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A first application: augmented reality 

Definition : [Azuma 97] 
•  Add virtual object in the video stream 
•  In real-time 

Theoretical problem to be solved 
•  Find the camera position 

Extensions 
•  post-production 



Applications 

Diffusion d'événements sportifs 

Effets spéciaux 

Étude d'impact 

Tourisme interactif 

Applications militaires 

Design intérieur 

Aide à la maintenance, assemblage 

Médecine 

Jeux 



Sport 



Sports 



FX 



FX 



Impact study / architecture / archeology 



Cultural heritage 



Military applications 



Military applications 



Design intérieur 



Industrial application, assembly 





AR in medecine 



Game 



Game from outer space! 



Augmented book  



No comments! 



Application to augmented reality 

Augmented reality  
•  Coherent insertion of virtual objects within real images stream 
 

Augmented reality is handled as a 2D-3D registration issue 
•  Post production 

–  Full knowledge of the video sequence 
–  Localization of the camera and structure of the scene 
–  Bundle adjustment techniques (Realviz, 2D3) 

•  On-line augmented reality 
–  Real-time requirements 
–  No knowledge on the future  
–  [Navab][Lepetit-Fua][Berger][Kutulakos],! 



So! 

Augmented reality is! viewpoint computation 

Goal :  
•  Tracking the camera 

–   in a sequential way (video streams, real time) 
–   for getting stable and accurate augmentation results 



Model-based tracking 

Pro 
•  fast and sequential (real-time) 
•  no drift 

Cons 
•  the scene has to be partially known (markers, natural features)  

–  tedious task of reconstructing or measuring scene features  
•   difficult to define a lot of features  

–   jittering effect   

 

Loria 



Motion computation 

Pro 
•  do not require any model of the scene 
•  easy to track a lot of features + bundle adjustment  

–   very accurate registration, negligible jitter 

Cons 
•  slow and not sequential 
•  The world and the virtual coordinate system must be aligned manually 

Loria 



Tracking by matching 

Establish the correspondance between  
primitives extracted from 2 images 
 

Pro 
•  No tracking and then no real (re)initialization 

Cons 
•  Viewpoint change (3D change) 
•  Image transformation (translation, rotation, 
     scale change) 
•  Illumination change, Occlusion 
•  Low frame rate ? 



What is not in the scope of this talk 

Visualization devices 
•  HMD 
•  Video see through, optical see through 

Augmented reality for post production 

  

AR toolkit  

Rendering 
•  Image synthesis 
•  Lighting considerations  



First,! camera model 



Ancient egypt, Bayeux tapestry (11e), Lorenzetti, les effets du bon gouvernement, 1340 

Perspective discovery 



 

 

 

 

 

 

 

« Jesus Before the Caïf », by Giotto (1305). The ceiling rafters show the Giotto’s 
introduction of convergent perspective.  

 Detailed analysis, however, reveals that the ceiling has an inconsistent 
vanishing point and that the Caïf’s dais is in parallel perspective, with no 
vanishing point. 



Van Eyck, 1435 (flandre) 

Perspective discovery 

 

 

 

 

 

 

 

 

 



Brunelleschi:  Santa Maria della Fiore, 1435 

 

 

 

 

 

 

 

 

 
Brunelleschi, début 15ème 

 



Alberti, della pittura 1435  

As Brunelleschi made no written record of his perspective findings, it 
remained for Alberti to be the first to put the theory into writing, in his 
treatise on painting, Della pittura (1435). There, Alberti gave 
practical information for painters and advice on how to paint istoria 
or history paintings. 



« Herod’s Feast » by Masolino (1435), where many receding 
horizontal lines project to a single central vanishing point 



Three examples of paintings in one-point perspective with laterally 
shifted vanishing points. 

•  Left panel. « The Annunciation » by Fra Angelico (1436-1443) 
•  Central panel: « Presentation of the Virgin » by Fra Carnevale (1467) 
•  right panel: « The Vision of St. Catherine » by Titian (1503?) 



Dürer perspective device  

Albrecht Dürer: Artist Drawing a Nude with Perspective Device 1525 



Dürer perspective device  



Dürer perspective device  



Dürer perspective device  



Camera obscura 

Camera obscura (Cam"e*ra ob*scu"ra) [LL. camera chamber + L.  
obscurus, obscura, dark.] (Opt.) 

 
•  An apparatus in which the images of external objects, formed by a 

convex lens or a concave mirror, are thrown on a paper or other white 
surface placed in the focus of the lens or mirror within a darkened 
chamber, or box, so that the outlines may be traced. 

