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Let X = (x ,pX ,A) a discrete r.v., its entropy reads :

H(X ) =−
|A |

∑
i=1

pX [x = i] log2 pX [x = i].

Relative entropy

Also let Y = (y ,pY ,A) another discrete r.v.. Provided

∀i,pY [y = i] 6= 0, the relative entropy (KL-divergence) reads :

DKL(X ||Y ) =
|A |

∑
i=1

pX [x = i] log2

pX [x = i]

pY [y = i]
.
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Entropy H(X ) Kolmogorov complexity K (x)

Let x ∈ AN , K (x) is defined as :

"The length of a shortest program to output x on a universal Turing

machine".

Relative entropy DKL(X ||Y ) Relative complexity K (x |y)

Also let y ∈ AM , K (x |y) is defined as :

"The length of a shortest program to output x on a universal Turing

machine, when y is known."

But I don’t have a universal Turing machine...

You have something quite close. It is called your PC.

Or anything with (plenty of) memory and a if branching instruction.
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E1(x ,y) = max{K (x |y),K (y |x)}.

Will go back to this later.

Definition (Normalized Information Distance [Li et al., 2004])

NID(x ,y) =
max{K (x |y),K (y |x)}

max{K (x),K (y)}
.

Applicability

Binary objects of arbitrary sizes.
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Length of "a shortest program"

Not computable on a universal Turing machine.

Approximating K (x)

Length of compressed data (length of decompressor code is constant).

K (x)≃ C(x).

Highly questionable. May work well in practice.

Lacking a pure conditional estimate...

Let xy denote the concatenation of two strings x and y .

K (x |y)≃ C(xy)−C(y).
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First practical embodiment

The intuition behind

Let z be another string (x , y , z defined over A) :

Intuitively : if C(xy)< C(xz) then y is closer to x than z ;

Recall approx. : K (x |y)≃ C(xy)−C(y).

Definition (Normalized Compression Distance [Li et al., 2004])

NCD(x ,y) =
C(xy)−min{C(x),C(y)}

max{C(x),C(y)}
.

What people do when they don’t want to start from scratch.
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Built-in compressor limitations [Cebrián et al., 2005]

Length of block in Burrows-Wheeler transform (bzip2) ;

Length of sliding window in LZ77 (gzip : 32KiB, lzma : 4GiB).

Computing C(xy) is another approximation

Does not guarantee that only data from y will be used to encode x .

Even with lzma ;

[Ziv and Merhav, 1993] factorization would be best (below).

Breaking another dogma : departing from pure data compression

Limited only by machine specs (CPU, RAM, 32/64 bits) ;

Much cleaner computations.
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What did we implement ?

Estimates for classical operators

K (x), K (x |y) ;

K (x ,y) : "length of a shortest program to encode x and y , plus a

means to separate the two".

Universal normalized semi-distance

Compute a semi-distance between arbitrary binary objects.

Algorithmic directed information estimates

Enables model-free causality inference.

Building on the Lempel-Ziv family with an unbounded buffer

Unbounded (up to sizeof(size_t)) : semi-infinite sliding window.
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Let’s encode x knowing y , LZ style

... ...y

... Future of xx
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Definition (Set of allowed references : R )

Where to draw references (below) from.

x|y : R = past of y

... ...y

... Future of xx

x|y : Usual LZ77 factorization when x = y ;

→ Estimation of self-complexity.
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What conditional information ? [Revolle et al., 2016]

Definition (Set of allowed references : R )

Where to draw references (below) from.

x-|y : R = past of both x and y

... ...y

... Future of xx

x|y : Usual LZ77 factorization when x = y ;

x|+y : Usual Ziv-Merhav factorization ;

x-|y : Previously undefined ;

→ Estimation of directed algorithmic information.
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What conditional information ? [Revolle et al., 2016]

Definition (Set of allowed references : R )

Where to draw references (below) from.

x-|
+y : R = past of x and all of y

... ...y

... Future of xx

x|y : Usual LZ77 factorization when x = y ;

x|+y : Usual Ziv-Merhav factorization ;

x-|y : Previously undefined ;

x-|
+y : Previously undefined ;

→ Estimation of x and y joint complexity.
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Redefining conditional information

Complexity, joint complexity and semi-distance

Directed information

What conditional information ? [Revolle et al., 2016]

Definition (Set of allowed references : R )

Where to draw references (below) from.

Collectively referred to as : x ≀ y

... ...y

... Future of xx

x|y : Usual LZ77 factorization when x = y ;

x|+y : Usual Ziv-Merhav factorization ;

x-|y : Previously undefined ;

x-|
+y : Previously undefined ;

x ≀ y : Derive generic properties.

