Spectral and Spatial Methods for the Classification of Urban Remote Sensing Data

Mathieu Fauvel

gipsa-lab/DIS, Grenoble Institute of Technology - INPG - FRANCE Department of Electrical and Computer Engineering, University of Iceland - ICELAND

Membres du Jury

Monsieur	Henri MAÎTRE	Président
Monsieur	Grégoire MERCIER	Rapporteur
Monsieur	Sebastiano B. SERPICO	Rapporteur
Monsieur	Albert BIJAOUI	Examinateur
Monsieur	Jordi INGLADA	Examinateur
Monsieur	Johannes R. SVEINSSON	Examinateur
Monsieur	Jocelyn CHANUSSOT	Directeur de thèse
Monsieur	Jon A. BENEDIKTSSON	Co-Directeur

Context

Data characteristics Objectives of the work

Urban remote sensing data:

PLEIADES (0.75m/pix)

IRS-1C (5m/pix)

Spatial resolution: 0.75 to 2.5 meter by pixel

Spectral resolution: 1 to more than 200 spectral bands

Context Data characteristics Objectives of the work

Very High resolution urban remote sensing data:

Panchromatic

Multispectral

Classification: a pattern recognition approach

- 1 Feature extraction: one vector of attributes extracted for every pixel
- 2 Pattern recognition algorithms: Maximum Likelihood, Neural Network ...

Context

Data characteristics Objectives of the work

Experimental Data Set: University Area, Pavia, Italy. $[610\times 340\times 103],$ 1.5 m/pixel, 9 classes.

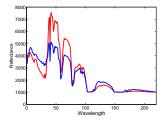
Context Data characteristics Objectives of the work

High resolution spectral information:

- Fine physical description
- \nearrow Directly accessible
- $\, \backsim \,$ Curse of dimensionality
- \searrow No contextual information

High resolution spatial information:

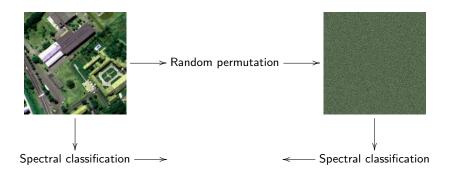
- Fine description of structure
- $\, \backsim \,$ Not Directly accessible
- \searrow No spectral information



Context Data characteristics Objectives of the work

Combine the different types of information for the classification

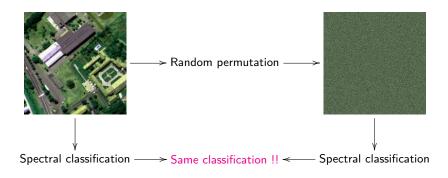
Why?



Context Data characteristics Objectives of the work

Combine the different types of information for the classification

Why?



Need to incorporate information from the spatial domain

Combine the different types of information for the classification

Prior studies: 2 steps approach

- 1 Feature extraction: Morphological processing
- 2 Classification: Neural Network, Fuzzy Logic

Contribution:

- 1 Feature extraction: Extraction of
 - Contextual information (self-complementary filter)
 - Spectral feature (KPCA)
- 2 Classification:
 - Support Vector Machines
 - Transferability of the hyperplane
- 3 Data Fusion:
 - at data level
 - at decision level

Combine the different types of information for the classification

Prior studies: 2 steps approach

- 1 Feature extraction: Morphological processing
- 2 Classification: Neural Network, Fuzzy Logic

Contribution:

- 1 Feature extraction: Extraction of
 - Contextual information (self-complementary filter)
 - Spectral feature (KPCA)
- 2 Classification:
 - Support Vector Machines
 - Transferability of the hyperplane
- 3 Data Fusion:
 - at data level
 - at decision level

Context Data characteristics Objectives of the work

OUTLINE:

 Classification with the Support Vector Machines Support Vector Machine (SVM) Using spatial information with SVM Discussion

- 2 Data Fusion
 - Motivation Decision Fusion Discussion
- 3 Conclusions and perspectives Conclusions Perspectives