 
•  (Photog.) An apparatus in which the image of an external object or 

objects is, by means of lenses, thrown upon a sensitized plate or surface 
placed at the back of an extensible darkened box or chamber variously 
modified; - commonly called simply the camera. 

 Websters Dictionary, 1913 



Camera Obscura 

 De radio Astronomica et Geometrica, Gemma Frisius 1544 



Camera obscura 

Camera Obscura, Athanasius Kircher, 1646  
•  In Gernsheim, H., The Origins of Photography 



Camera obscura 

•  Invented in the sixteenth century, the camera obscura is made out of an 
arrangement of lenses and mirrors in a box that is darkened, The 
machine permits accuracy in a drawing, often of topographical detail. 
When looking through the lens of a camera obscura, the view presented 
is actually reflected through the mirrors onto the paper or cloth and 
allows the artist to draw by tracing the outline. 





Perspective projection 



Perspective projection: back to basic 

Thales Theorem (625-546 Av JC) 



Perspective projection 

Definitions 
•  The origin of the camera frame Rc is the center of projection C 
•  x axes is parallel to image lines and y axes is parallel to image columns 

•  Intersection of z axes with image plane is the principal point u0, v0 
•  focal distance  f = d(C,!) 

(u0,v0) C 

C f Z 

X 
x 



Perspective projection 

In Rc, the perspective projection of a point  M(X,Y,Z) on the image 
point m(x,y) with: 

 

All the points on the CM straight line given by: 

  

 

are projected on the same point m. It is impossible to determine the 
position of M without a priori knowledge with one camera. 

 



f=12mm                       f=4.8mm 

Radial distortion 

Let K be the radial distortion coefficient. Then, position of point  m 
that is observed int the image is given by: 



Other potential distortions 



Sampling 

Let us define md by it position mp (u,v) in the digitized image d
(expressed in pixel): 

 

 

where lx and ly are the pixel size and u0, v0 are the translation of the 
center of the coordinate system (principal point coordinates) 



Complete camera model 

The model is given by 

 

 

 

where 

 

 

The unknown parameters !, called intrinsic parameters are: 



Camera model 

 

 

When camera distortion can be neglected, the camera model is 
simply given by: 



Camera model 

After calibration, we can get normalized coordinated from digitized 
ones using: 

 

 

projection equations are then given by 

 

 

If Kd cannot be neglected, we can undistort the image 



Undistortion 



Perspective model: linear notation  



Second,! Model-based tracking 



Camera alignment for augmented reality  
Graphic open GL  

Real camera 

Virtual object 

Real scene 

Align graphics camera 
to real camera 



3D localization, pose estimation 

Goal 
•  Determine 3D camera camera location wrt. an object using only one 

image of this object 

Then 
•  With no a priori knowledge, localization in impossible 
•  Position of specific features have to be known in an object related frame 

Approach: similar to calibration 
•  Simplification of the Toscanis-Faugeras method 
•  Dementhon-Davis method 
•  Non-linear minimization 



Middle school geometry 

Théorème de Thalès 

 

f Z 

X 
x 



Generalization  

We know (x,y) and the object model oP 

We seek the pose cMo 

Solution is quite simple : change frame first  

 

 

 

Then project 
 

f Z 

X 
x 



“Linear” approach 

Let’s note the pose cMo 

 

 

 

 

The perspective projection equation gives: 

 

 

Which with simple developments leads to:  



“Linear” solution 

We obtain an homogeneous system with 12 unknowns parameters: 

 

 

 

Where 
•  A depends on the data extracted from the image 
•  I is function of the parameters to be estimated 

Each point of the object gives 2 equations 



Solution of the linear system 

System to be solved AI = 0 
•  Where I is a non null vector of size 2n 

 

Solution 1 
•  Compute I a vector of the null space of A (SVD) 

Solution 2 
•  Considering that rij is a rotation matrix 
•  Solved the system under the constraint that                          is a unitary 

vector  



Constrained minimization 

 

 

With 

 



Constrained minimization 

A direct solution is impossible I = 0 

We consider a minimization with Lagrangian  

System can be rewritten as  

 

We minimize the following criterion  : 

 

where 
•  X1 is a line of cRo 
•  X2 is a function of the pose  
•  A and B are function of the N measures (xi,yi and  oXi, oYi, oZi) 

 



Constrained minimization 

Let the partial derivatives of C be null : 

 

 

We obtained: 

 

 
With 

•  We have C = " if X1 is a unit eigen vector of E  corresponding to the 
eigen value ". 

•  X1 is the eigen vector corresponding to the smallest eigen value of E.  

