MODULE IMAGE LIRMM April 2012

Marc ANTONINI

Sampling the 3I objects

3D mesh coding Problem statement

The semi-regular remeshing

Coding the meshes

Visualization of massive meshes

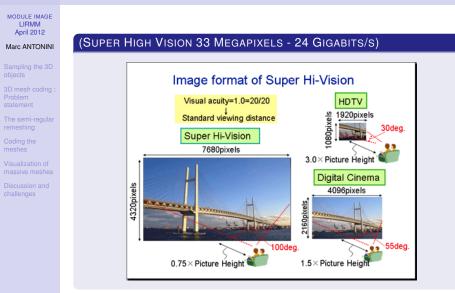
Discussion and challenges

Multiresolution coding of 3D meshes

Marc Antonini Directeur de Recherche CNRS am@i3s.unice.fr http://www.i3s.unice.fr/~am

Laboratoire I3S MULTIMEDIA IMAGE CODING AND PROCESSING GROUP

Université de Nice-Sophia Antipolis - CNRS



From TV to HDTV...

- $\rightarrow\,$ Difficulties to overcome :
 - Picture quality degradation caused by the shortening of the relative viewing distance \rightarrow HDTV H264
 - How to make such a large screen \rightarrow flat-panel displays

... and beyond

Is there anything left to do in image coding?

Marc ANTONINI

- Sampling the 3E objects
- 3D mesh coding Problem statement
- The semi-regular remeshing
- Coding the meshes
- Visualization of massive meshes
- Discussion and challenges

Fortunately YES !!

- Coding for storage
- Coding for transmission in low bandwidth networks
- Coding for visualization and manipulation
 - ightarrow Data bus seen as a low bandwidth transmission channel
 - ightarrow Push compressed data to the graphic card GPU processing

Is there anything left to do in image coding?

MODULE IMAGE LIRMM April 2012

Marc ANTONINI

Sampling the 3D objects

3D mesh coding Problem statement

The semi-regular remeshing

Coding the meshes

Visualization of massive meshes

Discussion and challenges

From massive to out-of-core data... With billions of faces !

[Rendering of the 940 millions faces done by I3S lab]

(MICHELANGELO PROJECT - DAVID 940 MILLIONS FACES, FILE SIZE > 20 GBYTES)

Is there anything left to do in image coding?

MODULE IMAGE LIRMM April 2012

Marc ANTONINI

Sampling the 3E objects

- 3D mesh coding Problem statement
- The semi-regular remeshing
- Coding the meshes
- Visualization of massive meshes
- Discussion and challenges

From 2D to 3D high resolution rendering

Autostereoscopic screen

Shutter glasses

 \rightarrow Experts in human perception are raising concerns that stereo 3D TVs could cause eye strain and related health problems.

The applications

MODULE IMAGE LIRMM April 2012

Marc ANTONINI

Sampling the 3 objects

3D mesh coding Problem statement

The semi-regular remeshing

Coding the meshes

Visualization of massive meshes

Discussion and challenges

[Online] Gaming On PC Performance for HighRes 3D models, Smaller size of datasets Network and buses transfer rate

Medical and Seismic Lets build huge datasets from volume images

[Online] Embedded Gaming Performance for quality 3D models on restricted hardware Network and buses transfer rate

Virtual Mockup Lets build huge datasets from Huge CAD/CAM assemblies

CAD/CAM and Design For storage and transfer of datasets

DCC and Production Brings new capabilities on modelers

Tele conferencing

Transport realistic clones on traditional networks


Required functionality : the scalability

Marc ANTONINI

- Sampling the 3D objects
- 3D mesh coding Problem statement
- The semi-regular remeshing
- Coding the meshes
- Visualization of massive meshes
- Discussion and challenges

Different clients, different channels, ONE mesh or animation file

Scalability

MODULE IMAGE LIRMM April 2012

Marc ANTONINI

Sampling the 3E objects

- 3D mesh coding Problem statement
- The semi-regular remeshing
- Coding the meshes
- Visualization of massive meshes
- Discussion and challenges

Different kinds of scalability

- Resolution (spatial or temporal)
- Rate
- Quality
- Complexity
- Region of interest (ROI)
- etc.

Support of scalability

- Usually causes
 - → Complexity increase
 - \rightarrow Performance drop
- Alternative : multiresolution and wavelet-based coders

Outline

MODULE IMAGE LIRMM April 2012

Marc ANTONINI

- Sampling the 3I objects
- 3D mesh coding Problem statement
- The semi-regular remeshing
- Coding the meshes
- Visualization of massive meshes
- Discussion and challenges

- Sampling the 3D objects
- 2 3D mesh coding : Problem statement
- 3 The semi-regular remeshing
- 4 Coding the meshes
- 5
 - Visualization of massive meshes
- 6
- Discussion and challenges

Outline

MODULE IMAGE LIRMM April 2012

Marc ANTONINI

Sampling the 3D objects

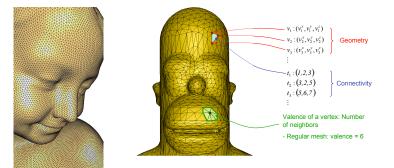
- 3D mesh coding Problem statement
- The semi-regular remeshing
- Coding the meshes
- Visualization of massive meshes
- Discussion and challenges

Sampling the 3D objects

- 3D mesh coding : Problem statement
- The semi-regular remeshing
- Coding the meshes
- Visualization of massive meshes
- 6
- Discussion and challenges

What is a surface mesh?

