Classification of Hyperspectral Data Using Spectral-Spatial Approaches

Yuliya Tarabalka, Jocelyn Chanussot and Jon Atli Benediktsson

GIPSA-Lab, Grenoble Institute of Technologygy, France Department of Electrical and Computer Engineering, University of Iceland, Iceland

May 13, 2010

Classification using segmentation-derived adaptive neighborhoods Segmentation and classification using automatically selected markers Conclusions and perspectives

Hyperspectral image

Every pixel contains a detailed spectrum (>100 spectral bands)

+ More information per pixel \rightarrow increasing capability to distinguish objects

Classification using segmentation-derived adaptive neighborhoods Segmentation and classification using automatically selected markers Conclusions and perspectives

Hyperspectral image

Every pixel contains a detailed spectrum (>100 spectral bands)

+ More information per pixel \rightarrow increasing capability to distinguish objects

- Dimensionality increases \rightarrow image analysis becomes more complex

Efficient algorithms for automatic processing are required!

Classification using segmentation-derived adaptive neighborhoods Segmentation and classification using automatically selected markers Conclusions and perspectives

Classification problem

ROSIS image Spatial resolution: 1.3m/pix Spectral resolution: 103 bands

Ground-truth data

Task

Assign every pixel to one of the **nine** classes: meadows trees metal sheets bare soil bitumen bricks

Classification using segmentation-derived adaptive neighborhoods Segmentation and classification using automatically selected markers Conclusions and perspectives

Classification problem

AVIRIS image Spatial resolution: 20m/pix Spectral resolution: 200 bands

Task

Assign **every** pixel to **one** of the **16** classes: corn-no till, corn-min till, corn, soybeans-no till, soybeans-min till, soybeans-clean till, alfalfa, grass/pasture, grass/trees, grass/pasture-mowed, hay-windrowed, oats, wheat, woods, bldg-grass-tree-drives, stone-steel towers

Classification using segmentation-derived adaptive neighborhoods Segmentation and classification using automatically selected markers Conclusions and perspectives

Classification approaches

Only spectral information

- Spectrum of each pixel is analyzed
- Directly accessible
- Variety of methods
 - Support Vector Machines (SVM) → good classification results [Camps-Valls05]

Overall accuracy = 81.01%

Yuliya Tarabalka, Jocelyn Chanussot and Jon Atli Benediktsson

Classification using segmentation-derived adaptive neighborhoods Segmentation and classification using automatically selected markers Conclusions and perspectives

Classification approaches

Only spectral information

- Spectrum of each pixel is analyzed
- Directly accessible
- Variety of methods
 - Support Vector Machines (SVM) → good classification results [Camps-Valls05]

Overall accuracy = 81.01%

Yuliya Tarabalka, Jocelyn Chanussot and Jon Atli Benediktsson

Spectral-Spatial Classification of Hyperspectral Data

Classification using segmentation-derived adaptive neighborhoods Segmentation and classification using automatically selected markers Conclusions and perspectives

Classification approaches

Only spectral information

- Spectrum of each pixel is analyzed
- Directly accessible
- Variety of methods
 - Support Vector Machines (SVM) → good classification results [Camps-Valls05]

- Info about spatial structures is included
 - Since neighboring pixels are related
- How to define spatial structures?
- How to combine spectral and spatial information?

Classification using segmentation-derived adaptive neighborhoods Segmentation and classification using automatically selected markers Conclusions and perspectives

- Closest fixed neighborhoods
 - Markov Random Field [Pony00, Jackson02, Farag05]
 - Contextual features [Camps-Valls06]
 - + Simplicity
 - Imprecision at the border of regions

Classification using segmentation-derived adaptive neighborhoods Segmentation and classification using automatically selected markers Conclusions and perspectives

- Closest fixed neighborhoods
 - Markov Random Field [Pony00, Jackson02, Farag05]
 - Contextual features [Camps-Valls06]
 - + Simplicity
 - Imprecision at the border of regions

Classification using segmentation-derived adaptive neighborhoods Segmentation and classification using automatically selected markers Conclusions and perspectives

- Closest fixed neighborhoods
 - Markov Random Field [Pony00, Jackson02, Farag05]
 - Contextual features [Camps-Valls06]
 - + Simplicity
 - Imprecision at the border of regions
- Morphological and area filtering
 - Morphological profiles [Dell'Acqua04, Benediktsson05, Fauvel07]
 - Area filtering [Fauvel07]
 - + Neighborhoods are adapted to the structures
 - Neighborhoods are scale dependent \Rightarrow imprecision in the spatial info

Closing - Original - Opening

Classification using segmentation-derived adaptive neighborhoods Segmentation and classification using automatically selected markers Conclusions and perspectives

- Closest fixed neighborhoods
 - Markov Random Field [Pony00, Jackson02, Farag05]
 - Contextual features [Camps-Valls06]
 - + Simplicity
 - Imprecision at the border of regions
- Morphological and area filtering
 - Morphological profiles [Dell'Acqua04, Benediktsson05, Fauvel07]
 - Area filtering [Fauvel07]
 - + Neighborhoods are adapted to the structures
 - Neighborhoods are scale dependent \Rightarrow imprecision in the spatial info

Classification using segmentation-derived adaptive neighborhoods Segmentation and classification using automatically selected markers Conclusions and perspectives

State of the art: Approaches for extracting spatial info

Segmentation map = exhaustive partitioning of the image into homogeneous regions

- Extraction and Classification of Homogeneous Objects [Kettig76]
 - + Has become a standard spectral-spatial classification technique
 - Statistical approach \Rightarrow not well adapted for hyperspectral data

Recent works:

- Multiscale segmentation + SVM classification [Linden07, Huang09]
 - Computationally demanding
- Marker selection by morphological filtering + watershed [Noyel08]
 - + Minimized dependence on the thresholds

