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A first application: augmented reality

Definition : [Azuma 97]

Add virtual object in the video stream
In real-time

Theoretical problem to be solved
Find the camera position

Extensions
post-production
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Applications

Diffusion d'événements sportifs
Effets spéciaux

Etude d'impact

Tourisme interactif

Applications militaires

Design intérieur

Aide a la maintenance, assemblage
Medecine

Jeux
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CyberSpori
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Impact study / architecture / archeology



Cultural heritage




Military applications
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Military applications




Design intérieur

(&:IRISA



Industrial application, assembly
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AR In medecine




ARQuake

Outdoor Augmented Reality Gaming

Wearable Computer Lab
University of South Australia
http://lwearables.unisa.edu.au
August 2002



Game from outer space...
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Augmented book
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No comments...




Application to augmented reality

Augmented reality
Coherent insertion of virtual objects within real images stream

Augmented reality is handled as a 2D-3D registration issue
Post production

Full knowledge of the video sequence ‘

Localization of the camera and structure of the scene g

Bundle adjustment techniques (Realviz, 2D3)

On-line augmented reality
Real-time requirements
No knowledge on the future
[Navabl][Lepetit-Fua][Berger][Kutulakos],...




So...

Augmented reality is... viewpoint computation
Goal :

Tracking the camera
in a sequential way (video streams, real time)
for getting stable and accurate augmentation results
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Model-based tracking

Pro

fast and sequential (real-time)
no drift

Cons
the scene has to be partially known (markers, natural features)
tedious task of reconstructing or measuring scene features
difficult to define a lot of features
jittering effect




Motion computation

Pro

® do not require any model of the scene
® easy to track a lot of features + bundle adjustment
— very accurate registration, negligible jitter

Cons
* slow and not sequential
® The world and the virtual coordinate system must be aligned manually
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Tracking by matching

Establish the correspondance between
primitives extracted from 2 images

Pro
No tracking and then no real (re)initialization !

Cons
Viewpoint change (3D change)
Image transformation (translation, rotation,
scale change)
lllumination change, Occlusion
Low frame rate ?

ST

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE
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What is not in the scope of this talk

Visualization devices
HMD
Video see through, optical see through 3

- v vy o

‘‘‘‘‘‘

————

Augmented reality for post production =ty W 4333:

----
------
------

-----

AR toolkit

Rendering
Image synthesis
Lighting considerations




First,... camera model
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Perspective discovery




« Jesus Before the Caif », by Giotto (1305). The ceiling rafters show the Giotto’s
introduction of convergent perspective.

Detailed analysis, however, reveals that the ceiling has an inconsistent
vanishing point and that the Caif’s dais is in parallel perspective, with no

vanishing point.

- \'
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Perspective discovery

Van Eyck, 1435 (flandre)
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Brunelleschi: Santa Maria della Fiore, 1435

Brunelleschi, début 15éme
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Alberti, della pittura 1435

As Brunelleschi made no written record of his perspective findings, it
remained for Alberti to be the first to put the theory into writing, in his
treatise on painting, Della pittura (1435). There, Alberti gave

practical information for painters and advice on how to paint istoria
or history paintings.
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« Herod’s Feast » by Masolino (1435), where many receding
horizontal lines project to a single central vanishing point




Three examples of paintings in one-point perspective with laterally
shifted vanishing points.
Left panel. « The Annunciation » by Fra Angelico (1436-1443)
Central panel: « Presentation of the Virgin » by Fra Carnevale (1467)
right panel: « The Vision of St. Catherine » by Titian (15037?)




Durer perspective device

Albrecht Durer: Artist Drawing a Nude with Perspective Device 1525
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Durer perspective device
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Durer perspective device
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Camera obscura

Camera obscura (Cam"e*ra ob*scura) [LL. camera chamber + L.
obscurus, obscura, dark.] (Opt.)

An apparatus in which the images of external objects, formed by a
convex lens or a concave mirror, are thrown on a paper or other white
surface placed in the focus of the lens or mirror within a darkened
chamber, or box, so that the outlines may be traced.

(Photog.) An apparatus in which the image of an external object or
objects is, by means of lenses, thrown upon a sensitized plate or surface
placed at the back of an extensible darkened box or chamber variously
modified; - commonly called simply the camera.