MODULE IMAGE LIRMM April 2012


Marc ANTONINI

Sampling the 3D objects

- 3D mesh coding Problem statement
- The semi-regular remeshing
- Coding the meshes
- Visualization of massive meshes
- Discussion and challenges

A surface triangle mesh is composed by

- A geometry : the position of vertices in \mathbb{R}^3 (irregular sampling)
- A connectivity : the connections between the vertices

Constructing a mesh

MODULE IMAGE LIRMM April 2012

Sampling the 3D objects

Using a scanner

Laser scanning of real objects

Scanning for reverse engineering

Using a software

DCC [DIGITAL CONTENT CREATION]

CAD [COMPUTER AIDED DESIGN]

zation of ve meshes

Discussion and challenges

The sampling problem

MODULE IMAGE LIRMM April 2012

Marc ANTONINI

Sampling the 3D objects

3D mesh coding Problem statement

The semi-regular remeshing

Coding the meshes

Visualization of massive meshes

Discussion and challenges

Obviously : respect the Shannon sampling theorem

Problem : Modulation Transfer Function (MTF) of the sensor generally unknown...

Up-sampling the 3D object

- \rightarrow Good representation of the real object
- \rightarrow No aliasing \rightarrow Shannon condition : $f_e \geq 2f_c$
- → Problem : huge volume of data !

Sub-sampling the 3D object

- $\rightarrow\,$ Coarse approximation of the object (implying to get more information such as curvature...)
- ightarrow Small amount of data
- → Problem : aliasing (frequencies greater than Nyquist frequency)

A anti-aliasing sampling solution

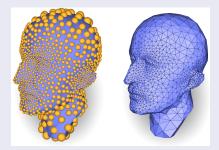
MODULE IMAGE LIRMM April 2012

Marc ANTONINI

Sampling the 3D objects

3D mesh coding Problem statement

The semi-regular remeshing


Coding the meshes

Visualization of massive meshes

Discussion and challenges

Find a tradeoff between up- and sub-sampling

Irregular sampling such as Poisson disk sampling
 → Dart throwing ^a

Dart Throwing (left) and mesh created from the points (right)

a. D. Cline, K. White, *Dart Throwing on Surfaces*, Eurographics Symposium on Rer dering 2009

Outline

MODULE IMAGE LIRMM April 2012

Marc ANTONINI

Sampling the 3D objects

3D mesh coding : Problem statement

The semi-regular remeshing

Coding the meshes

Visualization of massive meshes

Discussion and challenges

Sampling the 3D objects

2 3D mesh coding : Problem statement

The semi-regular remeshing

Coding the meshes

Visualization of massive meshes

6

Discussion and challenges

State of the art

MODULE IMAGE LIRMM April 2012

Marc ANTONINI

Sampling the 3E objects

3D mesh coding : Problem statement

The semi-regular remeshing

Coding the meshes

Visualization of massive meshes

Discussion and challenges

Single rate compression (Lossless)

- No asumption on the mesh
- Specialized for massive datasets which cannot fit entirely into memory
- Encoding of connectivity (e.g. Touma-Gotsman, topological surgery, Edgebreaker) or based on remeshing (e.g. geometry images)

Progressive compression (Lossy to lossless)

State of the art : Progressive compression

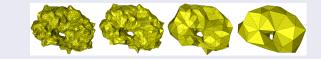
MODULE IMAGE LIRMM April 2012

Marc ANTONINI

Sampling the 3I objects

3D mesh coding : Problem statement

The semi-regular remeshing


Coding the meshes

Visualization of massive meshes

Discussion and challenges

Two kinds of approaches

- Based on simplification/refinement (decimation, edge collapse, vertex split)
- Based on multiresolution analysis (wavelets)

Objective

Rate-distortion optimization between data size and approximation accuracy

Multiresolution for irregular meshes?