Yuliya Tarabalka, Jocelyn Chanussot and Jon Atli Benediktsson

Spectral-Spatial Classification of Hyperspectral Data

Classification using segmentation-derived adaptive neighborhoods Segmentation and classification using automatically selected markers Conclusions and perspectives

State of the art: Approaches for extracting spatial info

- Segmentation map = exhaustive partitioning of the image into homogeneous regions
 - Extraction and Classification of Homogeneous Objects [Kettig76]
 - + Has become a standard spectral-spatial classification technique
 - Statistical approach \Rightarrow not well adapted for hyperspectral data

Recent works:

- Multiscale segmentation + SVM classification [Linden07, Huang09]
 - Computationally demanding
- Marker selection by morphological filtering + watershed [Noyel08]
 - + Minimized dependence on the thresholds

Yuliya Tarabalka, Jocelyn Chanussot and Jon Atli Benediktsson

Spectral-Spatial Classification of Hyperspectral Data

Classification using segmentation-derived adaptive neighborhoods Segmentation and classification using automatically selected markers Conclusions and perspectives

State of the art: Approaches for extracting spatial info

- Segmentation map = exhaustive partitioning of the image into homogeneous regions
 - Extraction and Classification of Homogeneous Objects [Kettig76]
 - + Has become a standard spectral-spatial classification technique
 - Statistical approach \Rightarrow not well adapted for hyperspectral data

Recent works:

- Multiscale segmentation + SVM classification [Linden07, Huang09]
 - Computationally demanding
- Marker selection by morphological filtering + watershed [Noyel08]
 - + Minimized dependence on the thresholds

Yuliya Tarabalka, Jocelyn Chanussot and Jon Atli Benediktsson

Spectral-Spatial Classification of Hyperspectral Data

Classification using segmentation-derived adaptive neighborhoods Segmentation and classification using automatically selected markers Conclusions and perspectives

combine spectral and spatial info

Yuliya Tarabalka, Jocelyn Chanussot and Jon Atli Benediktsson

Classification using segmentation-derived adaptive neighborhoods Segmentation and classification using automatically selected markers Conclusions and perspectives

combine spectral and spatial info

Yuliya Tarabalka, Jocelyn Chanussot and Jon Atli Benediktsson

Classification using segmentation-derived adaptive neighborhoods Segmentation and classification using automatically selected markers Conclusions and perspectives

Outline

Introduction

- Classification using segmentation-derived adaptive neighborhoods
 - Segmentation
 - Spectral-spatial classification
 - Concluding discussion

3 Segmentation and classification using automatically selected markers

- Marker selection
- Classification using marker-controlled region growing
- Concluding discussion

Segmentation Spectral-spatial classification Concluding discussion

Objective

- Automatically segment a hyperspectral image into homogeneous regions

Outline

Segmentation Spectral-spatial classificatio Concluding discussion

Introduction

Classification using segmentation-derived adaptive neighborhoods

- Segmentation
- Spectral-spatial classification
- Concluding discussion

3 Segmentation and classification using automatically selected markers

- Marker selection
- Classification using marker-controlled region growing
- Concluding discussion
- 4 Conclusions and perspectives

Segmentation

Spectral-spatial classification Concluding discussion

1. Watershed segmentation

Region growing method:

- Minimum of a gradient = core of a homogeneous region
- 1 region = set of pixels connected to 1 local minimum of the gradient
- Watershed lines = edges between adjacent regions

Segmentation Spectral-spatial classification Concluding discussion

1. Watershed segmentation for hyperspectral image

From *B*-band image \rightarrow 1-band segmentation map:

- Feature extraction (PCA, ICA,...)?
- Vectorial gradient?
- Combine *B* gradients?
- Combine *B* watershed regions?

Segmentation Spectral-spatial classification Concluding discussion

1. Watershed segmentation for hyperspectral image

From *B*-band image \rightarrow 1-band segmentation map:

- Feature extraction (PCA, ICA,...)?
- Vectorial gradient?
- Combine *B* gradients?
- Combine *B* watershed regions?

Segmentation Spectral-spatial classification Concluding discussion

1. Watershed segmentation for hyperspectral image

From *B*-band image \rightarrow 1-band segmentation map:

- Feature extraction (PCA, ICA,...)?
- Vectorial gradient?
- Combine *B* gradients?
- Combine *B* watershed regions?

Segmentation Spectral-spatial classification Concluding discussion

1. Watershed segmentation for hyperspectral image

From *B*-band image \rightarrow 1-band segmentation map:

- Feature extraction (PCA, ICA,...)?
- Vectorial gradient?
- Combine *B* gradients?
- Combine *B* watershed regions?

Segmentation Spectral-spatial classification Concluding discussion

1. Watershed segmentation for hyperspectral image

From *B*-band image \rightarrow 1-band segmentation map:

- Feature extraction (PCA, ICA,...)?
- Vectorial gradient?
- Combine *B* gradients?
- Combine *B* watershed regions?

Segmentation Spectral-spatial classification Concluding discussion

1. Watershed segmentation

Segmentation Spectral-spatial classification Concluding discussion

1. Watershed segmentation

Segmentation Spectral-spatial classification Concluding discussion

1. Watershed segmentation

Segmentation Spectral-spatial classification Concluding discussion

1. Watershed segmentation

Segmentation Spectral-spatial classification Concluding discussion

2. Partitional clustering (EM)

Band 1 radiance

Clustering

- pixels are grouped into C clusters
- $\bullet\,$ in each cluster $\to\,$ pixels drawn from a Gaussian distribution
- $\bullet\,$ distribution parameters $\rightarrow\,$ EM algorithm

2 Labeling of connected components

10 clusters

Yuliya Tarabalka, Jocelyn Chanussot and Jon Atli Benediktsson

Segmentation Spectral-spatial classification Concluding discussion

2. Partitional clustering (EM)

Band 1 radiance

Clustering

- pixels are grouped into C clusters
- in each cluster \rightarrow pixels drawn from a Gaussian distribution
- $\bullet\,$ distribution parameters $\rightarrow\,$ EM algorithm

2 Labeling of connected components

10 clusters ⇒ 21450 regions

same cluster, but different regions!

