THE ORFEO TOOLBOX

The open-source swiss knife for remote sensing images processing

Rémi Cresson (IRSTEA/UMR TETIS)

OVERVIEW

WHAT IS ORFEO TOOLBOX?

- 90+ remote sensing applications
- Accessible from Bash, GUI, Python, QGIS, Monteverdi, WPS
- Open-source C++ library for image processing
- Built on shoulders of giants (ITK, GDAL, OpenCV, ...)
- Big Data capable, scalable
- Funded and developed by CNES (French Space Agency)
- Used at ESA, mission exploitation platforms, remote sensing labs, teaching...

Taking root in the Insight ToolKit library

Monteverdi : visualization and interaction with OTB applications

Suitable for large scale processing, land cover mapping at continental scale (lota2, CESBIO)

http://osr-cesbio.ups-tlse.fr/~oso/

Mosaics of hundreds of very high resolution scenes (GEOSUD) http://ids.equipex-geosud.fr/

THEIA Geospatial Data Infrastructure remote processing features http://ids.equipex-geosud.fr/

FEATURES

WHAT IS INSIDE THE BOX?

- C++ classes, functions
- User-oriented applications
- Mutli language versatile API (C++, python, ...)

PRE-PROCESSING

- Radiometric calibration
- Orthorectification
- Resampling
- Pan-sharpening
- Stereo rectification

Sensors supported: Sentinels, Pléiades, SPOT5/6/7, Digital Globe satellites Geometric models (thanks to OSSIM), support for DEM (SRTM or GeoTIFF)

IMAGES AND VECTOR MANIPULATION

- Conversion of raster and vector (GDAL formats)
- ROI/bands extraction, concatenation, splitting, ...
- Band math, color mapping, contrast enhancement, mosaicing, ...
- Linear filtering, Mathematical morphology, ...

FEATURE EXTRACTION

- Edge detection, scale-invariant feature transform, lines, corners
- Radiometric indices, textures (Haralick, SFS, PanTex)
- Local statistics (Flusser moments, Histogram of Oriented Gradient)
- Keypoints matching (SIFT, SURF...)

CHANGE DETECTION

- Classic methods with image metrics comparison
- Multivariate Alteration Detector

DIMENSIONALITY REDUCTION, HYPERSPECTRAL PROCESSING

- PCA, NAPCA, ICA, MAF, ...
- Dimension estimation, endmembers extraction, Vertex Component Analysis

SEGMENTATION

- Segmentation algorithms : Connected Components, MeanShift, Watershed, GRM, ...
- Methods to apply those algorithms on large dataset
- Vector or raster representation which allow Object Based Image Analysis

CLASSIFICATION

- 9 supervised methods available (including SVM and Random Forests)
- Fusion and regularization of classifications
- K-Means clustering or Kohonen maps
- Object classification (from a segmentation)

INTERACTION

INSTALLATION

Supported platforms:

- Windows
- Linux
- Mac OS

SUPPORT

Help and support:

- OTB website (CookBook, User Guide, Python Doc, ...) orfeotoolbox.org
- OTB Users group
- OTB Developers group
- OTB Gitlab
- Stackexchange (#otb, #otb-applications, ...)

INTERFACES

Туре	Value	Description
Integer	<int32></int32>	32bits signed integer. Example : maximum iterations number.
Real	<float></float>	Single pecision floating point. Example : distance in cartographic units.
String	<string></string>	String. Example : field name.
Strings list	<string list=""></string>	Multiple strings.
Input file	<string></string>	A file of any kind, as input to an algorithm. For example: a classification rule contained in a text file.
Input files list	<string list=""></string>	Multiple input files.
Output file	<string></string>	A file of any kind, at the output of an algorithm. For example: a text file containing statistics.
Folder	<string></string>	A folder accessible on the file system of the machine.
Choice	<int32>, <float> or <string></string></float></int32>	An entry among the elements of a list of values. For example: in the list {manual; Automatic}, a possible choice is "automatic"
Input image	<string></string>	An input image, in a format supported by GDAL
List of input images	<string list=""></string>	Multiple input images
Input vector data	<string></string>	An input vector data, in a format supported by GDAL
List of input vector data	<string list=""></string>	Multiple vector data
Output image [Pixel type]	<string> [<string>]</string></string>	This parameter includes a string for the path to the output file and a pixel type for setting the pixel encoding of the output image. We will return to this parameter in section 2.2 of this chapter.
Output vector data	<string></string>	An output vector data, in a format supported by GDAL / OGR.
Radius	<int32></int32>	The radius of a pixel neighborhood, in pixels per column and per line. For