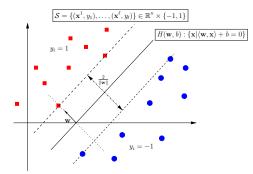
 $\begin{array}{l} \mbox{Support Vector Machine (SVM)} \\ \mbox{Using spatial information with SVM} \\ \mbox{Discussion} \end{array}$

Classification with the Support Vector Machines Support Vector Machine (SVM) Using spatial information with SVM Discussion

Data Fusion Motivation Decision Fusion Discussion

3 Conclusions and perspectives Conclusions Perspectives

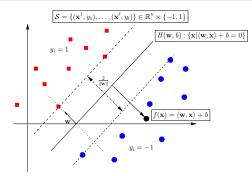
Support Vector Machine (SVM) Using spatial information with SVM Discussion



Optimal separating hyperplane [Vapnik-98]:

- Minimize training errors over ${\mathcal S}$
- Maximize the margin \iff minimize $\|\mathbf{w}\|^2$

Support Vector Machine (SVM) Using spatial information with SVM Discussion

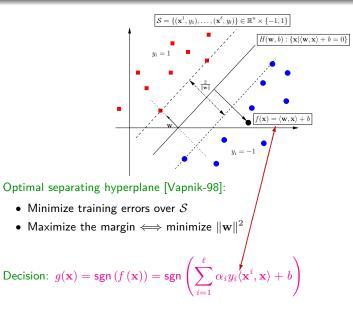


Optimal separating hyperplane [Vapnik-98]:

- Minimize training errors over ${\mathcal S}$
- Maximize the margin \iff minimize $\|\mathbf{w}\|^2$

Decision:
$$g(\mathbf{x}) = \operatorname{sgn}(f(\mathbf{x})) = \operatorname{sgn}\left(\sum_{i=1}^{\ell} \alpha_i y_i \langle \mathbf{x}^i, \mathbf{x} \rangle + b\right)$$

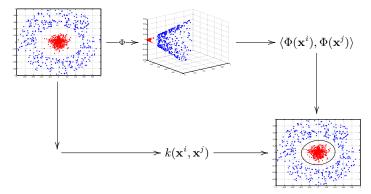
Support Vector Machine (SVM) Using spatial information with SVM Discussion



Support Vector Machine (SVM) Using spatial information with SVM Discussion

Kernel methods: Use kernel function k (positive semi-definite)

$$k(\mathbf{x}^{i}, \mathbf{x}^{j}) = \langle \Phi(\mathbf{x}^{i}), \Phi(\mathbf{x}^{j}) \rangle_{\mathcal{H}}$$



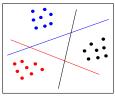
Some kernels:

- Polynomial kernel: $k(\mathbf{x}^i, \mathbf{x}^j) = \left(\langle \mathbf{x}^i, \mathbf{x}^j \rangle + q \right)^p$
- Gaussian kernel: $k(\mathbf{x}^i, \mathbf{x}^j) = \exp\left(-\frac{\|\mathbf{x}^i \mathbf{x}^j\|^2}{\gamma^2}\right)$

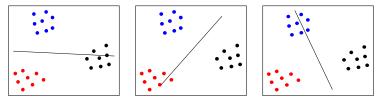
Support Vector Machine (SVM) Using spatial information with SVM Discussion

Multiclass problem: m classes

1 One versus All: m binary classifiers



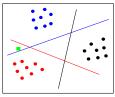
2 One versus One: m(m-1)/2 classifiers



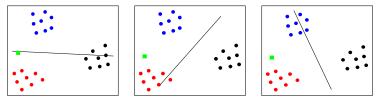
Support Vector Machine (SVM) Using spatial information with SVM Discussion

Multiclass problem: m classes

1 One versus All: m binary classifiers



2 One versus One: m(m-1)/2 classifiers



Support Vector Machine (SVM) Using spatial information with SVM Discussion

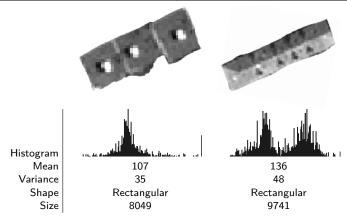
Classification in the spectral space: • spatial & spectral

Gaussian ML (78%) Neural Network (67%) SVM (80%) Classes: asphalt, meadow, gravel, tree, metal sheet, bare soil, bitumen, brick and shadow.