Segmentation Spectral-spatial classification Concluding discussion

3. Hierarchical SEGmentation (HSEG, [Tilton98])

- Region growing + Spectral Clustering
- Dissimilarity criterion (*DC*):

Spectral Angle Mapper (SAM) between the region mean vectors u_i and u_j

$$SAM(u_i, u_j) = \arccos(\frac{u_i \cdot u_j}{\|u_i\|_2 \|u_j\|_2})$$

- Each pixel one region
- Find DC_{min} between adjacent regions
- Merge adjacent regions with DC = DC_{min}
- Interpretence of the second state of the s
- If not converge, go to 2

Segmentation Spectral-spatial classification Concluding discussion

3. Hierarchical SEGmentation (HSEG, [Tilton98])

- Region growing + Spectral Clustering
- Dissimilarity criterion (*DC*):

Spectral Angle Mapper (SAM) between the region mean vectors u_i and u_j

$$SAM(u_i, u_j) = \arccos(\frac{u_i \cdot u_j}{\|u_i\|_2 \|u_j\|_2})$$

Each pixel - one region

- Find DC_{min} between adjacent regions
- Merge adjacent regions with DC = DC_{min}
- Interpretence of the second secon
- If not converge, go to 2

Segmentation Spectral-spatial classification Concluding discussion

3. Hierarchical SEGmentation (HSEG, [Tilton98])

- Region growing + Spectral Clustering
- Dissimilarity criterion (*DC*):

Spectral Angle Mapper (SAM) between the region mean vectors u_i and u_j

$$SAM(u_i, u_j) = \arccos(\frac{u_i \cdot u_j}{\|u_i\|_2 \|u_j\|_2})$$

- Each pixel one region
- Find DC_{min} between adjacent regions
- Merge adjacent regions with DC = DC_{min}
- Merge non-adjacent regions with DC ≤ DC_{min} · SpectralClusterW eight
- If not converge, go to 2

Segmentation Spectral-spatial classification Concluding discussion

3. Hierarchical SEGmentation (HSEG, [Tilton98])

- Region growing + Spectral Clustering
- Dissimilarity criterion (*DC*):

Spectral Angle Mapper (SAM) between the region mean vectors u_i and u_j

$$SAM(u_i, u_j) = \arccos(\frac{u_i \cdot u_j}{\|u_i\|_2 \|u_j\|_2})$$

- Each pixel one region
- Find DC_{min} between adjacent regions
- Solution Merge adjacent regions with $DC = DC_{min}$
- Merge non-adjacent regions with DC ≤ DC_{min} · SpectralClusterW eight
- If not converge, go to 2

Segmentation Spectral-spatial classification Concluding discussion

3. Hierarchical SEGmentation (HSEG, [Tilton98])

- Region growing + Spectral Clustering
- Dissimilarity criterion (*DC*):

$$SAM(u_i, u_j) = \arccos(\frac{u_i \cdot u_j}{\|u_i\|_2 \|u_j\|_2})$$

- Each pixel one region
- Find DC_{min} between adjacent regions
- Merge adjacent regions with DC = DC_{min}
- Merge non-adjacent regions with DC ≤ DC_{min} · SpectralClusterWeight
- If not converge, go to 2

Segmentation Spectral-spatial classification Concluding discussion

3. Hierarchical SEGmentation (HSEG, [Tilton98])

- Region growing + Spectral Clustering
- Dissimilarity criterion (*DC*):

$$SAM(u_i, u_j) = \arccos(\frac{u_i \cdot u_j}{\|u_i\|_2 \|u_j\|_2})$$

- Each pixel one region
- Find DC_{min} between adjacent regions
- Merge adjacent regions with DC = DC_{min}
- In Merge non-adjacent regions with DC ≤ DC_{min} · SpectralClusterWeight
- If not converge, go to 2

Segmentation Spectral-spatial classification Concluding discussion

3. Hierarchical SEGmentation (HSEG, [Tilton98])

- Region growing + Spectral Clustering
- Dissimilarity criterion (*DC*):

$$SAM(u_i, u_j) = \arccos(\frac{u_i \cdot u_j}{\|u_i\|_2 \|u_j\|_2})$$

- Each pixel one region
- Find DC_{min} between adjacent regions
- Merge adjacent regions with DC = DC_{min}
- In Merge non-adjacent regions with DC ≤ DC_{min} · SpectralClusterWeight
- If not converge, go to 2

SCW = 0.07231 regions

Segmentation Spectral-spatial classification Concluding discussion

3. Hierarchical SEGmentation (HSEG, [Tilton98])

- Region growing + Spectral Clustering
- Dissimilarity criterion (*DC*):

$$SAM(u_i, u_j) = \arccos(\frac{u_i \cdot u_j}{\|u_i\|_2 \|u_j\|_2})$$

- Each pixel one region
- Find DC_{min} between adjacent regions
- Solution Merge adjacent regions with $DC = DC_{min}$
- In Merge non-adjacent regions with DC ≤ DC_{min} · SpectralClusterWeight
- If not converge, go to 2

SCW = 0.17575 regions

Outline

Segmentation Spectral-spatial classification Concluding discussion

Introduction

- Classification using segmentation-derived adaptive neighborhoods
 - Segmentation
 - Spectral-spatial classification
 - Concluding discussion
- 3 Segmentation and classification using automatically selected markers
 - Marker selection
 - Classification using marker-controlled region growing
 - Concluding discussion
- 4 Conclusions and perspectives