 

 



Dementhon-Davis method 

Pose computation in 25 lines of code 

And! that is true! 



 
Dementhon-Davis 

Considering the projection equations, for each point (xi,yi) 



Dementhon-Davis 

We obtain 

 

 

 

 

That is two linear systems with N equations and 4 unknowns 
•  If #i in known 

4 non coplanar points are necessary to solve such system 

Just one more thing! 
•  #i in unknown 



Dementhon-Davis 

Linear iterative method 

1. Initialization 

2. Solve the linear systems 
•  A+ has to be computed only once 

3. Equation (2) and (3)  

4. 

5. 

 
 

•     



Dementhon-Davis  



Pose estimation: non-linear minimization 

Goal 
•  Estimate the pose cMo of an object with respect to the camera frame 

Example for point features 
•  Minimizing the error between the observation p*    
     and the projection of the model in the image 

 where oP are the coordinates of the same points in the object frame 



Pose: non linear minimization 

We have to estimate the pose that minimize 

 

 

                                         is the distance between the observation 
and the projection of the object model 

 

Rotation cRo is parameterized using the "u vector where " is the 
rotation angle along the u vector 

This leads to 6 independent vector to estimate 

Minimization using a Gauss-Newton method 

 



Linearization of the non-linear system 

Problem: no general method to solve f(r)=0 

There exists iterative method that linearize the problem in order to 
find an adequate solution 

Soit le développement de Taylor au premier ordre de fi au voisinage 
de  r: 

 

 

where                                           is the gradient of fi in r and where 

second order terms are neglected. 



Linearization of the non-linear system 

With the Gauss-Newton method, we do no want to determine the 
value of  #r that ensures f(r)=0 but the value that minimizes the cost 
function: 

 

 

 

This is a linear minimization problem (solved by a least-square 
approach) and we have: 



Computing the Jacobian 

We have to compute the Jacobian that links the variation of the 
measurements x = (x,y) to the variation of the pose. 

That is : 

 

or 

 



Jacobian: case of the point 

Some definitions 
•  Let (O,x,y,z) be the camera frame 
•  Let x(X,Y,Z) be the 3D position the point   
•  Let the camera velocity be  

The relation that link the point velocity     to the camera velocity is 
given by:  



Jacobian: case of the point 

 

Is equivalent to  

 

 

On the other hand, the perspective equation gives 

Which can be derived 

 

 



Jacobian: case of the point 

Considering                  obtained in (1) 

 

 

 

 

or 

(Ẋ, Ẏ , Ż)





ẋ = Ẋ
Z −

X
Z2 Ż = −Vx−ΩyZ+ΩzY

Z − X
Z2 (−Vz − ΩxY + ΩyX)

ẏ = Ẏ
Z −

Y
Z2 Ż = −Vy−ΩzX+ΩxZ

Z − Y
Z2 (−Vz − ΩxY + ΩyX)






ẋ = − 1
Z Vx + X

Z2 Vz +XY
Z2 Ωx −(1 + X2

Z2 )Ωy +Y
Z Ωz

ẏ = − 1
Z Vy + Y

Z2 Vz +(1 + Y 2

Z2 )Ωx −XY
Z2 Ωy −X

Z Ωz



Jacobian: case of the point 

We finally have 

 

 

 

 

or  






ẋ = − 1
Z Vx + x

Z Vz +xyΩx −(1 + x2)Ωy +yΩz

ẏ = − 1
Z Vy + y

Z Vz +(1 + y2)Ωx −xyΩy −xΩz



Pose: an obvious link with visual servoing 

Visual servoing 
•  Move a camera in order to observe an object at a given position in the 

image. 

 

 



Pose: an obvious link with visual servoing 

Visual servoing 
•  Move a camera in order to observe an object at a given position in the 

image. 

 

Pose calculation via non-linear methods is similar to visual servoing 

Virtual Visual Servoing       [Sundareswaran 98] 

•  Virtually moves a camera so that the projection of a model of the object 
corresponds to the observed image 

•  The end position of the virtual camera is the expected pose 



Virtual visual servoing 

We want to minimize the following error 

 
where 

•  s* is the position of the features in the image 
•  s(r) is the current position of the projected features for a pose r 

The displacement of the projected features due to a variation of the 
pose is given by 

 

If we specify an exponential decrease of the error 

The control law that ensure the minimization is  

 

 



Virtual visual servoing: robustness to outliers 

The residue is given by: 

•  where $ is a robust function (M-estimation) 

The control law, similar to an IRLS, which minimizes s-s* is given by 

where 

 

Tukey’s M-estimator 



Visual features 

Can use any kind of visual feature 
•  Constraint: compute Ls 

Mix various visual features within the same process 

 