Marc ANTONINI

Sampling the 3I objects

3D mesh coding : Problem statement

The semi-regular remeshing

Coding the meshes

Visualization of massive meshes

Discussion and challenges

Two options for computing the transform

Without connectivity modification

e.g. wavelet transform for irregular meshes (Valette, Prost 2004)

- A mesh is considered as one instance of the surface geometry
 - → REMESHING operation
 - \rightarrow Create regular and uniform geometry sampling
 - $\rightarrow\,$ Wavelet transform (DWT) for semi-regular meshes

Outline

MODULE IMAGE LIRMM April 2012

Marc ANTONINI

- Sampling the 3I objects
- 3D mesh coding Problem statement

The semi-regular remeshing

- Coding the meshes
- Visualization of massive meshes
- Discussion and challenges

Sampling the 3D objects

- 3D mesh coding : Problem statement
- The semi-regular remeshing
- Coding the meshes
- Visualization of massive meshe
- 6

3

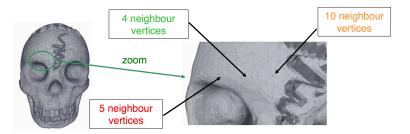
Discussion and challenges

Irregular meshes

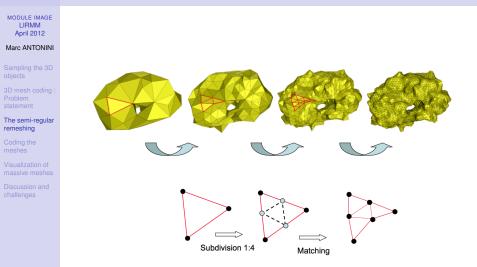
Marc ANTONINI

Sampling the 3 objects

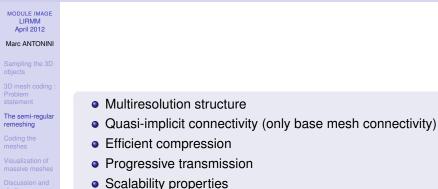
3D mesh coding Problem statement


The semi-regular remeshing

Coding the meshes


Visualization of massive meshes

Discussion and challenges



The semi-regular mesh : a multiscale data

Advantages of semi-regularity

The most famous semi-regular remeshers

MODULE IMAGE LIRMM April 2012

Marc ANTONINI

Sampling the 3E objects

3D mesh coding Problem statement

The semi-regular remeshing

Coding the meshes

Visualization of massive meshes

Discussion and challenges

• MAPS [Lee et al (1998)]

- \rightarrow A coarse mesh containing geometry and connectivity
- \rightarrow N₁ sets of 3D details (ONLY geometry) (3 floating numbers)
- Normal meshes [Guskov et al 2000]
 - → A coarse mesh containing geometry and connectivity
 - $\rightarrow N_2$ sets of 3D details (ONLY geometry) (1 floating number, i.e., the normal to the surface)
 - → MORE COMPACT semi-regular representation
- Globally smooth parametrization (GSP) [Khodakovsky et al 2003]
- Variational normal meshes (VNM) [Khodakovsky et al 2004]
- TriReme [Guskov et al 2007]

$\rightarrow\,$ Methods based on 2D PARAMETERIZATION

The 2D parameterization of 3D meshes

MODULE IMAGE LIRMM April 2012

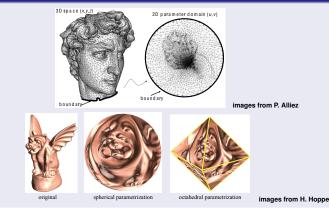
Marc ANTONINI

Sampling the 3E objects

3D mesh coding Problem statement

The semi-regular remeshing

Coding the meshes


Visualization of massive meshes

Discussion and challenges

Definition

• Mapping from the surface of the 3D mesh to an isomorphic 2D flat surface

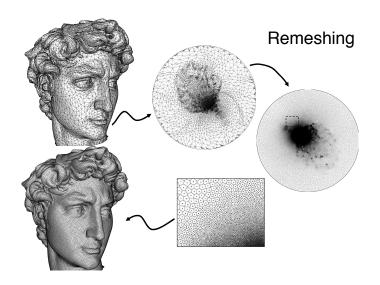
Examples

Remeshing using a 2D parameterization

MODULE IMAGE LIRMM April 2012

Marc ANTONINI

Sampling the 3I objects


3D mesh coding Problem statement

The semi-regular remeshing

Coding the meshes

Visualization of massive meshes

Discussion and challenges

The 2D parameterization of 3D meshes

MODULE IMAGE LIRMM April 2012

Marc ANTONINI

Sampling the 3D objects

3D mesh coding Problem statement

The semi-regular remeshing

Coding the meshes

Visualization of massive meshes

Discussion and challenges

Requirements (slide from P. Alliez and G. Gotsman)

- Bijective
- Minimal distortion
 - Preserve 3D angles
 - Preserve 3D distances
 - Preserve 3D areas
 - No 'strech'

A remeshing solution without parameterization

MODULE IMAGE LIRMM April 2012

Marc ANTONINI

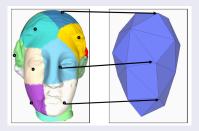
Sampling the 3I objects

3D mesh coding Problem statement

The semi-regular remeshing

Coding the meshes

Visualization of massive meshes


Discussion and challenges

I3S solution based on Lloyd relaxation

Main idea : Construct progressively a Voronoi partition of the irregular mesh geometry

Basic principle :

• Simplification step : Create a Voronoi tesselation of the irregular mesh with few regions

• Refinement step : Add semi-regular Voronoi seeds to refine the tesselation

Construction of a Voronoi tesselation

MODULE IMAGE LIRMM April 2012

Marc ANTONINI

Sampling the 3D objects

3D mesh coding Problem statement

The semi-regular remeshing

Coding the meshes

Visualization of massive meshes

Discussion and challenges

Two optimal conditions :