Segmentation Spectral-spatial classification Concluding discussion

Spectral-spatial classification: majority vote

Segmentation Spectral-spatial classification Concluding discussion

Spectral-spatial classification

Segmentation Spectral-spatial classification Concluding discussion

Spectral-spatial classification

Segmentation Spectral-spatial classification Concluding discussion

Spectral-spatial classification

Segmentation Spectral-spatial classification Concluding discussion

Classification accuracies (%)

	SVM	+Watersh.	+Part.Cl.	+HSEG		EMP1	ECHO
SCW				0.0	0.1		
Overall Acc.	81.01	85.42	94.00	90.00	93.85	85.22	87.58
Average Acc.	88.25	91.31	93.13	94.15	97.07	90.76	92.16
Kappa Coef. κ	75.86	81.30	91.93	86.86	91.89	80.86	83.90
Asphalt	84.93	93.64	90.10	73.33	94.77	95.36	87.98
Meadows	70.79	75.09	95.99	88.73	89.32	80.33	81.64
Gravel	67.16	66.12	82.26	97.47	96.14	87.61	76.91
Trees	97.77	98.56	85.54	98.45	98.08	98.37	99.31
Metal sheets	99.46	99.91	100	99.10	99.82	99.48	99.91
Bare soil	92.83	97.35	96.72	98.43	99.76	63.72	93.96
Bitumen	90.42	96.23	91.85	95.92	100	98.87	92.97
Bricks	92.78	97.92	98.34	98.81	99.29	95.41	97.35
Shadows	98.11	96.98	97.36	97.11	96.48	97.68	99.37

¹A. Plaza et al., "Recent advances in techniques for hyperspectral image processing," Remote Sensing of Environment, vol. 113, Suppl. 1, 2009.

Yuliya Tarabalka, Jocelyn Chanussot and Jon Atli Benediktsson Spectral-Spatial Classification of Hyperspectral Data

Outline

Segmentation Spectral-spatial classification Concluding discussion

Introduction

Classification using segmentation-derived adaptive neighborhoods

- Segmentation
- Spectral-spatial classification
- Concluding discussion
- 3 Segmentation and classification using automatically selected markers
 - Marker selection
 - Classification using marker-controlled region growing
 - Concluding discussion
- 4 Conclusions and perspectives

Segmentation Spectral-spatial classification Concluding discussion

- Spectral-spatial classification improves accuracies when compared to pixel-wise classification
- Several segmentation techniques are investigated
- The HSEG segmentation map leads to the best classification
- Obtained classification accuracies > all previous results

However...

Segmentation Spectral-spatial classification Concluding discussion

Unsupervised segmentation

- Unsupervised segmentation = exhaustive partitioning into homogeneous regions
- How to define a measure of homogeneity?

Segmentation Spectral-spatial classification Concluding discussion

Unsupervised segmentation

- Unsupervised segmentation = exhaustive partitioning into homogeneous regions
- How to define a measure of homogeneity?

Segmentation Spectral-spatial classification Concluding discussion

Unsupervised segmentation

- Unsupervised segmentation = exhaustive partitioning into homogeneous regions
- How to define a measure of homogeneity?

Segmentation Spectral-spatial classification Concluding discussion

Watershed segmentation

Original image

Robust Color Morpho Gradient

Segmentation Spectral-spatial classification Concluding discussion

Watershed segmentation

Original image

Severe oversegmentation!

Segmentation Spectral-spatial classification Concluding discussion

Marker-controlled segmentation

- Reduce oversegmentation ⇐ incorporate an additional knowledge into segmentation
- We propose to use markers

Marker selection Classification using marker-controlled region growing Concluding discussion

Objective

- Determine markers automatically ← using probabilistic classification results
- Marker-controlled region growing→ segment and classify a hyperspectral image

Outline

Marker selection Classification using marker-controlled region growin Concluding discussion

Introduction

- 2 Classification using segmentation-derived adaptive neighborhoods
 - Segmentation
 - Spectral-spatial classification
 - Concluding discussion

3 Segmentation and classification using automatically selected markers

- Marker selection
- Classification using marker-controlled region growing
- Concluding discussion
- 4 Conclusions and perspectives

Introduction

Classification using segmentation-derived adaptive neighborhoods Segmentation and classification using automatically selected markers Conclusions and perspectives

Marker selection

Classification using marker-controlled region growing Concluding discussion

Using probabilistic SVM

Introduction

Classification using segmentation-derived adaptive neighborhoods Segmentation and classification using automatically selected markers Conclusions and perspectives Marker selection

Classification using marker-controlled region growing Concluding discussion

Marker selection using probabilistic SVM

- *B*-band hyperspectral image $\mathbf{X} = {\mathbf{x}_j \in \mathbb{R}^B, j = 1, 2, ..., n}$
- *B* ~ 100

Marker selection

Classification using marker-controlled region growing Concluding discussion

Probabilistic

pixelwise

-lyperspectral image

(B bands)

Marker selection using probabilistic SVM

- SVM classifier^{*} → well suited for hyperspectral images
- Output:

*C. Chang and C. Lin, "LIBSVM: A library for Support Vector Machines," Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm, 2001. Segmentation and classification using automatically selected markers

Marker selection

Marker selection using probabilistic SVM

Analysis of classification and probability maps:

classification map

- If it is large (> 20 pixels) \rightarrow use P%
- If it is small \rightarrow its pixels with

Marker selection

Classification using marker-controlled region growing Concluding discussion

Marker selection using probabilistic SVM

Analysis of classification and probability maps:

classification map

Perform connected components labeling of the classification map

2

Analyze each connected component:

- If it is large (> 20 pixels) → use P% (5%) of its pixels with the highest probabilities as a marker
- If it is small \rightarrow its pixels with probabilities > T% (90%) are used as a marker

Segmentation and classification using automatically selected markers

Marker selection

Marker selection using probabilistic SVM

Analysis of classification and probability maps:

classification map

. Hyperspectral image (B bands) Probabilistic pixelwise classification sification map probability map Selection of the most map of Marker-controlled reliable classified region growing pixels Segmentation map + classification map

Analyze each connected component:

- If it is large (> 20 pixels) \rightarrow use P%
- If it is small \rightarrow its pixels with

Marker selection

Classification using marker-controlled region growing Concluding discussion

Marker selection using probabilistic SVM

Analysis of classification and probability maps:

- Perform connected components laseling of the classification map
- Analyze each connected component:
 - If it is large (> 20 pixels) → use P% (5%) of its pixels with the highest probabilities as a marker
 - If it is small \rightarrow its pixels with probabilities > T% (90%) are used as a marker

Must contain a marker!

