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- Combine Single-Sensor Data

- Combine Multi-Source Time Series Data


Perspectives 
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Nowadays,	many	earth	observation	
satellite	missions	exist:	
	 -	Sentinel	[Senti]	
	 -	LandSat-8	[LandSat]	
	 -	SPOT	6/7[Spot]	
	 -	…

Acquired	images	have	different:	
	-	spatial	resolution	(0.5	–	30	meters)		
	-	radiometric	content	(spectral	bands)	
	-	temporal	resolution	(every	5	–	365	days)

HUGE	quantity	of	Satellite	Images		
Describing	Earth	Phenomena	at	

different	scales

Introduction
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Why EOD is an Opportunity

Climate	Changes		
Analysis

Earth	Observation	Data	can	have	practical	influence	on	different	domains:

Precise	Agriculture

Continental	Surface	
analysis

Biodiversity	Monitoring
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Analyze,	Mining	and	Exploit	EOD	data	can	also	
improve	practices	on:	
	 	
• Forestry	characterization	
• Lithological	classification	and	mineral	

mapping	
• Food	Risk	prevention	
• Environmental	monitoring	
• Urban	development	
• Wildlife	and	Habitat	Monitoring

This	is	why	Satellite	imagery	analytics		
is	becoming	more	IMPORTANT

Why EOD is an Opportunity



Introduction to RS

A	Satellite	Image:	
A	data	cube	that	describes	a	spatial	area	by	means	of	several	spectral	bands

Spectral	Bands
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Introduction to RS

A	Satellite	Image:	
A	data	cube	that	describes	a	spatial	area	by	means	of	several	spectral	bands

Spectral	Bands

Type	of	information:	
- Optical	Images	(Multi-Spectral	/	Hyperspectral)	
- Radar	Images	(phase,	amplitude,	etc…)	
- LIDAR	(	point	clouds)	
- Etc…
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Introduction to RS
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EOD	allows	also	to	collect	Very	High	Resolution	
Images	(VHR)	i.e.	Spot6/7	(at	1.5m),	Pléiades	(.
5m),	WorldView3	(.3m)	at	Low	Temporal	
Frequency	(once	or	twice	per	year)

VHSR	data	are	useful	to	obtain	fine	
resolution	information	to	characterise	
spatial	pattern	and	spatial	texture



Introduction to RS

EOD	allows	to	collect	Satellite	Image	Time	
Series	(SITS)	at	High	Spatial	Resolution	
(Sentinel	~10m)	and	High	Temporal	
Frequency	(every	5/10	days)

The	same	geographical	area	is	observed	over	

SITS	data	are	useful	to	analyze	
spatio-temporal	phenomena	(trends	

and	changes)	over	the	time
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Sentinel Missions
Sentinel Missions belong to the Copernicus Programme


Copernicus Programme is provided by the ESA (European Space Agency)


Provide Remote Sensing data at High Spatial/Temporal Resolution of the Earth

Different kind of sensors for different uses:

Sentinel 1:  two satellites, operating day and night 
performing C-band synthetic aperture radar imaging.


Sentinel 2: two satellites placed in the same sun-
synchronous orbit supplying optical information.


Sentinel 3: measure sea surface topography, sea and 
land surface temperature, and ocean and land surface 
colour.


Sentinel 4 & Sentinel 5: air quality & aerosols.




!9

Sentinel 1

Two satellites (Sentinel 1A and Sentinel 1B) operating day 
and night performing C-band synthetic aperture radar 
imaging


Especially useful to monitor soil and structural properties 
(i.e. rugosity and humidity)


An image every 5/6 days more or less with information 
about two polarization (VV and VH).