Websters Dictionary, 1913
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Camera Obscura

De radio Astronomica et Geometrica, Gemma Frisius 1544

illum n tabula per radios Solis,, quam in ceelo contin-
git:hoc eft,fi in ceelo fuperior pars dehiquiii patiatur,in
radiis apparcbit inferior deficere,vt ratio exigit optica.

r - T

s ﬁ:ﬁ

Sic nos exacté¢ Anno .1544 . Louanii eclipfim Solis
obferuauimus , inuenimusq; deficere paulé plus § dex-
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Camera obscura

Camera Obscura, Athanasius Kircher, 1646
In Gernsheim, H., The Origins of Photography




Camera obscura

Invented in the sixteenth century, the camera obscura is made out of an
arrangement of lenses and mirrors in a box that is darkened, The
machine permits accuracy in a drawing, often of topographical detail.
When looking through the lens of a camera obscura, the view presented
is actually reflected through the mirrors onto the paper or cloth and
allows the artist to draw by tracing the outline.
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projection
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Perspective projection: back to basic

Thales Theorem (625-546 Av JC)
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Perspective projection

Definitions
The origin of the camera frame Rc is the center of projection C
x axes is parallel to image lines and y axes is parallel to image columns

Intersection of z axes with image plane is the principal point u,, v,
focal distance f=d(C,n)




Perspective projection

In Rc, the perspective projection of a point M(X,Y,Z) on the image
point m(x,y) with:

t=fX/Z,Y=fY/Z
All the points on the CM straight line given by:

fX—-—Zzx=0
fY —Zy=0

are projected on the same point m. It is impossible to determine the
position of M without a priori knowledge with one camera.

M, X O
L 4 -
C Ze | )
) e Ny
P~ T
oo | op @:IRISA




Radial distortion

Let K be the radial distortion coefficient. Then, position of point m
that is observed int the image is given by:

Td =:z:+K:1:(:c2+y2) y Yd =y+Ky(~'c2 +92)

=12mm




Other potential distortions

L

By

(a) Radial distortion

\

\

\

\

\

\

(e) Skew

(b) Tegenhal distortion

(c) Scale error

\
—

(d) Projection distortion

l

/

\

(f) Along track scale error (g) Step-wise distortion (h) Scan-line scale error
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Sampling

Let us define m, by it position m, (u,v) in the digitized image d
(expressed in pixel):

u:u0+aﬁavzvo+%
L L,

where [ and /, are the pixel size and u,, v, are the translation of the
center of the coordinate system (principal point coordinates)

Ty T 0 U U

Y
Yd U

T Y.
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Complete camera model

The model is given by
2 2
2 2
where

pe = f/ley, py=f/l, et Kq= Kf>

The unknown parameters &, called intrinsic parameters are:

6 - (UOaUO,px,p'y, Kd)
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Camera model

When camera distortion can be neglected, the camera model is
simply given by:

{ u=u0+px%—(
v=v0+py7
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Camera model

After calibration, we can get normalized coordinated from digitized

ones using:
{ z = (u—u0)/Ps
y = (v —0)/py
projection equations are then given by
X Y
T — — ] ——
z'7 =z

If K, cannot be neglected, we can undistort the image
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Undistortion




Perspective model: linear notation

{ U = ug + P
V= Vg + PyY

U p: 0 1w
v | = 0 »p, o
1 0 0 1




Second,... Model-based tracking
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Camera alignment for augmented reality

Virtual object Graphic open GL

\ 4
Align graphics camera :
to real camera : .

N\
4—
Real scene

Real camera




3D localization, pose estimation

Goal

Determine 3D camera camera location wrt. an object using only one
image of this object

Then
With no a priori knowledge, localization in impossible
Position of specific features have to be known in an object related frame

Approach: similar to calibration
Simplification of the Toscanis-Faugeras method
Dementhon-Davis method
Non-linear minimization
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Middle school geometry

Théoreme de Thales

(&:IRISA



Generalization

We know (x,y) and the object model °P

We seek the pose M,

Solution is quite simple : change frame first

°‘P=°M,°P & {

Then project

0)°P-Ht.