Marker selection

Classification using marker-controlled region growing Concluding discussion

Marker selection using probabilistic SVM

Analysis of classification and probability maps:

• If it is small \rightarrow its pixels with probabilities > T% (90%) are used as a marker

Marker selection

Classification using marker-controlled region growing Concluding discussion

Marker selection using probabilistic SVM

Analysis of classification and probability maps:

classification map

- If it is large (> 20 pixels) → use P% (5%) of its pixels with the highest probabilities as a marker
- If it is small \rightarrow its pixels with probabilities > T% (90%) are used as a marker

Marker selection

Classification using marker-controlled region growing Concluding discussion

Marker selection using probabilistic SVM

Analysis of classification and probability maps:

classification map

- Each connected component \rightarrow 1 or 0 marker (2250 regions \rightarrow 107 markers)
- Marker is not necessarily a connected set of pixels
- Each marker has a class label

map of 107 markers

Introduction

Classification using segmentation-derived adaptive neighborhoods Segmentation and classification using automatically selected markers Conclusions and perspectives

Marker selection

Classification using marker-controlled region growing Concluding discussion

Multiple classifier approach

Marker selection Classification using marker-controlled region growing Concluding discussion

Multiple classifier approach for marker selection

- Previous method: strong dependence on the performances of the selected probabilistic classifier
- Objective: mitigate this dependence
 - \rightarrow using multiple classifiers

Marker selection Classification using marker-controlled region growing Concluding discussion

Multiple classifier approach for marker selection

- Previous method: strong dependence on the performances of the selected probabilistic classifier
- Objective: mitigate this dependence
 → using multiple classifiers

Multiple classifier marker selection approach

- Classify an image by several independent classifiers
- Pixels assigned by all the classifiers to the same class
 ↓
 Map of markers

Marker selection

Classification using marker-controlled region growing Concluding discussion

Multiple spectral-spatial classifier marker selection

• Take into account spatial context

Marker selection

Classification using marker-controlled region growing Concluding discussion

Multiple spectral-spatial classifier marker selection

• Take into account spatial context

Marker selection

Classification using marker-controlled region growing Concluding discussion

Multiple spectral-spatial classifier marker selection

• Take into account spatial context

Marker selection

Classification using marker-controlled region growing Concluding discussion

Multiple spectral-spatial classifier marker selection

• Take into account spatial context

Marker selection

Classification using marker-controlled region growing Concluding discussion

Multiple spectral-spatial classifier marker selection

• Take into account spatial context

Marker selection Classification using marker-controlled region growing Concluding discussion

Outline

Introduction

- 2 Classification using segmentation-derived adaptive neighborhoods
 - Segmentation
 - Spectral-spatial classification
 - Concluding discussion

3 Segmentation and classification using automatically selected markers

- Marker selection
- Classification using marker-controlled region growing
- Concluding discussion
- 4 Conclusions and perspectives

Introduction

Classification using segmentation-derived adaptive neighborhoods Segmentation and classification using automatically selected markers Conclusions and perspectives Marker selection Classification using marker-controlled region growing Concluding discussion

Introducti

Classification using segmentation-derived adaptive neighborhoods Segmentation and classification using automatically selected markers Conclusions and perspectives Marker selection Classification using marker-controlled region growing Concluding discussion

Marker selection Classification using marker-controlled region growing Concluding discussion

1. Marker-controlled watershed / Gradient

*Y. Tarabalka, J. Chanussot, and J. A. Benediktsson, "Segmentation and classification of hyperspectral images using watershed transformation," Pattern Recognition, vol. 43, no. 7, pp. 2367-2379, July 2010.

Introduct

Classification using segmentation-derived adaptive neighborhoods Segmentation and classification using automatically selected markers Conclusions and perspectives Marker selection Classification using marker-controlled region growing Concluding discussion

Marker selection Classification using marker-controlled region growing Concluding discussion

1. Marker-controlled watershed

- Transform the gradient $f_g \rightarrow$ markers are the only minima
 - Create a marker image:

$$f_m(\mathbf{x}) = \begin{cases} 0, \\ t_m \end{cases}$$

if **x** belongs to marker, otherwise

- Compute $(f_g + 1) \bigwedge f_m$
- Perform minima imposition: morphological reconstruction by erosion of (f_g + 1) ∧ f_m from f_m:

$$f_{gmi} = R^{\varepsilon}_{(f_g+1) \bigwedge f_m}(f_m)$$

Segmentation and classification using automatically selected markers

Classification using marker-controlled region growing

1. Marker-controlled watershed

- **1** Transform the gradient $f_q \rightarrow$ markers are the only minima
 - Create a marker image:

 $f_m(\mathbf{x}) = \begin{cases} 0, & \text{if } \mathbf{x} \text{ belongs to marker,} \\ t_{max}, & \text{otherwise} \end{cases}$

• Compute $(f_q + 1) \wedge f_m$

• Perform minima imposition:

$$f_{gmi} = R^{\varepsilon}_{(f_g+1) \bigwedge f_m}(f_m)$$

Segmentation and classification using automatically selected markers

Classification using marker-controlled region growing

1. Marker-controlled watershed

- **1** Transform the gradient $f_q \rightarrow$ markers are the only minima
 - Create a marker image:

 $f_m(\mathbf{x}) = \begin{cases} 0, & \text{if } \mathbf{x} \text{ belongs to marker,} \\ t_{max}, & \text{otherwise} \end{cases}$

- Compute $(f_q + 1) \bigwedge f_m$
- Perform minima imposition:

$$f_{gmi} = R^{\varepsilon}_{(f_g+1) \bigwedge f_m}(f_m)$$

Marker selection Classification using marker-controlled region growing Concluding discussion

1. Marker-controlled watershed

- Transform the gradient $f_g \rightarrow$ markers are the only minima
 - Create a marker image:

$$f_m(\mathbf{x}) = \begin{cases} 0, \\ t_m \end{cases}$$

if **x** belongs to marker, otherwise

- Compute $(f_g + 1) \bigwedge f_m$
- Perform minima imposition: morphological reconstruction by erosion of $(f_g + 1) \bigwedge f_m$ from f_m :

$$f_{gmi} = R^{\varepsilon}_{(f_g+1)\bigwedge f_m}(f_m)$$

Marker selection Classification using marker-controlled region growing Concluding discussion

- Transform the gradient f_g → markers are the only minima
- Apply watershed on the filtered gradient image f_{gmi} (Vincent and Soille, 1991)

Marker selection Classification using marker-controlled region growing Concluding discussion

- Transform the gradient $f_g \rightarrow$ markers are the only minima
- Apply watershed on the filtered gradient image f_{gmi} (Vincent and Soille, 1991)

Marker selection Classification using marker-controlled region growing Concluding discussion

- Transform the gradient $f_g \rightarrow$ markers are the only minima
- Apply watershed on the filtered gradient image f_{gmi} (Vincent and Soille, 1991)
- Assign every watershed pixel to the spectrally most similar neighboring region

Marker selection Classification using marker-controlled region growing Concluding discussion

- Transform the gradient f_g → markers are the only minima
- Apply watershed on the filtered gradient image f_{gmi} (Vincent and Soille, 1991)
- Assign every watershed pixel to the spectrally most similar neighboring region

Marker selection Classification using marker-controlled region growing Concluding discussion

- Transform the gradient f_g → markers are the only minima
- Apply watershed on the filtered gradient image f_{gmi} (Vincent and Soille, 1991)
- Assign every watershed pixel to the spectrally most similar neighboring region
- Merge regions belonging to the same marker

Marker selection Classification using marker-controlled region growing Concluding discussion

- Transform the gradient f_g → markers are the only minima
- Apply watershed on the filtered gradient image f_{gmi} (Vincent and Soille, 1991)
- Assign every watershed pixel to the spectrally most similar neighboring region
- Merge regions belonging to the same marker
- Solution Class of each marker → class of the corresponding region

Introduction

Classification using segmentation-derived adaptive neighborhoods Segmentation and classification using automatically selected markers Conclusions and perspectives Marker selection Classification using marker-controlled region growing Concluding discussion

Marker selection Classification using marker-controlled region growing Concluding discussion

Marker selection Classification using marker-controlled region growing Concluding discussion

2. Construction of a Minimum Spanning Forest (MSF)

1) Map an image onto a graph

• Weight *w*_{*i,j*} indicates the degree of dissimilarity between pixels **x**_{*i*} and **x**_{*j*}. Spectral Angle Mapper (SAM) distance can be used:

$$w_{i,j} = SAM(\mathbf{x}_i, \mathbf{x}_j) = \arccos\left(\frac{\sum_{b=1}^{B} x_{ib} x_{jb}}{[\sum_{b=1}^{B} x_{ib}^2]^{1/2} [\sum_{b=1}^{B} x_{jb}^2]^{1/2}}\right)$$

Marker selection Classification using marker-controlled region growing Concluding discussion

2. Construction of a Minimum Spanning Forest (MSF)

1) Map an image onto a graph

• Weight *w*_{*i,j*} indicates the degree of dissimilarity between pixels **x**_{*i*} and **x**_{*j*}. Spectral Angle Mapper (SAM) distance can be used:

$$w_{i,j} = SAM(\mathbf{x}_i, \mathbf{x}_j) = \arccos\left(\frac{\sum_{b=1}^{B} x_{ib} x_{jb}}{[\sum_{b=1}^{B} x_{ib}^2]^{1/2} [\sum_{b=1}^{B} x_{jb}^2]^{1/2}}\right)$$

Marker selection Classification using marker-controlled region growing Concluding discussion

- 1) Map an image onto a graph
 - Weight *w*_{*i,j*} indicates the degree of dissimilarity between pixels **x**_{*i*} and **x**_{*j*}. Spectral Angle Mapper (SAM) distance can be used:

$$w_{i,j} = SAM(\mathbf{x}_i, \mathbf{x}_j) = \arccos\left(\frac{\sum_{b=1}^{B} x_{ib} x_{jb}}{[\sum_{b=1}^{B} x_{ib}^2]^{1/2} [\sum_{b=1}^{B} x_{jb}^2]^{1/2}}\right)$$

Marker selection Classification using marker-controlled region growing Concluding discussion

- 1) Map an image onto a graph
 - Weight *w*_{*i,j*} indicates the degree of dissimilarity between pixels **x**_{*i*} and **x**_{*j*}. Spectral Angle Mapper (SAM) distance can be used:

$$w_{i,j} = SAM(\mathbf{x}_i, \mathbf{x}_j) = \arccos\left(\frac{\sum_{b=1}^{B} x_{ib} x_{jb}}{[\sum_{b=1}^{B} x_{ib}^2]^{1/2} [\sum_{b=1}^{B} x_{jb}^2]^{1/2}}\right)$$