A spatial resolution of 10m or 20m


Images can be arranged to create (radar) Satellite Image 
Time Series

Convolutional Gated 
Recurrent Unit + 

Attention

CNN

ConvGru Auxiliary 
Classifier

CNN Auxiliary 
Classifier

R2

R1

Convolutional Gated 
Recurrent Unit + 

Attention

CNN

ConvGru Auxiliary 
Classifier

CNN Auxiliary 
Classifier

O2

O1

R1

R2

O1

O2

Sentinel-1 Time Series

Sentinel-2 Time Series

Fully C
onnected Layers

Sentinel-1 Stream

Sentinel-2 Stream
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Sentinel 2

Two satellites (Sentinel 2A and Sentinel 2B) placed in the 
same sun-synchronous orbit supplying optical information


Especially useful to observe surface reflectance with 13 
bands:

- 4 bands at 10m of spatial resolution (Red, Green, Blue, 

NIR)

- 6 bands at 20m of spatial resolution (Vegetation Red 

Edge, Narrow Nir, SWIR)

- 3 bands at 60m of spatial resolution (dedicated to 

atmospheric correction mainly)


An image every 5 days more or less (from mid-2018) and 
an image every 10 days more or less (from December 
2015).

Images can be arranged to create (optical) Satellite 
Image Time Series

Convolutional Gated 
Recurrent Unit + 

Attention

CNN

ConvGru Auxiliary 
Classifier

CNN Auxiliary 
Classifier

R2

R1

Convolutional Gated 
Recurrent Unit + 

Attention

CNN

ConvGru Auxiliary 
Classifier

CNN Auxiliary 
Classifier

O2

O1

R1

R2

O1

O2

Sentinel-1 Time Series

Sentinel-2 Time Series

Fully C
onnected Layers

Sentinel-1 Stream

Sentinel-2 Stream
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To Sum-Up on Sentinel

Optical and Radar images available, more or less, every 5/10 days 

Complementary source of information freely available inside and outside Europe


Some limitations:

- Cloud phenomena can affect optical images and reduce the temporal frequency

- Rain or heavy humidity phenomena can influence the radar signal


Huge amount of data available all around the world to monitor spatio-temporal 
phenomena at high spatial resolution

… but, spatial resolution of 10m is not adapted for every task
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Challenges in EOD
Satellite	imagery	analytic	is	challenging	
due	to	EOD	diversity	
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Challenges in EOD
Satellite	imagery	analytic	is	challenging	
due	to	EOD	diversity	

Heterogeneity:	
	 -	Spatial	(Different	resolutions)	
	 -	Temporal	(time	steps	not	always	constant)	
	 -	Acquisition	Sensor	(Optical	Images,	Radar		
Images,	DEM,	LiDAR,	etc..)	

-	Very	High	Spatial	vs	High	Temporal	Resolution	
(VHR	&	SITS)
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Challenges in EOD
Satellite	imagery	analytic	is	challenging	
due	to	EOD	diversity	

Heterogeneity:	
	 -	Spatial	(Different	resolutions)	
	 -	Temporal	(time	steps	not	always	constant)	
	 -	Acquisition	Sensor	(Optical	Images,	Radar		
Images,	DEM,	LiDAR,	etc..)	

-	Very	High	Spatial	vs	High	Temporal	Resolution	
(VHR	&	SITS)

…and	also	Data	Quality	(from	pre-processing	to	
information	extraction)	

…and	Ground	Truth	(or	annotation)	to	build	
predictive	models.
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Heterogeneity & Data Fusion
Due to the huge amount of different sensors, today available,

Data Fusion is a very important and hot topic in Remote Sensing Community

[Schmitt16] M. Schmitt and X. X. Zhu, "Data Fusion and Remote Sensing: An ever-growing relationship". IEEE Geoscience and Remote Sensing Magazine 4(4): 6--23, 2016
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Heterogeneity & Data Fusion
Due to the huge amount of different sensors, today available,

Data Fusion is a very important and hot topic in Remote Sensing Community

[Schmitt16] M. Schmitt and X. X. Zhu, "Data Fusion and Remote Sensing: An ever-growing relationship". IEEE Geoscience and Remote Sensing Magazine 4(4): 6--23, 2016

Data Fusion process (for Remote Sensing Data) [Schmitt16] :


- MATCHING AND COREGISTRATION (i.e. align together sources via coordinate 
transformations and unit adjustments)


- FUSION BY ESTIMATION (the step in which data are really fused together):

