84
Meadow 68 73 70 78
Gravel 74 52 62 84

Bare soil 95 62 98 95

⇓
Data Fusion
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Spatial information is helpful

Benefits
• Adaptive neighborhood definition
• Kernel formulation
• Performance for peri-urban area

Drawbacks
• Parameters λ (area threshold) and µ (weight in SS kernel)
• Statistical spatial information only
• Extension to multi- or hyperspectral data [Soille-07]
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Different classifiers:
• Statistic Theory: Gaussian Maximum Likelihood, Fisher Discriminant
Analysis. . .

• Machine learning Theory: Neural Network, Support Vector Machines. . .
• Fuzzy Set Theory: Fuzzy NN, Fuzzy model. . .

Different sources:
• Panchromatic and multispectral data
• Multi-valued data
• Multi-temporal data
• Extracted data: texture or geometrical features

Complementary information
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Decision fusion scheme (for classification):

PROCESS

FUSION

DECISION

S1

S2

Sm

Problems:
• Sources of different natures
• Sources of different reliabilities
• Conflicting situations
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Requirement:
• At least one accurate classifier
• Variable reliability of classifier:

• for each pixel
• for each class

General framework [Fauvel-06]:
• Modeling the classifier’s output with fuzzy set
• Reliability is estimated by fuzziness

Application to SVM classifiers: needs specific derivations
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SVM fusion scheme:

SVM fusion

fusionPCA EMP SVM

Original data

2 ∗
m(m − 1)

2
binary classifiers
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ity
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tin
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n

m(m − 1)
2

binary classifiers

d12
f (x)

d(m−1)m
f (x)

Fusion rule [Fauvel-07b]:
The greater the distance to the hyperplane, the more reliable the source

dĳ
f (x) = maxabs

(
dĳ

1 (x) , dĳ
2 (x)

)
0d12

1 (x) d12
2 (x)
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Same classifier with different inputs:
• A classifier based on the spectral information: SVM
• A classifier based on the spatial information: EMP + SVM

Experiments:
• spectral features: 103
• spatial features: 33
• parameters fit with CV
• comparison with simple majority vote rule
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Classification results:

SVM EMP Desision fusion Majority Voting
Overall Accuracy 81 85 90 86
Average Accuracy 88 91 94 88
Kappa coefficient 76 81 87 82

Asphalt 84 95 93 94
Meadow 70 80 84 85
Gravel 70 88 82 65

Bare soil 92 64 91 62
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Classification using decision fusion:

SVM EMP Decision fusion
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Classification accuracies:
SVM EMP SS SVM Decision Fusion

Overall Accuracy 80 85 86 90
Average Accuracy 88 90 92 94
Kappa coefficient 75 80 83 87

Processing complexity:

SVM EMP SS SVM Decision Fusion
Pre-processing + −− − −−

Training + + − −−
Classification + + + −
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Visual inspection:

Original SVM EMP

SS SVM Decision Fusion MRF
Classes: asphalt, meadow, gravel, tree, metal sheet, bare soil, bitumen, brick and shadow.
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Classification of remote sensing data of urban area

1 Include spatial information: Self-complementary filter
2 Support Vector Machines: kernel approach to include spatial information
3 Decision fusion: adaptive approach based on reliability estimation
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Spatial information:
• Extract other spatial information: geometric . . .

Classification:
• Kernel for spectral data

Data fusion
• Estimation of global accuracy: bound of performances
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