Nearest neighbor condition

 \rightarrow The Voronoi tesselation of \mathbb{R}^n in *L* clusters R_k is given by

 $\boldsymbol{R}_k = \{\boldsymbol{v} \in \mathbb{R}^n / \boldsymbol{d}(\boldsymbol{v}, \boldsymbol{s}_k) \leq \boldsymbol{d}(\boldsymbol{s}, \boldsymbol{s}_j) \ \forall j \in \{1, 2, ..., L\}\}$

where d(u, v) stands for the geodesic distance^{*a*}

• The centroid (or mass center) condition

$$s_k = rac{\int_{R_k} v
ho(v) dv}{\int_{R_k}
ho(v) dv}$$

where $\rho(v)$ corresponds to the mass of v

a. Can be computed by Dijkstra algorithm

The Lloyd's relaxation

MODULE IMAGE LIRMM April 2012

Marc ANTONINI

Sampling the 3I objects

3D mesh coding Problem statement

The semi-regular remeshing

Coding the meshes

Visualization of massive meshe

Discussion and challenges

Example of tessellation of \mathbb{R}^2

Dual : Delaunay triangulation

Tesselation of a surface mesh

MODULE IMAGE LIRMM April 2012

Marc ANTONINI

Sampling the 3E objects

3D mesh codin Problem statement

The semi-regular remeshing

Coding the meshes

Visualization of massive meshes

Discussion and challenges

Use the geometry of the original mesh as input data

- Let S = {v_i, i = {0, 1, ..., N − 1}} be the set of vertices in ℝ³ of a irregular surface mesh.
 - $\rightarrow S$ is considered as the input data to be meshed
- The mass $\rho(v)$ is considered as the area of the dual cell of v

The mesh simplification

MODULE IMAGE LIRMM April 2012

Marc ANTONINI

Sampling the 3E objects

3D mesh coding Problem statement

The semi-regular remeshing

Coding the meshes

Visualization of massive meshes

Discussion and challenges

ldea

- Construct a Voronoi Tesselation with a small number of clusters
- Use the Lloyd's relaxation on the input data set S

Principle of the algorithm

- $\rightarrow\,$ Initial conditions :
 - Let V the desired number of vertices in the simplified mesh
 - Select V seeds (high curvature or dart throwing...)
- ightarrow Apply the Lloyd's relaxation until convergence
- ightarrow Project the final centroid onto the original mesh

The mesh simplification

MODULE IMAGE LIRMM April 2012

Marc ANTONINI

Sampling the 3E objects

3D mesh coding Problem statement

The semi-regular remeshing

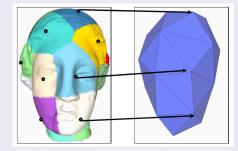
Coding the meshes

Visualization of massive meshes

Discussion and challenges

Example of a surface tesselation

The mesh simplification


MODULE IMAGE LIRMM April 2012

Marc ANTONINI

- Sampling the 3I objects
- 3D mesh coding Problem statement
- The semi-regular remeshing
- Coding the meshes
- Visualization of massive meshes
- Discussion and challenges

How to obtain the base mesh?

- Keep the mass centers created by the Lloyd's relaxation
- Construct the Delaunay triangulation

Voronoi tesselation (left) and the corresponding mesh (right)

Refinement by subdivisions of the base mesh

MODULE IMAGE LIRMM April 2012

Marc ANTONINI

Sampling the 3I objects

3D mesh coding Problem statement

The semi-regular remeshing

Coding the meshes

Visualization of massive meshes

Discussion and challenges

At each subdivision level (resolution)

- Subdivise the triangles (1 : 4 subdivision)
- Consider the added vertices as Voronoi seeds
- Update the tesselation using Lloyd's relaxation

first resolution

Update tesselation

Example of remeshing

MODULE IMAGE LIRMM April 2012
Marc ANTONINI
Sampling the 3D objects
3D mesh coding : Problem statement
The semi-regular remeshing
Coding the meshes
Visualization of massive meshes
Discussion and challenges

Adaptive refinement

MODULE IMAGE LIRMM April 2012

Marc ANTONINI

Sampling the 3D objects

3D mesh coding Problem statement

The semi-regular remeshing

Coding the meshes

Visualization of massive meshes

Discussion and challenges

Idea

• Subdivide triangles only in the densest areas of the mesh

How to define a dense area?