0)°Pt.
0)°PHt,

0)°P+k.

Le

M,

Ye

7

X = (I‘l O)OP -+ tm
°Y = (rz 0)°P +t,
¢Z = (r3 O)OP + ¢,

Jl

-

| -
——J-_"L____

p/

X
Z f
Y\x
op
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“Linear” approach

Let’s note the pose M,
°X=(r1 0)°P+1t,
°P=°M,P & <{ °Y = (rz 0)°P +1t,
¢Z = (I‘3 O)OP + ¢,

The perspective projection equation gives:

T = (rl O)Op+t:n
o gra 0}°P+tz

Y= (r3 0)oP+¢.

Which with simple developments leads to:

r31°Xx + 1r32°Yx +133°Zx + 2t — r11°X — 112°Y —113°Z —t, =0
r31° Xy +132°Yy +133°Zy + 2ty —r11°X —112°Y —113°Z — 1, =0

P

L5
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“Linear” solution

We obtain an homogeneous system with 12 unknowns parameters:
AlI=| A, |I=0 avec

Where

A depends on the data extracted from the image
| is function of the parameters to be estimated
: : : : T
Each point of the object gives 2 equations A; I=[0 0 |

A — _OX’i _O},z' _oZi 0 0 0 dfz'on' (Bio},z' CL'Q'OZ,; -1 0 Z;
N0 0 0 -°Xy -°Y; -°Z; u°X: w°Y: v:°Z; 0 -1 y;

P
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Solution of the linear system

System to be solved Al =0

Where | is a non null vector of size 2n

Solution 1
Compute | a vector of the null space of A (SVD)

Solution 2

Considering that r; is a rotation matrix

Solved the system under the constraint that 731,732,733 isa unitary
vector
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Constrained minimization

AX,; + BX;, =0 under the constraint that

With

X3 = (r31,732,733)"
X2 = (T11,712,T13,T21, 722, T23, tzy by, t2) T
A — ( X, zY, z2Z, )
vYo Y, yZ,
. ( —oX —°Y —°Z 0 0 0
- 0 0 0 —°X =°Y -—-°ZF

IXa]l =1

-1 0 =z
0 -1 vy



Constrained minimization

A direct solution is impossible I =0
We consider a minimization with Lagrangian
System can be rewritten as
A.X; +B.X3 =0 avec X3 = (r31,732,733)%
We minimize the following criterion :
C=[|AX:+BXa|*+ X (1-[X1]?

where
X, is a line of ‘R,
X, is a function of the pose
A and B are function of the N measures (x,y;, and °X, °Y, °Z.)
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Constrained minimization

Let the partial derivatives of C be null :
{ = =ATAX; +ATB.X,; —)XX; =0

2 6)8
! =BTAX; +B"BX;=0

20X, —
We obtained:
{ X, = —(BTB)!BTA.X;
EX;=)X; avec E=ATA — ATB(BTB)‘lBTA

With
We have C = A if X, is a unit eigen vector of E corresponding to the
eigen value A.

X, is the eigen vector corresponding to the smallest eigen value of E.
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Dementhon-Davis method

Pose computation in 25 lines of code
And... that is true...
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Dementhon-Davis

Considering the projection equations, for each point (x,y,)

(o= Xi T’ X+ 112°Ys +113°Z; + T,
YTZ T 1" X +132°Yi +133°Z; + T,

ad

_ %Y _ X+ 120 +123°Z; + T,
. %= CZi N TSIOXz' + 7'320K; i 7'330Zi +Tz

€& = (731°Xi+1r32°Y;+133°Z;)/T, (1)
Let us pose I' = }(ra,meris,Ty) (2)
J' = (ro1,720,723,Ty) (3)



Dementhon-Davis

We obtain
( °X; °; °Z; 1 ) I=2;(1+¢;)
~ R.: “ — E: y
( °X; °; °Z; 1 ) J=19;(1+¢;)
- er " ~ B’:; -4

That is two linear systems with N equations and 4 unknowns
If & in known

4 non coplanar points are necessary to solve such system

Just one more thing...
g in unknown
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Dementhon-Davis