 $\begin{array}{l} \mbox{Support Vector Machine (SVM)} \\ \mbox{Using spatial information with SVM} \\ \mbox{Discussion} \end{array}$

Spatial information:

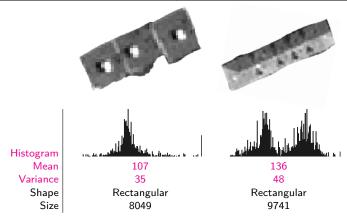
Statistical Information	Geometrical Information			
Inter-pixels dependency	Shape			
Texture	Area			
Gray level distribution	Orientation			



 $\begin{array}{l} \mbox{Support Vector Machine (SVM)} \\ \mbox{Using spatial information with SVM} \\ \mbox{Discussion} \end{array}$

Spatial information:

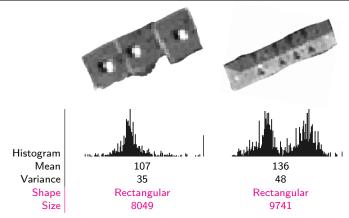
Statistical Information	Geometrical Information		
Inter-pixels dependency	Shape		
Texture	Area		
Gray level distribution	Orientation		



 $\begin{array}{l} \mbox{Support Vector Machine (SVM)} \\ \mbox{Using spatial information with SVM} \\ \mbox{Discussion} \end{array}$

Spatial information:

Statistical Information	Geometrical Information			
Inter-pixels dependency	Shape			
Texture	Area			
Gray level distribution	Orientation			



Markov Random Field [Lafarge-05]: fixed neighborhood (cliques)

Contextual features [Camps-Valls-06; Bruzzone-06]: fixed neighborhood ($p \times p$ square)

Texture features [Mercier-06] : two 1-D wavelets (on x and y)

Morphological processing [Benediktsson-03]: structures

Support Vector Machine (SVM) Using spatial information with SVM Discussion

Not well suited to urban area data: discontinuity

Morphological Neighborhood: adapt the neighborhood to the structures

• Previous works: Granulometry with geodesic filters (Morphological profile and its derivative).

Acts only on extrema structures

• Proposed works: Self-complementary filters.

Acts on structures whatever their gray-level

Support Vector Machine (SVM) Using spatial information with SVM Discussion

- 1 Labelling all the flat zones that satisfy the area criterion λ ,
- 2 Growing the labelled flat zones until an image partition is reached.

Support Vector Machine (SVM) Using spatial information with SVM Discussion

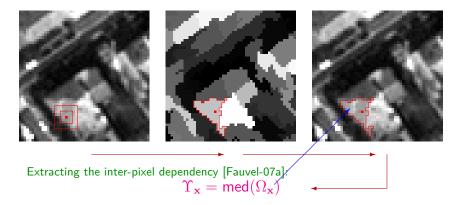
- 1 Labelling all the flat zones that satisfy the area criterion λ ,
- 2 Growing the labelled flat zones until an image partition is reached.

Support Vector Machine (SVM) Using spatial information with SVM Discussion

- 1 Labelling all the flat zones that satisfy the area criterion λ ,
- 2 Growing the labelled flat zones until an image partition is reached.

Support Vector Machine (SVM) Using spatial information with SVM Discussion

- 1 Labelling all the flat zones that satisfy the area criterion λ ,
- 2 Growing the labelled flat zones until an image partition is reached.



How to use conjointly the spatial and the spectral information?

- Kernel approach: mixture of kernels
- SVM classifier

Combination of kernels: Spatio-spectral kernel (SS kernel)

$$\mu k^{spect} + (1-\mu)k^{spat}$$

- k^{spect} acts on the spectral information
- k^{spat} acts on the spatial information
- μ control the amount of each type of information

Extension to hyperspectral data?

Ordering relation for pixels is needed: does not exit.