• Let $T = (s_i, s_j, s_m)$ be the mass of a triangle of the semi-regular mesh such as

$$g(T) = inf_{k \in \{i,j,m\}}f(s_k)$$

where $f(s_k) = |R_k|$ is the mass associated to a centroid s_k

 \rightarrow subdivide if $g(T) \geq \epsilon$

Adaptive refinement algorithm

Marc ANTONINI

Sampling the 3E objects

3D mesh coding Problem statement

The semi-regular remeshing

Coding the meshes

Visualization of massive meshes

Discussion and challenges

Principle for one subdivision level

- INPUT Mesh at previous level (start with the coarse mesh)
- **STEP 1** Compute the mass g(T) of all triangles T
- STEP 2 Subdivide triangles with $g(T) \ge \epsilon$
- STEP 3 Perform Lloyd's relaxation until convergence
- **OUTPUT** Adaptive semi-regular mesh

Adaptive vs non adaptive refinements

MODULE IMAGE LIRMM April 2012

Marc ANTONINI

Sampling the 3I objects

3D mesh coding Problem statement

The semi-regular remeshing

Coding the meshes

Visualization of massive meshes

Discussion and challenges

Remeshing of skull

- LEFT Uniform subdivision [Guskov et al. '01] (262 144 triangles - RMSE = 2.09×10^{-2})
- MIDDLE Original
 - RIGHT Remeshed with adaptive subdivision (in-house solution) (140 544 triangles RMSE = 1.05×10^{-2})

Multiresolution properties of the adaptive mesh

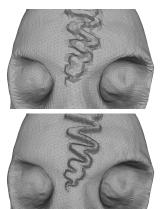
MODULE IMAGE LIRMM April 2012

Marc ANTONINI

Sampling the 3I objects

3D mesh coding Problem statement

The semi-regular remeshing


Coding the meshes

Visualization of massive meshes

Discussion and challenges

How to measure the remeshing distortion?

MODULE IMAGE LIRMM April 2012

Marc ANTONINI

- Sampling the 3D objects
- 3D mesh coding Problem statement
- The semi-regular remeshing
- Coding the meshes
- Visualization of massive meshes
- Discussion and challenges

The surface-surface distance

• The point-surface distance

$$d(oldsymbol{p}, oldsymbol{\mathcal{S}}') = \mathit{min}_{oldsymbol{p}' \in oldsymbol{\mathcal{S}}'} \|oldsymbol{p} - oldsymbol{p}'\|_2$$

- The $\underline{unilateral}$ distance between 2 surfaces S and S'
 - RMSE $\rightarrow \bar{d}(S,S') = \left(\frac{1}{|S|} \int_{p \in S} d(p,S')^2 \mathrm{d}s\right)^{\frac{1}{2}}$
 - Hausdorff distance $o ar{d}(\mathcal{S},\mathcal{S}') = max_{p\in\mathcal{S}}d(p,\mathcal{S}')$

 \rightarrow The symmetrical surface-surface distance

 $d_{sym}(S,S') = max[\bar{d}(S,S'),\bar{d}(S',S)]$

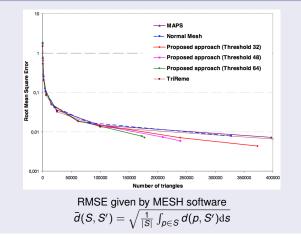
Comparison with state of the art

MODULE IMAGE LIRMM April 2012

Marc ANTONINI

Sampling the 3E objects

3D mesh coding Problem statement


The semi-regular remeshing

Coding the meshes

Visualization of massive meshes

Discussion and challenges

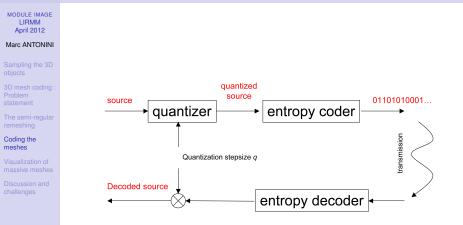
RSME in function of the number of triangles for Venus

Outline

MODULE IMAGE LIRMM April 2012

Marc ANTONINI

- Sampling the 30 objects
- 3D mesh coding Problem statement
- The semi-regular remeshing


Coding the meshes

- Visualization of massive meshes
- Discussion and challenges

Sampling the 3D objects

- 3D mesh coding : Problem statement
- The semi-regular remeshing
- 4 Coding the meshes
 - Visualization of massive meshe
- 6
- Discussion and challenges

General quantization/encoding principle

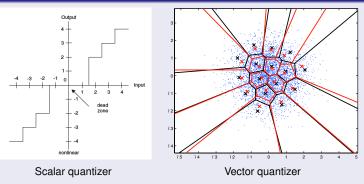
Principle

MODULE IMAGE LIRMM April 2012

Marc ANTONINI

Sampling the 3I objects

3D mesh coding Problem statement


The semi-regular remeshing

Coding the meshes

Visualization of massive meshes

Discussion and challenges

Scalar quantization vs vector quantization

- Pⁱ =quantization cell
- The partition $P = \bigcup_i P^i$ with $P^i \cap P^j = \emptyset, \forall i \neq j$

Principle

MODULE IMAGE LIRMM April 2012

Marc ANTONINI

Sampling the 3I objects

3D mesh coding Problem statement

The semi-regular remeshing

Coding the meshes

Visualization of massive meshes

Discussion and challenges

Quantizer of dimension N and size L :

• A quantizer with codebook C is defined as :