 

 •  Constraint : Ls must be full rank 

 



Visual features 

Distance to a moving line 
•    p  : point extracted in the image using the ECM algorithm 
•    l(r) : projection of the object model for pose r 

 



Low-level image processing: ME 

Local tracking of edge points 
•  ME algorithm [Bouthemy PAMI 89] 
•  1D search algorithm 
•  Convolution with oriented mask 
•  Comparison with the convolution at  
     time t-1, same orientation, same contrast 

 

Frame rate performance 

 

Not always efficient in textured area 

 



3D model-based tracking 

 

 

 

 

 

 

 

 



3D model-based tracking: augmented reality 

Application to augmented reality 

 

 

 

 

 

 

 

 



3D model-based tracking: augmented reality 

Application to augmented reality 

 

 

 

 

 

 

 

 



Aircraft localization and landing 
•  FP6 Aerospace Pegase project (with Dassault aviation) 
•  3D model : a large set of vectorial data (roads, rivers, coasts) managed 

hierarchically 

 

 
 
 
 
 
 
 
 



Air refuelling, carrier landing 





Satellite tracking (with EADS Atrium) 



3D model-based tracker 
Application to micro manipulation  

Application to MEMS micro manipulation (collaboration with FEMTO-ST, Besançon) 
 Assembly of complex MEMS compounds 

 
 
 

 
 
 
 
 

Size 400 !m x 400!m 



MEMS Tracking 



3D model-based tracking for UAV position 
control 

Quadrirotor localization and position-based control  

3D tracking, position an velocity estimation required for the control 
scheme  



Humanoïd robotics 

AIST/JRL/LAAS/IRISA 



Overview: model-based tracking 

Visual tracking 
•  Various tracking algorithms 
•  Contour-based tracking 

–  Monocular 3D model-based tracking 
–  Multi-cameras 3D model-based tracking 
–  Tracking in central catadioptric cameras 

•  Hybrid tracking 
–  Introducing a spatio-temporal constraints 
–  Optic flow 

Illustration with applications in  
•  Augmented reality 
•  Visual servoing 



Extension to multiple cameras 

New objective function 

 

 

 

But if calibration of the stereo system is known 
this is equivalent to  



Extension to multiple cameras 

The velocity of virtual camera 1 is linked to the velocity of  
virtual camera 2 by: 
 
 
 
Which leads to the following interaction matrix: 
 
 
 
And the corresponding control law 



Tracking the APFR 

 

 

 

Articulated portable foot restraint 

APFR CAD model 

 

 

Image courtesy ESA 



Visual servoing with stereo tracking 

 

 

 

 

 

 

 

Small baseline 



Visual servoing with stereo tracking 

 

 

 

 

 

 

 

 

Wide baseline 



Walking across the ISS, grasping the handrail 

•  Edge not really! sharp 
•  Cast shadows 

•  Tracking at 20Hz 

 

Image courtesy ESA 



Servo a handrail under nominal conditions 



Servo a handrail with lighting variations 

External view of the experiment 
Camera view 

•  Occlusions 
•  Lighting variations 

 



Servo a handrail with lighting variations 



Overview: model-based tracking 

Visual tracking 
•  Various tracking algorithms 
•  Contour-based tracking 

–  Monocular 3D model-based tracking 
–  Multi-cameras 3D model-based tracking 
–  Tracking in central catadioptric cameras 

•  Hybrid tracking 
–  Introducing a spatio-temporal constraints 
–  Optic flow 

Illustration with applications in  
•  Augmented reality 
•  Visual servoing 



Tracking in central catadioptric cameras 

Same approach 

 

 

 but with 
•  New projection model 

–  A straight line projects as a conic 
•  New interaction matrix 

–  Related to the distance of a point to the projection of a line 



Tracking in central catadioptric cameras 

Projection model  
•  Projection on a sphere, then on the 
•      image plane 

New interaction matrix 
•  Various parameterizations of the line 

–  Plucker coordinates  
    [Andreff 01,  Adj Abdelkader et al 04]] 
–  Intersection of two planes  
    [Marchand et al 06] 



Tracking in central catadioptric cameras 

 

 

 

 

 

 

 

 

Tracking a box at video rate 



Tracking plinths for mobile robotics 

 

 

 

 

 

 

 

 

 

Original images thanks to Lasmea 

 



Stereo omni  



Second : displacement estimation 



Motion estimation 

tr(p2) is the coordinates of a point transferred in a reference image 
according to the camera displacement 

 

 
Allows to estimate the camera displacement 

Advantages 
•  Implicit spatio-temporal constraints 
•  Less jitter 

Issue 
•  Prone to drift if reference image is modified 

 

 

 

 

 

 



Case of planar scenes 

Planarity constraint 
•  if the surfaces of the objects are planar, there exists an analytic 

transformation from the left image coordinates to the right image 
coordinates.  