Linear iterative method
1. Initialization

2. Solve the linear systems A;jI=B; and AsJ =Bj
A* has to be computed only once

3. Equation (2) and (3)

T, = % and i is a unitary vector (i = ﬁ)
T,=1/||I|| where T, =2/(|[I| + [ J[])
4. Z=1XJ=>rij,1y and T,

5. €; = (131°X; + r32°Y; +1r33°Z;) /T,
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Dementhon-Davis




Pose estimation: non-linear minimization

Goal
Estimate the pose M, of an object with respect to the camera frame

: OJ z
Example for point features Ye P op

Minimizing the error between the observation p*
and the projection of the model in the image

‘M, = arg_min (pre ((Mo,° P;) — p})°

where °P are the coordinates of the same points in the object frame
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Pose: non linear minimization

We have to estimate the pose that minimize

A

. * 2
‘M, = arg mlflt (PT 3 (“Mo,° P;) — pi)
(o} ] o ’I,

c o ) 2 _
(p’"ﬁ (“Mo,° P;) — sz) is the distance between the observation
and the projection of the object model

Rotation °R, is parameterized using the 6u vector where 0 is the
rotation angle along the u vector

This leads to 6 independent vector to estimate

Minimization using a Gauss-Newton method
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Linearization of the non-linear system

Problem: no general method to solve f(r)=0

There exists iterative method that linearize the problem in order to
find an adequate solution

fle+0) = S+ Sl @)+ + oSl @)+ O( o )

fi(r) + V fi(r)ér (1)

Q

where Vf;(r) = (32,..., §2)T is the gradient of f,in r and where

second order terms are neglected.
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Linearization of the non-linear system

With the Gauss-Newton method, we do no want to determine the
value of or that ensures f(r)=0 but the value that minimizes the cost

function:

E(r + ér) = [[f(r + or)||* ~ [|f(r) + J¢(r)or]

This is a linear minimization problem (solved by a least-square
approach) and we have:

or = —Jf (0)f(r) = (IF (r)Je(r)) " IF (r)E(r)
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Computing the Jacobian

We have to compute the Jacobian that links the variation of the
measurements x = (x,y) to the variation of the pose.

That is :
Ox OxOr
ot Or Ot
or
X =Jv
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Jacobian: case of the point

Some definitions
Let (O,x,y,z) be the camera frame
Let x(X,Y,Z) be the 3D position the point
Let the camera velocity be v = (V, Q) = (V, V4, V2, Q4,Q,,§2,)

The relation that link the point velocity X to the camera velocity is
given by: X— - V_OxX
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Jacobian: case of the point

X=-V-QxX
Is equivalent to .

X —Ve — Q0 Z +).Y

Y -V, —Q.X+Q,72
On the other hand, the perspective equation gives {

Which can be derived

X

<
|
SN

gz __ Oz 90X ox 0Z . — X _ X

58 — ax ot T 57 ot T = 5 — 334
&

0y _ Oy a9y , Oy oz : Y Y

5t — By ot T 87 ot y = Zz— 52
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Jacobian: case of the point

Considering (X,Y, Z) obtained in (1)
V-0, Z4Q.Y
= X (V- Q.Y +Q,X)

( . B X X A B
T = o gpld = 7
{
\ g = %_ %Z _ _Vy_Q}X+QxZ o %/2 <_Vz _QxY—l_QyX>
or 1 X XY X2 Y
j = ~1V, &V +(1+ 50 7= -7




Jacobian: case of the point

We finally have

{i = 1V +2V.
or
1
)-(5 5
vy ) 1
0 -2 2

+xyfl,

+(1 4+ 12,

Ty

(1+92)

—(1+2%)Qy  +yQ.

—(1+z?)

—zyl,

—x€),
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Pose: an obvious link with visual servoing

Visual servoing
Move a camera in order to observe an object at a given position in the

(&:IRISA



Pose: an obvious link with visual servoing

Visual servoing

Move a camera in order to observe an object at a given position in the
image.