- Combine multiple images covering the same area to reduce uncertainty

- Combine together multiple images with complementary spatio/spectral 

information

- Combine images with shared information: i.e. combine multiple VHR images 

for 3-D reconstruction 
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Heterogeneity & Data Fusion

[Schmitt16] M. Schmitt and X. X. Zhu, "Data Fusion and Remote Sensing: An ever-growing relationship". IEEE Geoscience and Remote Sensing Magazine 4(4): 6--23, 2016

[Schmitt16]

Fusion can happen at different levels
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Current Trends in RS
Nowadays,	Machine	Learning	techniques	are	a	
standard	tool	in	Remote	Sensing	analytics	
[Holloway18]:	
	 -	Deal	with	huge	amount	of	data	
	 -	Automatically	build	predictive	methods	
	 -	Group	together	similar	areas	
	 -	Detect	Objects	of	Interest

[LeCun15] Y. LeCun, Y. Bengio and G. Hinton. “Deep Learning” In Nature 52(8): 436-444 (2015). 

[Holloway18] J. Holloway, K. Mengersen: Statistical Machine Learning Methods and Remote Sensing for Sustainable Development Goals: A Review. Remote Sensing 10(9): 1365 (2018)
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Current Trends in RS
Nowadays,	Machine	Learning	techniques	are	a	
standard	tool	in	Remote	Sensing	analytics	
[Holloway18]:	
	 -	Deal	with	huge	amount	of	data	
	 -	Automatically	build	predictive	methods	
	 -	Group	together	similar	areas	
	 -	Detect	Objects	of	Interest

Recent	Trends	‘Deep	Learning	
Methods’	[LeCun15]	:	
	 -	Inspired	by	human	brain	
	 -	Layers	architecture	
	 -	Applications	in	different	domains:	
	 	 +	Speech	Recognition	
	 	 +	Image	Recognition	
	 	 +	Natural	Language	Processing

[LeCun15] Y. LeCun, Y. Bengio and G. Hinton. “Deep Learning” In Nature 52(8): 436-444 (2015). 

[Holloway18] J. Holloway, K. Mengersen: Statistical Machine Learning Methods and Remote Sensing for Sustainable Development Goals: A Review. Remote Sensing 10(9): 1365 (2018)
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X f(X) Y

Class labels 
(Classification)

Real Number 
(Regression)

{
Machine Learning
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X f(X) Y

Class labels 
(Classification)

Real Number 
(Regression)

{
Object Recognition

{Dog, Cat, Sheep, Bear, Lion, …}

Semantic Segmentation

Sentiment Classification

Machine Learning
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Hand-Crafted  
Features

Simple Trainable  
Classifier 

(SVM, RF, NB, …)

Traditional Machine Learning systems leverage feature engineering to represent the data:

- Text Analysis: Bag of Words

- Image Analysis: Hog (Histogram of Oriented gradient), SIFT (Scale Invariant Feature 
Transform)

Deep Learning
Learning representation
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Hand-Crafted  
Features

Simple Trainable  
Classifier 

(SVM, RF, NB, …)

Traditional Machine Learning systems leverage feature engineering to represent the data:

- Text Analysis: Bag of Words

- Image Analysis: Hog (Histogram of Oriented gradient), SIFT (Scale Invariant Feature 
Transform)

Deep Learning approaches learn internal representations (new 
features) without necessity of hand-crafted features

Trainable Feature 
Extractor Trainable Classifier

Deep Learning Model

Deep Learning
Learning representation
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Deep Learning allows to: 

Learn different level of 
features from low-level 
to high-level in a kind of 
hierarchical organisation


Can share the low-level 
representation for many 
different tasks

Deep Learning
Learning representation
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Deep Learning allows to: 

Learn different level of 
features from low-level 
to high-level in a kind of 
hierarchical organisation


Can share the low-level 
representation for many 
different tasks

Deep Learning
Learning representation

Deep Learning, nowadays, is used in many domains:

Computer Vision (Object Detection and Segmentation, Image SuperResolution, Image Classification)

Natural Language Processing (NLP) and Speech
Robotics and AI 
Music and arts!
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Land Cover Mapping