- Marginal ordering \Rightarrow by band filtering
- Total Pre-ordering $\Rightarrow h : \mathbb{R}^n \to \mathbb{R}^1$

Our approach: Dimension reduction with PCA.

- 1 Projection on the first PC
- 2 Area filtering and generalization of the neighborhood mask for each band
- 3 Spatial feature extraction
- 4 Classification with SS SVM

$$egin{array}{rcl} h: \mathbb{R}^n & o & \mathbb{R}^1 \ & \mathbf{x} & \mapsto & x = \langle \mathbf{x}, \mathbf{v}_p^1
angle_{\mathbb{R}^n} \end{array}$$

Experiments:

- EMP: Morphological approach (EMP): 3 PCs and 4 opening/closing.
- MRF: Markov Random Field (Potts model):
- SS SVM: Spatio-Spectral SVM

Parameters setting: Cross-validation

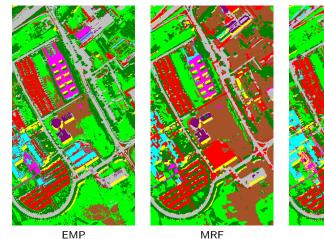
Multiclass strategy: One versus all.

Support Vector Machine (SVM) Using spatial information with SVM Discussion

Classification using spectral and spatial information:

spectral only

SS SVM



Classes: asphalt, meadow, gravel, tree, metal sheet, bare soil, bitumen, brick and shadow.

 $\begin{array}{l} \mbox{Support Vector Machine (SVM)} \\ \mbox{Using spatial information with SVM} \\ \mbox{Discussion} \end{array}$

Classification accuracies:

%	SVM	EMP	MRF	SS SVM
OVERALL ACCURACY	80	80	83	86
AVERAGE ACCURACY	88	85	89	92
KAPPA COEFFICIENT	75	74	79	82
Asphalt	80	93	92	84
Meadow	68	73	70	78
GRAVEL	74	52	62	84
BARE SOIL	95	62	98	95

Support Vector Machine (SVM) Using spatial information with SVM Discussion

Classification accuracies:

%	SVM	EMP	MRF	SS SVM
OVERALL ACCURACY	80	80	83	86
AVERAGE ACCURACY	88	85	89	92
KAPPA COEFFICIENT	75	74	79	82
Asphalt	80	93	92	84
Meadow	68	73	70	78
GRAVEL	74	52	62	84
BARE SOIL	95	62	98	95

Data Fusion

Spatial information is helpful

Benefits

- Adaptive neighborhood definition
- Kernel formulation
- Performance for peri-urban area

Drawbacks

- Parameters λ (area threshold) and μ (weight in SS kernel)
- Statistical spatial information only
- Extension to multi- or hyperspectral data [Soille-07]

Motivation Decision Fusion Discussion

Classification with the Support Vector Machines Support Vector Machine (SVM) Using spatial information with SVM Discussion

2 Data Fusion Motivation Decision Fusion Discussion

3 Conclusions and perspectives Conclusions Perspectives

Different classifiers:

- Statistic Theory: Gaussian Maximum Likelihood, Fisher Discriminant Analysis...
- Machine learning Theory: Neural Network, Support Vector Machines...
- Fuzzy Set Theory: Fuzzy NN, Fuzzy model...

Different sources:

- Panchromatic and multispectral data
- Multi-valued data
- Multi-temporal data
- Extracted data: texture or geometrical features

Different classifiers:

- Statistic Theory: Gaussian Maximum Likelihood, Fisher Discriminant Analysis...
- Machine learning Theory: Neural Network, Support Vector Machines...
- Fuzzy Set Theory: Fuzzy NN, Fuzzy model...