Pose calculation via non-linear methods is similar to visual servoing

Virtual Visual Servoing [Sundareswaran 98]

Virtually moves a camera so that the projection of a model of the object
corresponds to the observed image

The end position of the virtual camera is the expected pose

(&:IRISA




Virtual visual servoing

We want to minimize the following error

A =s(r) —s*
where

s* is the position of the features in the image
s(r) is the current position of the projected features for a pose r

The displacement of the projected features due to a variation of the
pose is given by

. Osdr
S = ar df Lgv
If we specify an exponential decrease of the error € = —J\e

The control law that ensure the minimization is

v =—AL}(s(r) — s¥)
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Virtual visual servoing: robustness to outliers

The residue A = p(s(r) —s*) Tukey's M-estimator wgéz-//aa)

, wu(C? —u?)? |ul< C
sy = f WO =)l <
0 else

where p is a robust function (M-estimation)

The control law, similar to an IRLS, which minimizes s-s* is given by
v = —A\(DLg)"D(s(r) — s*)

Weight Function w(u)

Weighting Functions
T T

where - 0




Visual features

Can use any kind of visual feature
Constraint: compute L,

Mix various visual features within the same process

sl L81

S = : - ; v=Lgv

S-n Lsn

Constraint : L, must be full rank
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Visual features

Distance to a moving line
® p :point extracted in the image using the ECM algorithm
® I(r) : projection of the object model for pose r

d, =d.(p,1(r)) = p(l(r)) = pa,




Low-level image processing:

Local tracking of edge points
ME algorithm [Bouthemy PAMI 89]
1D search algorithm
Convolution with oriented mask
Comparison with the convolution at
time t-1, same orientation, same contrast

Frame rate performance

Not always efficient in textured area

I(r)’
100 | 100 | 100

=100}-100 [ =100

(c)

0 |-100{-100

100 ) 100 0

&y

(d)




based tracking

3D model




3D model-based tracking: augmented reality

Application to augmented reality




3D model-based tracking: augmented reality

Application to augmented reality
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Aircraft localization and landing

* FP6 Aerospace Pegase project (with Dassault aviation)

* 3D model : a large set of vectorial data (roads, rivers, coasts) managed \
hierarchically EADS

(4 DASSAULT

AV I AT /I ONW

),

7 AleniaAeronautica

A Finmeccanica Company

& surocopter




Air refuelling, carrier landing

Image : 126/401 91.8887 -60.5841
15.7647 28.4406
5.83339 568.012

9



Visual tracking and servoing
during the alignment and descent phases

External view

T (&:1RISA



Satellite tracking (with EADS Atrium)

EADS -

SSsSsEriam
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3D model-based tracker
Application to micro manipulation

Application to MEMS micro manipulation (collaboration with FEMTO-ST, Besancon)

Assembly of complex MEMS compounds

Speed x4, 400pm x 400pm x 100pm
Microassembly using visual servoing

Size 400 pm x 400um
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MEMS Tracking

[ video Leica i |
4 ;
¥
4 -
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3D model-based tracking for UAV position

control )
O lust

Quadrirotor localization and position-based control

3D tracking, position an velocity estimation required for the control

Position Control of a UAV
Using Model-Based Tracking

C. Teuliéere L. Eck E. Marchand N. Guénard

CEALIST Interactive Robotics Unit

IRISA/INRIA Rennes-Bretagne Atlantique
Lagadic Project
http://www.irisa.fr/lagadic




Humanoid robotics




Overview: model-based tracking

Visual tracking

Various tracking algorithms

Contour-based tracking
Monocular 3D model-based tracking
Multi-cameras 3D model-based tracking
Tracking in central catadioptric cameras

Hybrid tracking
Introducing a spatio-temporal constraints
Optic flow

lllustration with applications in
Augmented reality
Visual servoing
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Extension to multiple cameras

New objective function
k2

k1
A=Y (o, (“Mo"Py) = 87)" + 3 (pre, (“M,,° P;) = 53)°

i=1 j=1

But if calibration of the stereo system is known

this is equivalent to
kl k'z
A= (pre,("Mo,°Pi) = 87) "+ Y (pre, ("M, "M, P;) = 57)°

i=1 j=1
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Extension to multiple cameras

The velocity of virtual camera 1 is linked to the velocity of
virtual camera 2 by:

C1 C1
v =%V, 'v with “V,, = [ IO{C2 [cltﬁf]x ]
C2

Which leads to the following interaction matrix:
S1 | L 1
HEAL

And the corresponding control law

D, L., ] [D1 ] [ s1(r1) — s ]