 



Case of planar scenes 

Let us assume that points belong to a plane 

 

 

 

or 

 

leading to  

with 

P(n, d)

M1 ∈ P(n, d)⇔ nTM1 = d
M2 = RM1 + T

�
⇒M2 = RM1 + T

nT

d
M1

λmp2 = Hmp1

Z1mp1 = K1M1 et Z2K2mp2 = K2M2

H = K2RK
−1
1 + K2t

n
�

d
K
−1
1 et λ =

Z2

Z1



Motion estimation 

Point transfert 
•  For planar object the transfert is function of the camera displacement 

2M1 and of the homography  2H1 

    with 

•  If 1M0 is known, estimating the displacement is equivalent to a pose 
estimation 

Solutions 
•  Estimation of H [Simon, Berger IEEE CGA 02][Benhimane Malis IJRR 07] 
•  Estimation of R, t [Pressigout Marchand ICPR 04] 

Illumination  
•  May also considered more complex illumination model in %   

 



Multi-plane tracking 

Pose from planar structures 

Constraints in the homography  
estimation 
 
 
[Simon, Berger IEEE CGA 02] 



Virtual visual servoing 

Estimation of R and t [Pressigout Marchand ICPR’04] 



ESM: Efficient second order minimization 

Use all the pixel in the tracked patch 

 

 

 

 

Direct estimation of the homography 

[Benhimane Malis IJRR 07] 

 



Mathematical formulation 

                    brightness at           at time t 

Brighntess constancy assumption 

 

or 

 

 

Optical flow constraint equation (OFCE) 

 

 

 

 

 

 

 

 

 

 

I(x, y, t) = (x, y)

I(x +
dx

dt
δt, y +

dy

dt
δt, t + δt) = I(x, y, t)

I(x + δx, y + δy, t + δt) = I(x, y, t)

∇I�ẋ + It =
dI

dt



Patch matching: SSD 

How do we determine correspondences? 

Simplest case 
•  block matching or SSD (sum squared differences) 

Estimating the translational h motion between two images 

 
 
 
 
 
 

E(h) =
�

x

[I(x + h)− T (x)]2



SSD 



Original Lucas-Kanade algorithm 

Goal is to align a template T(x) to an input image I(x) 

x is a column vector containing image coordinates (x,y)T 

Could be also a small window in the image  

Set of allowable warps W(x,p), where p is a vector of parameter, for 
example, for translation we have 

 

 

W(x,p) can arbitrarily complex 

The best alignment minimizes image dissimilarity 



Original Lucas-Kanade algorithm 

 

is a non linear optimization. The warp W(x,p) may be linear but the 
pixel are, in general, non linear. 

Assuming that p is known and best increment %p is sought. The 
modified problem 

 

 

Is solved with respect to. When found update 

 



Original Lucas-Kanade algorithm 

 

 

Linearized by performing first order Taylor expansion 

 

 

                         is the image gradient computed at W(x,p),  

The term          is the Jacobian of the warp 





KLT summary 







UR1 tracking! 









MI based tracking 

Template 

• Proposed template-based tracker : 
–  Does not use directly the intensity 
–  Uses the “information” of the template 

• Properties: 
–  Robust 
–  Accurate 
–  Efficient 

Image 

Shared  

information 



Tracking approaches 

Template-based 
•  SSD [Lucas 1981] 
•  MI [Viola 1995] 
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Tracking approaches 

Template-based 
•  SSD [Lucas 1981] 
•  MI [Viola 1995] 
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Tracking approaches 

Template-based 
•  SSD [Lucas 1981] 
•  MI [Viola 1995] 
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How to measure the mutual information 

• Histogram          : 
–  Frequency of an intensity    in the image 

•  Joint histogram                 : 
–  Frequency of a couple of intensities          

in the couple of images  
   Provides the spatial information  



 

How to measure the mutual information 

• MI depends on the dispersion of the 
joint histogram                   : 

• Example: 
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Aligned Misaligned 

Focused histogram Dispersed histogram 



Reference image 

Current image 

Localization 









Application to mosaicing 



Dense localization 



Dense localization 



Dense localization 



SLAM 

Simultaneous Localization and Mapping 
•  On-line model construction  
•  3D localization 
•  Recursive estimation process (EKF) 

 [Servant 07] 
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