10 / 39
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Generic factorization

Definition (Factorization symbols)

References : (l,d)
→ Copy l ≥ 2 literals from R .

Note : d = "distance" in R (we do not use it).

Literals : (1,d)
→ Output l = 1 literal of value d .

Definition (Generic factorization and Lx ≀y )

x ≀ y  (l1,d1) . . . (ln,dn) .

Lx ≀y = {l1, . . . , ln} : set of lengths produced during the factorization.

11 / 39
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Definition (Set value)

Let f : N⋆ → R be a mapping and let S be a finite set of non-zero

natural numbers. The image of S by f is defined as :

|S |f = ∑
s∈S

f (s).

Note : |S |= |S |
1S

denotes Card(S).
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Some more definitions

Definition (Set value)

Let f : N⋆ → R be a mapping and let S be a finite set of non-zero

natural numbers. The image of S by f is defined as :

|S |f = ∑
s∈S

f (s).

Note : |S |= |S |
1S

denotes Card(S).

Definition (Admissible function)

A function f : N⋆ → [0,1] is said to be admissible iff it is monotonically

increasing.
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SALZA conditional complexity estimate [Revolle et al., 2016]

Definition (SALZA conditional complexity estimate)

Let |x | be the length of x . Given an admissible function f , and two

non-empty strings x ∈ Ax and y ∈ Ay , the SALZA conditional

complexity estimate of x given y , denoted Sf (x ≀ y), is defined as :

Sf (x ≀ y) =
|Lx ≀y |−1

|x |
︸ ︷︷ ︸

Z

Usual

compl.
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Let |x | be the length of x . Given an admissible function f , and two

non-empty strings x ∈ Ax and y ∈ Ay , the SALZA conditional

complexity estimate of x given y , denoted Sf (x ≀ y), is defined as :

Sf (x ≀ y) =
|Lx ≀y |−1

|x |
︸ ︷︷ ︸

Z

(

1−
∑Lx≀y

lf (l)− (|Lx ≀y |f −1)

|x |

)

︸ ︷︷ ︸

S

Spreading factor

.
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SALZA conditional complexity estimate [Revolle et al., 2016]

Definition (SALZA conditional complexity estimate)

Let |x | be the length of x . Given an admissible function f , and two

non-empty strings x ∈ Ax and y ∈ Ay , the SALZA conditional

complexity estimate of x given y , denoted Sf (x ≀ y), is defined as :

Sf (x ≀ y) =
|Lx ≀y |−1

|x |
︸ ︷︷ ︸

Z

(

1−
∑Lx≀y

lf (l)− (|Lx ≀y |f −1)

|x |

)

︸ ︷︷ ︸

S

Spreading factor

.

Lemma : 0 ≤ Sf (x ≀ y)< 1.

Proof : see paper.
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Comparing SALZA discriminative power

SALZA vs. LZ complexity alone

Min. length for meaningful refs :

Let l0
R
= log|AR | |R |.

Generate synthetic

Poisson-distributed lengths.

µ = E
[
Lx≀y

]
.

14 / 39



Introduction

SALZA

Results

Overture

Teaser

Redefining conditional information

Complexity, joint complexity and semi-distance

Directed information

Choosing an admissible function

Hard vs. soft

Hard thresholding :

f t
R
(l) =

{

1 if l > l0
R

0 otherwise

Soft sigmoid :

f s
R
(l) = 1

1+e
−l+l0

R
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Effect of the unbounded buffer

Constant-quality results : independent of string lengths
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Complexity [Revolle et al., 2016]

Definition (SALZA complexity of self)

Let Lx = Lx|x be the set of lengths produced during a regular LZ77

factorization.

Given an admissible funtion f and a non-empty string x ∈ Ax , the

SALZA complexity of x , denoted Sf (x), is defined as :

Sf (x) = Sf (x|x)

=

(

1−
∑Lx

lf (l)− (|Lx |f −1)

|x |

)
|Lx |−1

|x |
.
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Joint complexity [Revolle et al., 2016]

Definition (SALZA joint complexity)

Given an admissible function f , and two non-empty strings x ∈ Ax and

y ∈ Ay , the SALZA joint complexity of x and y , denoted Sf (x ,y), is

defined as :

Sf (x ,y) = Sf (y-|
+x)+Sf(x)+ log|Ax |

(
|x |

|y |

)

.

Note : Sf (x ,x) = Sf (x) because Sf (x-|
+x) = 0.
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Joint complexity (cont’d)

How does it perform in practice ?