1
= —)\ _
v ! D,L.,%2V, D, s2(rz) — s3
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Tracking the APFR

Articulated portable foot restraint
APFR CAD model

Image courtesy ESA
e ‘ 37



Visual servoing with stereo tracking

Small baseline
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Visual servoing with stereo tracking

Wide baseline
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Walking across the ISS, grasping the handralil

Edge not really... sharp
Cast shadows

Image courtesy ESA

Tracking at 20Hz
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Servo a handrail under nominal conditions
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Servo a handrail with lighting variations

External view of the experiment
Camera view

®* Qcclusions
® Lighting variations




Servo a handrail with lighting variations
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Overview: model-based tracking

Visual tracking

Various tracking algorithms

Contour-based tracking
Monocular 3D model-based tracking
Multi-cameras 3D model-based tracking
Tracking in central catadioptric cameras

Hybrid tracking
Introducing a spatio-temporal constraints
Optic flow

lllustration with applications in
Augmented reality
Visual servoing

(&:IRISA



Tracking in central catadioptric cameras

Same approach
A=Y (pre (Mo, S;) — s7)°

but with
New projection model
A straight line projects as a conic
New interaction matrix
Related to the distance of a point to the projection of a line
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Tracking in central catadioptric cameras

Projection model
Projection on a sphere, then on the
image plane

New interaction matrix
Various parameterizations of the line
Plucker coordinates
[Andreff 01, Adj Abdelkader et al 04]]
Intersection of two planes
[Marchand et al 06]

Qzy)=0 |

Image plane
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Tracking in central catadioptric cameras

Tracking a box at video rate
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Tracking plinths for mobile robotics

' IRISA-INRIA Rerires, r IRISA-INRIA Rerires,




Stereo omni




Second :

displacement estimation

of, ]
2 . B f
o r
_I_
Mo | + P
+ T + 4
I I
® L
cq co
e

(&:IRISA



Motion estimation

tr(p2) is the coordinates of a point transferred in a reference image
according to the camera displacement

A= Z(Pi —2 tr1(p2)°

Allows to estimate the camera displacement

/'
Advantages
Implicit spatio-temporal constraints :f *
Less jitter Mo o . ++++
Issue 11 -
Prone to drift if reference image is modified o :,
g,




Case of planar scenes

Planarity constraint

if the surfaces of the objects are planar, there exists an analytic
transformation from the left image coordinates to the right image
coordinates.
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Case of planar scenes

Let us assume that points belong to a plane P(n, d)

M, € 73(1’17 d) = HTMl =d
M, =RM; +T

T

— M, = RM; + T]'%M1

or Zlmpl = KM, Z2K2mp2 = KsM>

leading to Amp> = Hmyp,

with
IIT ZQ

H:K2RK;1+K2tdK;1 et A==




Motion estimation

Point transfert

For planar object the transfert is function of the camera dlsplacement
2M, and of the homography 2H,  Ps = “tr1(p1) = *“Hip:

. 261, T
with ‘H, =K~ (2R —|——d n )K
If M, is known, estimating the displacement is equivalent to a pose
estimation
Solutions

Estimation of H [Simon, Berger IEEE CGA 02][Benhimane Malis IJRR 07]
Estimation of R, t [Pressigout Marchand ICPR 04]

lllumination
May also considered more complex illumination model in A
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Multi-plane tracking

Pose from planar structures

Constraints in the homography
estimation

[Simon, Berger IEEE CGA 02]




Virtual visual servoing

Estimation of R and t [Pressigout Marchand ICPR’04]




ESM: Efficient second order minimization
Use all the pixel in the tracked patch

= ¥ (561 )

p; = *tri1(p1) = *Hip,

Direct estimation of the homography
[Benhimane Malis IJRR 07]
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Mathematical formulation

I(x,y,t) = brightness at (z,y) at time ¢
Brighntess constancy assumption

I(x +dz,y + 6y, t + 0t) = I(z,y,1)
or

d d
I(x+—x5t,y—l——y

S5t t —
~ 7 t+0t) = I(z,y,t)

Optical flow constraint equation (OFCE)

dl
VI 'x+1 = —
Xth=1
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Patch matching: SSD

How do we determine correspondences?