Applications parameters types

COMMAND LINE INTERFACE

To get help (example with the **Convert** application:

- otbcli_Convert (quick help)
- otbcli_Convert -help (long help)
- otbcli_Convert -help -param (parameter "param" long description)

This is the Convert applicat	tion, version 5.	11.0				
Convert an image to a different format, eventually rescaling the data and/or changing the pixel type.			Name	Туре	Va	
Complete documentation: http toolbox.org/Applications/Com	p://www.orfeo- nvert.html			progress	boolean ³	<boolean< th=""></boolean<>
Parameters: -progress	<boolean></boolean>	Report progress		in	Input image	<string<sup>4></string<sup>
MISSING -in -type	<string> <string></string></string>	Input image (mandatory) Rescale type [none/linear/log2]		type	Choice	<string></string>
(mandatory, default value in -type.linear.gamma (optional, on by default, d	s none) <float> efault value is</float>	Gamma correction factor 1)		type.linear.gamma	Floating point number	<float></float>
-mask default)	<string></string>	Input mask (optional, off by		mask	Input image	<string></string>
-ncp.nign off by default, default valu -hcp.low	<float> ue is 2) <float></float></float>	High Cut Quantile (optional, Low Cut Quantile (optional, off	>	hcp.high	Floating point number	<float></float>
MISSING -out [pixel=uint8/uint16/int16/u	s 2) <string> [pixel] int32/int32/floa</string>	Output Image rt/double] (default value is		hcp.low	Floating point number	<float></float>
+loat) (mandatory) -ram off by default. default val	<int32> ue is 128)</int32>	Available RAM (Mb) (optional,		out	Output image	<string>[</string>
-inxml file (optional, off by def	<string> ault)</string>	Load otb application from xml		ram	Integer	<int32></int32>
Examples:				xml	InputProcessXML	<string></string>

otbcli_Convert -in QB_Toulouse_Ortho_XS.tif -out
otbConvertWithScalingOutput.png uint8 -type linear

The Convert	application	parameters

Value

<boolean> <string⁴>

<string>[<string>] Yes

Mandatory Default value

« none »

1

2

2

pixel=float

128

Yes

GRAPHICAL USER INTERFACE

Image Conversion - 5.2.1	2
Parameters Logs Progress Documentation	
🗹 Input image	
- Rescale type	
None	-
Input mask	
Histogram Cutting Parameters	
High Cut Quantile 2.00000	Reset
Low Cut Quantile 2.00000	Reset
M Output Image Ifioat	<u> </u>
Load otb application from xml file	
- 🗖 Save otb application to xml file	
Select parameters	
No process Execute	Quit

The OTB GUI of the Convert application

PYTHON BINDINGS

- Parametrize and run any OTB application
- Set/Get Input/Output images as Numpy arrays
- Chain in-memory multiple OTB applications together

Name	Designation
uint8	8 bits unsigned integer. Values range : [0 ; 255]
int16	16 bits signed integer. Values range : [-32 768 ; 32 7678]
uint16	16 bits unsigned integer. Values range : [0 ; 65 535]
int32	32 bits signed integer. Values range : [-2 147 483 648; 2 147 483 647]
uint32	32 bits unsigned integer. Values range : [0 ; 4 294 967 295]
float	Single precision floating point (32 bits)
double	Double precision floating point (64 bits)

The encoding option of output images parameter

EXTENDED FILENAMES

- .../out.tif?&box=startx:starty:sizex:sizey
- .../out.tif?&gdal:co:COMPRESS=DEFLATE

INTERNAL MECHANISMS

The streaming mechanism

Multithreading : process the data with multiple CPUs

Suitable for High Performance Computing architectures like clusters

REMOTE MODULES

WHAT IS REMOTE MODULE?