Let ε = |Sf (x ,y)−Sf (y ,x)|.

x y E [ε] Var [ε] min(ε) max(ε)

UDHR UDHR 1.43e-3 1.38e-6 5e-6 7.96e-3

DNA DNA 1.23e-3 8.11e-7 6e-6 4.98e-3

UDHR DNA 6.84e-2 2.49e-6 6.28e-2 7.17e-2

Data :

UDHR : Universal Declaration of Human Rights (various

languages) ;

DNA : Mitochondrial DNA samples (various mammal species).
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Normalized semi-distance [Revolle et al., 2016]

Recalling the mother of information distances

E1(x ,y) = max{K (x |y),K (y |x)}.

Definition (Normalized SALZA semi-distance)

Given an admissible function f , and two non-empty strings x ∈ Ax and

y ∈ Ay , the normalized SALZA semi-distance, denoted NSDf , is

defined as :

NSDf (x ,y) = max{Sf (x|
+y),Sf (y|

+x)} .

Note : The triangle inequality may be violated. Not observed during

simulations.
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Algorithmic directed information

Local Markov condition on DAGs [Janzing and Schölkopf, 2010]

xb sj

xa

xj

Parent strings

Causal mechanism

Observed string

Let T denote the action of a Turing machine :

xj = T (xa, ...,xb,sj)
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Causal algorithmic directed information [Revolle et al., 2016]

Definition (Causal directed information : online applications)

... ...xN

... Future of xjxj ...

... ...xi ...

... ...x2 ...

... ...x1

CS(xi → xj)
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Sample DAG #1

process5

process4

process3

process2

process1

process0















0 0 0 0 0 0 1.0

.50 0 0 0 0 0 .50

.50 0 0 0 0 0 .50

.50 0 0 0 0 0 .50

0 .50 .50 0 0 0 0

0 0 0 .50 0 0 .50















process5

process4

process3

process2

process1

process0














0 0 0 0 0 0

.60 0 0 0 0 0

.60 0 0 0 0 0

.60 0 0 0 0 0

0 .02 .10 0 0 0

0 0 0 .10 0 0













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Sample DAG #2

process5

process4

process3

process2

process1

process0















0 0 0 0 0 0 1.0

.90 0 0 0 0 0 .10

.50 0 0 0 0 0 .50

0 0 .80 0 0 0 .20

0 0 .80 0 0 0 .20

0 0 0 .90 0 0 .10















process5

process4

process3

process2

process1

process0














0 0 0 0 0 0

.50 0 0 0 0 0

.40 0 0 0 0 0

0 0 .30 0 0 0

0 0 .30 0 0 0

0 0 0 .10 0 0













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Drafts clustering : Neighbor-Joining
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Drafts causality inference (full directed information)

fragment_4

fragment_5

fragment_3

fragment_2

fragment_1

fragment_8

fragment_6

fragment_7
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Imaging ?

Sample problem

Description

Decide between two states (eyes closed/open) based on EEG signals.

EEG data exhibits features at known frequencies (α, β, etc.)

Data : courtesy [Andrzejak et al., 2001].
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Sample problem

Description

Decide between two states (eyes closed/open) based on EEG signals.

EEG data exhibits features at known frequencies (α, β, etc.)

Data : courtesy [Andrzejak et al., 2001].

The usual approach

Let s(t) be a signal, smin ≤ s(t)≤ smax.

One computes the Power Spectral Density (PSD) :

PSDs(f ) =
∫ ∞

−∞
E [s(t)s(t + τ)]e−2iπf τdτ

Then, feature extraction, etc.
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Fitting the AIT framework

Accessing frequency information

Compute successive residuals Rf in Butterworth filter bank.

Note : smin ≤ Rf (t)≤ smax, too.
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Fitting the AIT framework

Accessing frequency information

Compute successive residuals Rf in Butterworth filter bank.

Note : smin ≤ Rf (t)≤ smax, too.

Quantization

Signals (usually) have continuous values.

We can only handle discrete alphabets !

Compute complexity over bytes :

xf (t) = Rint

(

255×
Rf (t)

smax − smin

)

.

Note : Many other choices in the literature, sometimes quite involved.
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Comparing power vs. complexity [dB] of EEG signals
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Comparing power vs. complexity [dB] of EEG signals
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Frequency (Hz)

-12
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Some thoughts on AIT for 2D data

“Copy from the past” in 2D ?

Block matching !

Think of various block sizes in H.26x standards.

Issue

Handle block residual information.
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