Simplest case
block matching or SSD (sum squared differences)

E(h) =) [I(x+h) - T(x)]?

X

Estimating the translational h motion between two images

Rl o ‘..t\'
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Original Lucas-Kanade algorithm

Goal is to align a template T(x) to an input image /(x)
X is a column vector containing image coordinates (x,y)"
Could be also a small window in the image

Set of allowable warps W(x,p), where p is a vector of parameter, for
example, for translation we have

W(x,p) = [ e ]

W(x,p) can arbitrarily complex

The best alignment minimizes image dissimilarity
> I(W(x,p)) — T(x)]?
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Original Lucas-Kanade algorithm

> xI(W(x,p)) — T(x))?

IS a non linear optimization. The warp W(x,p) may be linear but the
pixel are, in general, non linear.

Assuming that p is known and best increment Ap is sought. The
modified problem

> I(W(x,p+ Ap)) — T(x)]?

Is solved with respect to. When found update
P P+ Ap
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Original Lucas-Kanade algorithm

> I(W(x,p+ Ap)) — T(x)]?

Linearized by performing first order Taylor expansion

> I (W(x,p)) + VIGY Ap — T'(x)]?

VI = g—i, g—é is the image gradient computed at W(x,p),

The term %—Vg’ is the Jacobian of the warp
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Derive

E[I (W(x,p)) + vz%v: Ap — T(x)]?

with respect to Ap

.
Z [vz—] W(x,p)) +VI%’Ap T(x)]

setting equal to zero yelds

Ap = H- 1[VI%—V:] T(x) — I(W(x,p))]

where H is the Hessian matrix
oW
H=2. v’ [
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KLT summary
iterate
1. Warp I with W (x, p)
2. Warp the gradient VI with W(x, p)

3. evaluate the Jacobian %—V: at (x,p) and compute the steepest descent

: AW
image VI 3

4. Compute the Hessian H
-
5. Compute Ap = H-1 [vz%—‘g] T(x) — I(W(x,p))]

6. update the parameters p «— p + dp

until ||Ap|| < €
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Consider translation W (x: p) = [ T PL ] The Jacobian is then

Y + P2
OW 1 0
% — |0 1

o= X, VI QY| Vi gy

1012 ., .. T1 0
= 9z | (9L oL
2 01] = [Ow'é’rlo 1]

(3w

) Oy

= 2x| o (o)
L dxOy (E)y) ]

The image windows with varying derivatives in both directions.
Homeogeneous areas are clearly not suitable. Texture oriented mostly in one
direction only would cause instability for this translation.
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)
Ap= w7t Y V1 G (76~ I(W(xp)

where H is the Hessian matrix

[ 2 o 2

X
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UR1 tracking...
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MI based tracking

* Proposed template-based tracker :

— Does not use directly the intensity

— Uses the “information” of the template
* Properties:

— Robust

— Accurate

— Efficient

Template




Tracking approaches

Template-based
SSD [Lucas 1981]




Tracking approaches

Template-based
SSD [Lucas 1981]
MI [Viola 1995]




Tracking approaches

L BInNI

based

Template

MI [Viola 1995]
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How to measure the mutual information

Histogram p1(%):
Frequency of an intensity ¢ in the image [
Joint histogram prr= (i, j):
Frequency of a couple of intensities (i, j)
in the couple of images (1, ™)
—> Provides the spatial information
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How to measure the mutual information

M| depends on the dispersion of the
joint histogram pyr«(i,7):

Example: —

P Misaligned
©
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Focused histogram Dispersed histogram
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Reference image

Localization
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Application to mosaicing




Dense localization
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Dense localization
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Dense localization
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%I INRIA

RENNES

SLAM

Simultaneous Localization and Mapping
On-line model construction
3D localization
Recursive estimation process (EKF)

[Servant 07]



Parallel Tracking and Mapping
for Small AR Workspaces

Extra video results made for
ISMAR 2007 conference

Georg Klein and David Murray
Active Vision Laboratory
University of Oxford
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http://www.irisa.fr/lagadic
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