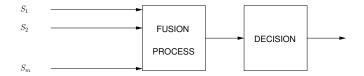
Different sources:

- Panchromatic and multispectral data
- Multi-valued data
- Multi-temporal data
- Extracted data: texture or geometrical features

Complementary information

Motivation Decision Fusion Discussion

Decision fusion scheme (for classification):



Problems:

- Sources of different natures
- Sources of different reliabilities
- Conflicting situations

Motivation Decision Fusion Discussion

Requirement:

- At least one accurate classifier
- Variable reliability of classifier:
 - for each pixel
 - for each class

General framework [Fauvel-06]:

- Modeling the classifier's output with fuzzy set
- Reliability is estimated by fuzziness

Motivation Decision Fusion Discussion

Requirement:

- At least one accurate classifier
- Variable reliability of classifier:
 - for each pixel
 - for each class

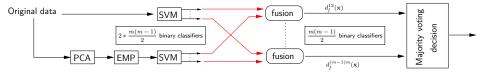
General framework [Fauvel-06]:

- Modeling the classifier's output with fuzzy set
- Reliability is estimated by fuzziness

Application to SVM classifiers: needs specific derivations

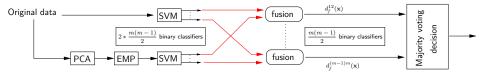
Motivation Decision Fusion Discussion

SVM fusion scheme:



Motivation Decision Fusion Discussion

SVM fusion scheme:



Fusion rule [Fauvel-07b]:

The greater the distance to the hyperplane, the more reliable the source

$$d_f^{ij}(\mathbf{x}) = \max \left(d_1^{ij}(\mathbf{x}), d_2^{ij}(\mathbf{x}) \right)$$
$$d_1^{12}(\mathbf{x}) \qquad 0 \qquad d_2^{12}(\mathbf{x})$$

Same classifier with different inputs:

- A classifier based on the spectral information: SVM
- A classifier based on the spatial information: $\mathsf{EMP}+\mathsf{SVM}$

Experiments:

- spectral features: 103
- spatial features: 33
- parameters fit with CV
- · comparison with simple majority vote rule

Motivation Decision Fusion Discussion

Classification results:

	SVM	EMP	DESISION FUSION	Majority Voting
OVERALL ACCURACY	81	85	90	86
AVERAGE ACCURACY	88	91	94	88
KAPPA COEFFICIENT	76	81	87	82
Asphalt	84	95	93	94
Meadow	70	80	84	85
GRAVEL	70	88	82	65
BARE SOIL	92	64	91	62

Motivation Decision Fusion Discussion

Classification using decision fusion:

SVM

EMP

Decision fusion

Motivation Decision Fusion Discussion

Classification accuracies:

	SVM	EMP	SS SVM	DECISION FUSION
Overall Accuracy	80	85	86	90
AVERAGE ACCURACY	88	90	92	94
KAPPA COEFFICIENT	75	80	83	87

Processing complexity:

	SVM	EMP	SS SVM	DECISION FUSION
Pre-processing	+		-	
TRAINING	+	+	_	
CLASSIFICATION	+	+	+	-

Motivation Decision Fusion Discussion

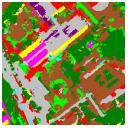
Visual inspection:

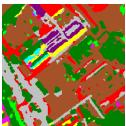
Original

SVM



EMP





SS SVM Decision Fusion MRF Classes: asphalt, meadow, gravel, tree, metal sheet, bare soil, bitumen, brick and shadow.

Mathieu Fauvel

Classification of Urban Remote Sensing Data

Classification with the Support Vector Machines Support Vector Machine (SVM) Using spatial information with SVM Discussion

- Data Fusion Motivation Decision Fusion Discussion
- 3 Conclusions and perspectives Conclusions Perspectives

Classification of remote sensing data of urban area

- 1 Include spatial information: Self-complementary filter
- 2 Support Vector Machines: kernel approach to include spatial information
- 3 Decision fusion: adaptive approach based on reliability estimation

Spatial information:

• Extract other spatial information: geometric ...

Classification:

• Kernel for *spectral* data

Data fusion

• Estimation of global accuracy: bound of performances

Spectral and Spatial Methods for the Classification of Urban Remote Sensing Data

Mathieu Fauvel

gipsa-lab/DIS, Grenoble Institute of Technology - INPG - FRANCE Department of Electrical and Computer Engineering, University of Iceland - ICELAND