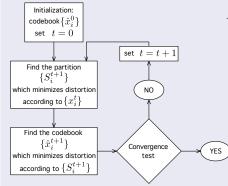
$$Q: \mathbf{R}^N o C$$
 with $C = \{\hat{s}^1, \hat{s}^2, ..., \hat{s}^L\}$ where $\hat{s}^i \in \mathbf{R}^N$ (1)

•
$$Q(s) = \hat{s}^i$$
 if $s \in P^i$

• The space is partitioned into L regions defined by

$$\boldsymbol{P}^{i} = \{\boldsymbol{s}: \boldsymbol{Q}(\boldsymbol{s}) = \hat{\boldsymbol{s}}^{i}\} \tag{2}$$

Generalized Lloyd Algorithm


Marc ANTONINI

- Sampling the 3E objects
- 3D mesh coding Problem statement
- The semi-regula remeshing

Coding the meshes

- Visualization of massive meshes
- Discussion and challenges

Mean squared error

$$D_{\rm MSE} = \int p_x(x)(x - Q(x))^2 dx$$

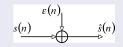
dependance on $\{S_i\}$ dependance on $\{\hat{x}_i\}$

The quantization distortion

MODULE IMAGE LIRMM April 2012

Marc ANTONINI

- Sampling the 3D objects
- 3D mesh coding Problem statement
- The semi-regular remeshing


Coding the meshes

Visualization of massive meshes

Discussion and challenges

• The quantization introduces additive noise :

$$\epsilon = s(n) - Q(s(n)) = s(n) - \hat{s}(n)$$

 The distortion between the input and the output of the quantizer is estimated by the mean square error (MSE) :

$$D = E[\epsilon^2]$$

= $\int_{\mathbf{R}^N} (s - Q(s))^2 f_S(s) ds$
= $\sum_{i=1}^L \int_{P^i} (s - \hat{s}^i)^2 f_S(s) ds$

where $f_S(s)$ is the source pdf

The bitrate

MODULE IMAGE LIRMM April 2012

Marc ANTONINI

Sampling the 3D objects

3D mesh coding Problem statement

The semi-regular remeshing

Coding the meshes

Visualization of massive meshes

Discussion and challenges

Shannon entropy

$$H(X) = \sum_{i=1}^{L} p_i log_2(p_i)$$
 bits per sample

•
$$p_i = \Pr{\{Q(S) = \hat{s}^i\}} = \int_{P^i} f_S(s) ds$$

is the probability of the quantization symbol \hat{s}^i

- Entropy coders can reach Shannon entropy ($R \ge H$)
- Contextual entropy coders generally permit $R \le H$

Bitrate and distortion are linked

Marc ANTONINI

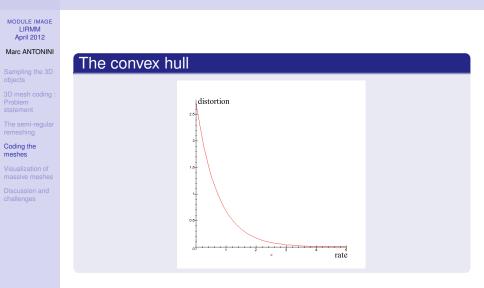
Sampling the 3I objects

3D mesh coding Problem statement

The semi-regular remeshing

Coding the meshes

Visualization of massive meshes


Discussion and challenges

Asymptotical approximation

$$D(R) = \sigma_S^2 \, 2^{-2R}$$

- R is the bitrate in bit per sample
- Approximation true for high bitrates R
- Open problem : find analytical models valid for all bitrates

Rate-distortion behavior

Position of the coding/decoding problem

MODULE IMAGE LIRMM April 2012

Marc ANTONINI

Sampling the 3D objects

3D mesh codin Problem statement

The semi-regular remeshing

Coding the meshes

Visualization of massive meshes

Discussion and challenges

The performances of a coding system are defined by :

• The compression ratio (CR)

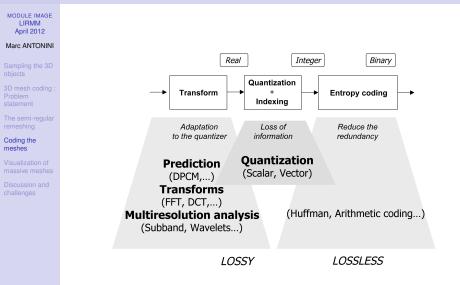
- initial bitrate/bitrate after compression

• The quality of the decoded image

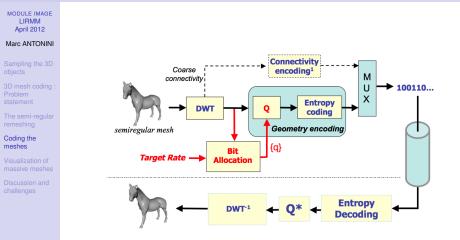
- objective criteria : MSE, SNR,...
- subjective criterion : visualization

The complexity of the system

computational cost, required memory,...