Marker selection Classification using marker-controlled region growing Concluding discussion

- 1) Map an image onto a graph
 - Weight *w*_{*i,j*} indicates the degree of dissimilarity between pixels **x**_{*i*} and **x**_{*j*}. Spectral Angle Mapper (SAM) distance can be used:

$$w_{i,j} = SAM(\mathbf{x}_i, \mathbf{x}_j) = \arccos\left(\frac{\sum_{b=1}^{B} x_{ib} x_{jb}}{[\sum_{b=1}^{B} x_{ib}^2]^{1/2} [\sum_{b=1}^{B} x_{jb}^2]^{1/2}}\right)$$

Marker selection Classification using marker-controlled region growing Concluding discussion

2. Construction of a Minimum Spanning Forest (MSF)

image graph

Given a graph G, a **MSF** F^* rooted on vertices $\{r_1, ..., r_m\}$ is:

- a non-connected graph without cycles
- contains all the vertices of G
- consists of connected subgraphs, each subgraph (tree) contains (is rooted on) one root r_i
- sum of the edges weights of F* is minimal

Marker selection Classification using marker-controlled region growing Concluding discussion

2. Construction of a Minimum Spanning Forest (MSF)

modified graph

2) Add *m* extra vertices r_i , i = 1, ..., m corresponding to *m* markers

Marker selection Classification using marker-controlled region growing Concluding discussion

2. Construction of a Minimum Spanning Forest (MSF)

3) Construct a MSF $F^* = (V^*, E^*)$

Initialization: $V^* = \{r_1, r_2, ..., r_m\}$ (roots are in the forest)

Choose edge of the modified graph e_{ij} with minimal weight such that i ∈ V* and j ∉ V*

②
$$V^* = V^* \cup \{j\}, E^* = E^* \cup \{e_{i,j}\}$$

3 If $V^* \neq V$, go to 1

Marker selection Classification using marker-controlled region growing Concluding discussion

2. Construction of a Minimum Spanning Forest (MSF)

3) Construct a MSF $F^* = (V^*, E^*)$

Initialization: $V^* = \{r_1, r_2, ..., r_m\}$ (roots are in the forest)

• Choose edge of the modified graph e_{ij} with minimal weight such that $i \in V^*$ and $j \notin V^*$

(a) If $V^* \neq V$, go to 1

Marker selection Classification using marker-controlled region growing Concluding discussion

2. Construction of a Minimum Spanning Forest (MSF)

3) Construct a MSF $F^* = (V^*, E^*)$

Initialization: $V^* = \{r_1, r_2, ..., r_m\}$ (roots are in the forest)

• Choose edge of the modified graph e_{ij} with minimal weight such that $i \in V^*$ and $j \notin V^*$

●
$$V^* = V^* \cup \{j\}, E^* = E^* \cup \{e_{i,j}\}$$

(a) If $V^* \neq V$, go to 1

Marker selection Classification using marker-controlled region growing Concluding discussion

2. Construction of a Minimum Spanning Forest (MSF)

3) Construct a MSF $F^* = (V^*, E^*)$

Initialization: $V^* = \{r_1, r_2, ..., r_m\}$ (roots are in the forest)

$$V^* = V^* \cup \{j\}, \ E^* = E^* \cup \{e_{i,j}\}$$

• If
$$V^* \neq V$$
, go to 1

Marker selection Classification using marker-controlled region growing Concluding discussion

2. Construction of a Minimum Spanning Forest (MSF)

3) Construct a MSF $F^* = (V^*, E^*)$

Initialization: $V^* = \{r_1, r_2, ..., r_m\}$ (roots are in the forest)

$$V^* = V^* \cup \{j\}, \ E^* = E^* \cup \{e_{i,j}\}$$

• If
$$V^* \neq V$$
, go to 1

Marker selection Classification using marker-controlled region growing Concluding discussion

2. Construction of a Minimum Spanning Forest (MSF)

3) Construct a MSF $F^* = (V^*, E^*)$

Initialization: $V^* = \{r_1, r_2, ..., r_m\}$ (roots are in the forest)

$$V^* = V^* \cup \{j\}, \ E^* = E^* \cup \{e_{i,j}\}$$

• If
$$V^* \neq V$$
, go to 1

Marker selection Classification using marker-controlled region growing Concluding discussion

2. Construction of a Minimum Spanning Forest (MSF)

3) Construct a MSF $F^* = (V^*, E^*)$

Initialization: $V^* = \{r_1, r_2, ..., r_m\}$ (roots are in the forest)

■
$$V^* = V^* \cup \{j\}, E^* = E^* \cup \{e_{i,j}\}$$

• If
$$V^* \neq V$$
, go to 1

Marker selection Classification using marker-controlled region growing Concluding discussion

2. Construction of a Minimum Spanning Forest (MSF)

3) Construct a MSF $F^* = (V^*, E^*)$

Initialization: $V^* = \{r_1, r_2, ..., r_m\}$ (roots are in the forest)

$$V^* = V^* \cup \{j\}, \ E^* = E^* \cup \{e_{i,j}\}$$

• If
$$V^* \neq V$$
, go to 1

Marker selection Classification using marker-controlled region growing Concluding discussion

- 3) Construct a MSF $F^* = (V^*, E^*)$
- 4) Class of each marker \rightarrow class of the corresponding region (of all the pixels grown from this marker)

Marker selection Classification using marker-controlled region growing Concluding discussion

2. Construction of a Minimum Spanning Forest (MSF)

Map of 107 markers MSF-based classification map

Marker selection Classification using marker-controlled region growing Concluding discussion

2. Construction of a Minimum Spanning Forest (MSF)

MSF-based classification map

Marker selection Classification using marker-controlled region growing Concluding discussion

2. Construction of a Minimum Spanning Forest / Post-processing

Marker selection Classification using marker-controlled region growing Concluding discussion