- Pieces of OTB code (filters, applications ...)
- That can be hosted on any git repository
- With a different licence
- While still being tested and packaged with OTB

Wanna create your own? gitlab.orfeotoolbox.org/remote_modules/remote-module-template

OFFICIAL REMOTE MODULES

- Feature selection (IRD, INP Bordeaux)
- Generic kernel SVM (CNES)
- Generic Region Merging (GRM): segmentation (CESBIO)
- Mosaic : image mosaicing (IRSTEA)
- Large-scale feature selection with Gaussian mixture models (ENSAT, DYNAFOR)
- Object oriented image analysis (SERTIT)
- otb-bv : Estimation of bio-physical variables with OTB (CESBIO)
- Phenotb (CESBIO)
- Temporal gap-filling (CESBIO)

NEW REMOTES MODULES

- LSOBIA: large scale segmentation (CESBIO, CNES, IRSTEA, THALES)
- **DiapOTB**: interferometry with SAR (CNES, THALES)
- **S1** Tiling: preprocess S1 images (CESBIO)
- Soil moisture: retrieve soil moisture from S1 and S2 images (IRSTEA)
- **OTBTF**: deep learning (IRSTEA)

- Multithreaded (shared memory context)
- Suited to HPC cluster (distributed memory context)

35k x 25k x 4 PHR 1A XS: 16 minutes (32 nodes of HAL), 3221k polygons

DIAPOTB

General SAR Applications

- Doppler0 estimation
- MultiLook
- Simulation of SAR image from Digital Elevation Model
- Projection of Digital Elevation Model into SAR geometry

Specific Interferometry Applications

- Deformation grids creation
- CoRegistration
- Interferogram

DIAPOTB

Amplitude, Phase, Coherence (Gaelle Usseglio, Thales services, 2018)

DIAPOTB

Displacement near piton de la fournaise between input images taken on 2016/08/18 and 2016/09/29 with S1-A and S1-B respectivily. (Gaelle Usseglio, Thales services, 2018)

From a given region of interest:

- Download S1 images
- Process S1 images
- Temporal filtering of S1 images

Step 1: download images (Thierry Koleck, CESBIO, 2018)

Step 2: process images (Thierry Koleck, CESBIO, 2018)

Step 3: temporal filtering (Thierry Koleck, CESBIO, 2018)

Image before/ after filtering (Thierry Koleck, CESBIO, 2018)

SOIL MOISTURE

- Based on backscattering model inversion
- Use both SAR and optical data
- Retrieve soil moisture from a (S1, S2) couple of images

SOIL MOISTURE

(Mohammad El-Hajj, IRSTEA, 2018)

SOIL MOISTURE

From S2 and S1 data (left and center), soil moisture is retrieved (right)

(Mohammad El-Hajj, IRSTEA, 2018)

- Based on TensorFlow
- Scalable (no limitation on images size)
- Generic (any type of deep net)
- Easy use of hybrid classifiers
- No coding skills requiered

Patches sampling

Model training

Model inference

A few deep learning applications for EO (http://mdl4eo.irstea.fr)

NEWS

QGIS INTEGRATION

- Ease the integration of new versions of OTB in QGIS
- Support of OTB binary installers in QGIS (out of the box')
- All OTB applications available in QGIS (same name, same documentation...)
- Beta version available as a plugin, hope the plugin will be soon added to QGIS source code!

https://gitlab.orfeo-toolbox.org/orfeotoolbox/qgis-otb-plugin

UPCOMING EVENTS

https://2019.foss4g.org/

IDS Geosud (ouverture prochaine)

Thank you

More on

https://www.orfeo-toolbox.org/ Forum for help: https://forum.orfeo-toolbox.org/