Problem

• Optimize jointly these 3 points

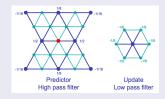

Typical coding scheme

The tools

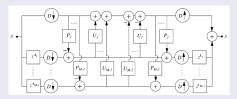
The proposed coding scheme for meshes

¹ Connectivity encoding: Touma-Gotsman coder

DWT for remeshed surfaces : The tools


MODULE IMAGE LIRMM April 2012

Marc ANTONINI


- Sampling the 3D objects
- 3D mesh coding Problem statement
- The semi-regular remeshing
- Coding the meshes
- Visualization of massive meshes
- Discussion and challenges

Butterfly-based wavelet transform (1996)

 $\rightarrow\,$ A lifting scheme implementation - Interpolating filter

 \rightarrow The 4-Channels lifting scheme

DWT for remeshed surfaces

MODULE IMAGE LIRMM April 2012

Marc ANTONINI

Sampling the 3D objects

3D mesh coding Problem statement

The semi-regular remeshing

Coding the meshes

Visualization of massive meshes

Discussion and challenges

Properties for compression

- \rightarrow The connectivity is implicit except for the coarse mesh
- ightarrow Only the geometry (wavelet coefficients) must be coded

Optimize the rate-distortion trade-off !

→ Bit allocation

Optimal bit allocation

MODULE IMAGE LIRMM April 2012

Marc ANTONINI

Sampling the 3E objects

3D mesh coding Problem statement

The semi-regular remeshing

Coding the meshes

Visualization of massive meshes

Discussion and challenges

Objective

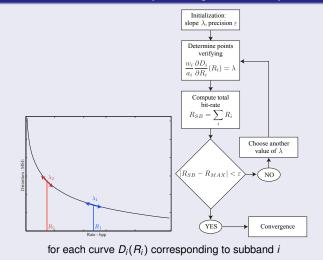
- Given a rate constraint $\sum_{i=1}^{M} a_i R_i \leq R_{\text{MAX}}$,
- Determine the optimal set of bit-rates $\mathbf{R} = \{R_i\}_{i=1}^M$
- Which minimizes global distortion *D*(**R**),
- Knowing that $D(\mathbf{R}) = \sum_{i=1}^{M} w_i D_i(R_i)$

Lagrangian optimization : minimize

$$J(\mathbf{R}, \lambda) = \sum_{i=1}^{M} w_i D_i(R_i) - \lambda (\sum_{i=1}^{M} a_i R_i - R_{\text{MAX}})$$

 λ : common slope to curves $D_i(R_i)$ hypothesis : $D_i(R_i)$ are convex and monotonic

Optimal bit allocation : algorithm


Marc ANTONINI

- Sampling the 3I objects
- 3D mesh coding Problem statement
- The semi-regular remeshing

Coding the meshes

- Visualization of massive meshes
- Discussion and challenges

Determine the rate corresponding to the slope λ

Quantizing the DWT of the geometry

MODULE IMAGE LIRMM April 2012

Marc ANTONINI

Sampling the 31 objects

3D mesh coding Problem statement

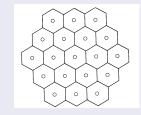
The semi-regular remeshing

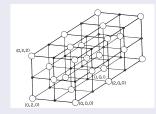
Coding the meshes

Visualization of massive meshes

Discussion and challenges

The lattice vector quantization solution (LVQ)


• Why LVQ?


...

- \rightarrow VQ is well suited for geometry coding
 - a vertex v is a vector $\in \mathbb{R}^3$
 - a triangle T is a vector $\in \mathbb{R}^9$

→ LVQ is a structured vector quantizer defined as $\Lambda \in \mathbb{R}^n$ $\Lambda = \{\mathbf{x} | \mathbf{x} = u_1 \mathbf{a}_1 + u_2 \mathbf{a}_2 + ... u_n \mathbf{a}_n\}$ where $a_i \in \mathbb{R}^m$ $(m \ge n)$

Examples

Using a LVQ for quantization

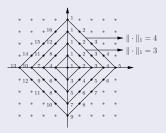
MODULE IMAGE LIRMM April 2012

Marc ANTONINI

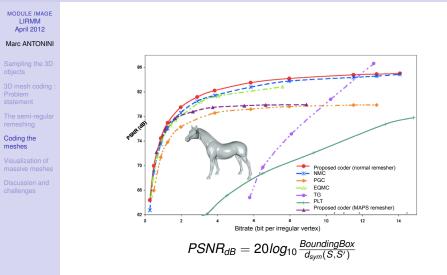
Sampling the 3E objects

3D mesh coding Problem statement

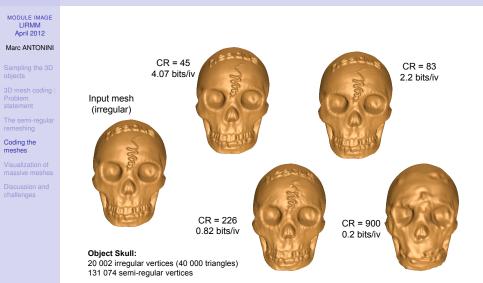
The semi-regular remeshing


Coding the meshes

Visualization of massive meshes


Discussion and challenges

The product code


- A group of triangles of the mesh is quantized by a lattice point
- Each lattice point is indexed using a product code composed by
 - \rightarrow the lattice point norm
 - $\rightarrow~$ its position on a surface with constant norm