Classification accuracies for the Indian Pines data (%)

			Strategy 2	Strategy 3: Marker-based classification				
	SVM	ECHO	SVM+	SVM-	SVM-	SVM-	MSSC-	
			Waters.	Waters.	MSF	MSF+MV	MSF	
Overall Accuracy	78.17	82.64	86.63	85.99	88.41	91.80	92.32	
Average Accuracy	85.97	83.75	91.61	86.95	91.57	94.28	94.22	
Карра Coef. <i>к</i>	75.33	80.38	84.83	83.98	86.71	90.64	91.19	
Corn-no till	78.18	83.45	94.22	80.35	90.97	93.21	89.74	
Corn-min till	69.64	75.13	78.06	71.94	69.52	96.56	86.99	
Corn	91.85	92.39	88.59	73.37	95.65	95.65	95.11	
Soybeans-no till	82.03	90.10	96.30	98.91	98.04	93.91	91.84	
Soybeans-min till	58.95	64.14	68.82	80.48	81.97	81.97	89.16	
Soybeans-clean till	87.94	89.89	90.78	84.75	85.99	97.16	97.34	
Alfalfa	74.36	48.72	94.87	94.87	94.87	94.87	94.87	
Grass/pasture	92.17	94.18	95.08	95.30	94.63	94.63	94.63	
Grass/trees	91.68	96.27	97.99	92.97	92.40	97.27	97.85	
Grass/pasture-mow	100	36.36	100	100	100	100	100	
Hay-windrowed	97.72	97.72	99.54	99.54	99.77	99.77	99.77	
Oats	100	100	100	100	100	100	100	
Wheat	98.77	98.15	99.38	99.38	99.38	99.38	99.38	
Woods	93.01	94.21	97.11	99.36	97.59	99.68	99.44	
Bldg-Grass-Tree-Dr	61.52	81.52	69.39	55.45	68.79	68.79	73.64	
Stone-steel towers	97.78	97.78	95.56	64.44	95.56	95.56	97.78	

Marker selection Classification using marker-controlled region growing Concluding discussion

Classification of the Pavia image

SVM classification

OA = 81.01% AA = 88.25%

Strategy 2: SVM + HSEG

OA = 93.85%

AA = 97.07%

OA = 91.08% AA = 94.76%

Strategy 3: MSSC - MSF

OA = 97.90% AA = 98.59%

Introduction

Classification using segmentation-derived adaptive neighborhoods Segmentation and classification using automatically selected markers Conclusions and perspectives Marker selection Classification using marker-controlled region growing Concluding discussion

Classification accuracies for the Pavia image (%):

			Strategy 2		Strategy 3: Marker-based classif.		
	SVM	ECHO	SVM+	SVM+	SVM-	SVM-	MSSC-
			Waters.	HSEG	MSF	MSF+MV	MSF
Overall Accuracy	81.01	87.58	85.42	93.85	84.14	91.08	97.90
Average Accuracy	88.25	92.16	91.31	97.07	92.35	94.76	98.59
Kappa Coef. κ	75.86	83.90	81.30	91.89	79.71	88.30	97.18
Asphalt	84.93	87.98	93.64	94.77	93.05	93.16	98.00
Meadows	70.79	81.64	75.09	89.32	72.30	85.65	96.67
Gravel	67.16	76.91	66.12	96.14	89.15	89.15	97.80
Trees	97.77	99.31	98.56	98.08	87.02	91.24	98.83
Metal sheets	99.46	99.91	99.91	99.82	99.91	99.91	99.91
Bare soil	92.83	93.96	97.35	99.76	97.11	99.91	100
Bitumen	90.42	92.97	96.23	100	98.57	98.57	99.90
Bricks	92.78	97.35	97.92	99.29	95.66	99.05	99.76
Shadows	98.11	99.37	96.98	96.48	98.36	96.23	96.48

Marker selection Classification using marker-controlled region growin Concluding discussion

Outline

Introduction

- 2 Classification using segmentation-derived adaptive neighborhoods
 - Segmentation
 - Spectral-spatial classification
 - Concluding discussion

3 Segmentation and classification using automatically selected markers

- Marker selection
- Classification using marker-controlled region growing
- Concluding discussion
- Conclusions and perspectives

Marker selection Classification using marker-controlled region growing Concluding discussion

Classification using automatically selected markers:

- significantly decreases oversegmentation
- improves classification accuracies
- provides classification maps with homogeneous regions

Marker selection: it is advantageous to use

- SVM classifier
- spatial information
- multiple classifier approaches

Marker-controlled region growing

MSF-based method has proven to be efficient and robust

Contributions

• Three spectral-spatial classification strategies:

- Using SVM and MRF models
- ② Using adaptive neighborhoods derived from unsupervised segmentation
 - $\bullet\,$ Segmentation techniques working both in the spatial and spectral domain \rightarrow good performances
 - $\bullet\,$ Pixelwise classification + majority voting within regions $\rightarrow\,$ simple and fast technique
- Using marker-based region growing segmentation
 - Analyzing probabilistic classification results for marker selection
 - Interest of using spatial information and multiple classifier approaches for marker selection
 - MSF-based marker-controlled region growing
 → efficient and robust

Possibilities of high-performance parallel computing using commodity processors

Perspectives

Spectral-spatial image analysis

- Develop new similarity measures
- Automatically select results in segmentation hierarchies
- Perform segmentation and classification concurrently
- In Further explore parallel strategies using commodity processors
- Apply and adapt the proposed methods for other types of data/applications
 - medical imaging

Classification of Hyperspectral Data Using Spectral-Spatial Approaches

Yuliya Tarabalka, Jocelyn Chanussot and Jon Atli Benediktsson

GIPSA-Lab, Grenoble Institute of Technologygy, France Department of Electrical and Computer Engineering, University of Iceland, Iceland

May 13, 2010