Coding/decoding results

Visual coding/decoding results

Outline

MODULE IMAGE LIRMM April 2012

Marc ANTONINI

- Sampling the 3D objects
- 3D mesh coding Problem statement
- The semi-regular remeshing
- Coding the meshes
- Visualization of massive meshes
- Discussion and challenges

Sampling the 3D objects

- 3D mesh coding : Problem statement
- The semi-regular remeshing
- Coding the meshes
- 5
 - Visualization of massive meshes
- 6
- Discussion and challenges

Visualization and manipulation application

MODULE IMAGE LIRMM April 2012

Marc ANTONINI

Sampling the 3E objects

3D mesh coding Problem statement

The semi-regular remeshing

Coding the meshes

Visualization of massive meshes

Discussion and challenges

Motivation

- Visualize massive meshes (> millions of triangles)
- "Real time" rendering
- Scalability (resolution, rate, ROI...)

Bottleneck

- The DATA BUS between HDD, RAM and VRAM !!
 - $\rightarrow\,$ Slow data transmission compared to Tera flops computation capacity of today Graphic Cards
 - ightarrow DATA BUS seen as a low bandwidth transmission channel

Visualization and manipulation application

MODULE IMAGE LIRMM April 2012

Marc ANTONINI

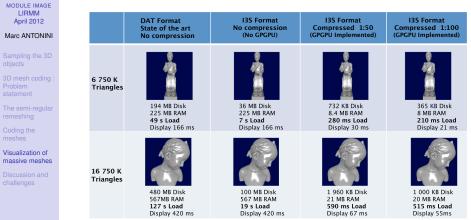
Sampling the 3D objects

3D mesh coding Problem statement

The semi-regular remeshing

Coding the meshes

Visualization of massive meshes


Discussion and challenges

Solution

- Push COMPRESSED GEOMETRY to the VRAM
- Decoding INSIDE the GPU (GPGPU implemented)

Loading and rendering time consumption

GPU: 7x48 OpenCL cores @ 1430MHz, VRAM: 1GB, Bandwidth: 115.2GB/s

Demonstration : visualizing huge meshes

MODULE IMAGE LIRMM April 2012

Marc ANTONINI

Sampling the 3E objects

3D mesh coding Problem statement

The semi-regular remeshing

Coding the meshes

Visualization of massive meshes

Discussion and challenges

Characteristics of the material

- NVIDIA GeForce 320M (GPU)
- Memory (RAM) = 4 Go
- Memory (VRAM) = 256 Mo

Characteristics of the mesh (BIMBA)

- Number of triangles = 16 750 000
- Number of vertices = 8 437 666
- Total cost on HDD = 290 Mo
- Total cost including the normals = 386 Mo

Outline

MODULE IMAGE LIRMM April 2012

Marc ANTONINI

- Sampling the 3D objects
- 3D mesh coding Problem statement
- The semi-regular remeshing
- Coding the meshes
- Visualization of massive meshes
- Discussion and challenges

Sampling the 3D objects

- 3D mesh coding : Problem statement
- The semi-regular remeshing
- Coding the meshes
- Visualization of massive meshes
- 6
- Discussion and challenges

Discussion

MODULE IMAGE LIRMM April 2012

Marc ANTONINI

Sampling the 3E objects

- 3D mesh coding Problem statement
- The semi-regular remeshing
- Coding the meshes
- Visualization of massive meshes

Discussion and challenges

Semi-regularity allows

- \rightarrow implicit connectivity
- \rightarrow DWT <u>multiresolution</u> analysis
- ightarrow good scalability properties

Wavelets and vector quantization allow

- \rightarrow highly parallel coding/decoding
- $\rightarrow \ \underline{\text{last moment}} \ \text{GPU decoding} \\ \underline{\text{solving the data transfer bottleneck on data buses}}$
- → multiresolution technology minimizing drastically the GPU resources needed
- $\rightarrow\,$ to visualize or manipulate multi-millions triangles objects on Workstations (multi-thousands on Smartphones)

Challenges

MODULE IMAGE LIRMM April 2012

Marc ANTONINI

- Sampling the 3I objects
- 3D mesh coding Problem statement
- The semi-regular remeshing
- Coding the meshes
- Visualization of massive meshes
- Discussion and challenges

- Deal with more complex objects and/or more detailed (out-of-core)
- 3D animations
- Take into account human visual perception
- What efficient perceptual distortion measure?

MODULE IMAGE LIRMM April 2012

Marc ANTONINI

Sampling the 3I objects

3D mesh coding Problem statement

The semi-regular remeshing

Coding the meshes

Visualization of massive meshes

Discussion and challenges

Thank you !!

Acknowledgement to F. Payan, L.H. Fonteles, A. Meftah and A. Kammoun