Cultures maraichères

Canne à sucre

Vergers

Plantations forestières 

Prairies

Forêt

Savane arbustive

Savane herbacée

Roches nues

Zones urbanisées

Cultures sous serre

Surfaces en eau

Ombres dues aux reliefs

0 5 10 15 20 km

Satellite Image Time Series Analysis

Scene Classification

Hyperspectral Classification and Retrieval

Remote Sensing Data Fusion

Deep Learning & 
Earth Observation (EO) Data
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Three popular Deep Learning base blocks in Remote Sensing are:

- Convolutional Neural Network (CNNs)

- Recurrent Neural Networks (RNNs)

- Convolutional Recurrent Neural Networks (ConvRNNs)

Deep Learning & 
Earth Observation (EO) Data
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Three popular Deep Learning base blocks in Remote Sensing are:

- Convolutional Neural Network (CNNs)

- Recurrent Neural Networks (RNNs)

- Convolutional Recurrent Neural Networks (ConvRNNs)

Deep Learning & 
Earth Observation (EO) Data

CNNs

Well suited neural networks to model 
(mainly) spatial-autocorrelation via 
Convolution

RNNs

Well suited neural networks to 
model temporal correlation 
via recurrent operations
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Deep Learning & 
Earth Observation (EO) Data

CNNs

CNNs are a special type of neural network whose hidden units are only 
connected to local receptive field. 
The number of parameters needed by CNNs is much smaller than a Fully 
Connected counterpart.



!22

Deep Learning & 
Earth Observation (EO) Data

CNNs

CNNs are a special type of neural network whose hidden units are only 
connected to local receptive field. 
The number of parameters needed by CNNs is much smaller than a Fully 
Connected counterpart.

CNN has three main stages:

1) Convolution Stage
2) Non-linearity Stage
3) Pooling Stage

Commonly, a normalisation stage is added 
between 1) and 2)
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Deep Learning & 
Earth Observation (EO) Data

CNN can be employed to perform:

- Image Classification

- Semantic Segmentation

Image Classification

The input is an image and the output 
is a label for the whole image

Semantic Segmentation

The input is an image, the output is an 
image with a label for each input pixel

The common architecture for Semantic 
Segmentation is called AutoEncoder

In Remote Sensing, the image 
classification is also employed to 
perform patch-based classification
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Deep Learning & 
Earth Observation (EO) Data

RNNs

RNNs are a special type of neural network characterised by recurrent connections.
The output of the network at time t is exploited by the network itself at time t+1

Nowadays, two different RNNs model are mainly employed:
• LSTM (Long-Short Term Memory)
• GRU (Gated Recurrent Unit)
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Deep Learning & 
Earth Observation (EO) Data

RNNs

RNNs are a special type of neural network characterised by recurrent connections.
The output of the network at time t is exploited by the network itself at time t+1

Nowadays, two different RNNs model are mainly employed:
• LSTM (Long-Short Term Memory)
• GRU (Gated Recurrent Unit)

Such kind of network are heavily 
exploited in Natural Language 
Processing and Speech Recognition 
or other kind of 1-D signal
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Deep Learning & 
Earth Observation (EO) Data

RNN can be employed to perform:

- Signal Classification

- Time Series Analysis

Time Series Classification

The input is a multidimensional 
Time Series and the output is 
the classification label 

Per-Time classification

The input is a multidimensional 
Time Series and the output is a 
label per timestamps
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Deep Learning & 
Earth Observation (EO) Data

RNN can be employed to perform:

- Signal Classification

- Time Series Analysis

Time Series Classification

The input is a multidimensional 
Time Series and the output is 
the classification label 

Per-Time classification

The input is a multidimensional 
Time Series and the output is a 
label per timestamps

In Remote Sensing, RNN models are especially employed for Satellite 
Image Time Series or Hyperspectral  data
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ConvRNN

Deep Learning & 
Earth Observation (EO) Data

ConvRNNs are neural network models that combine Convolutional and Recurrent Neural 
Network together to manage spatio-temporal information characterised by spatial as well as 
temporal correlations.

The ConvRNN Unit is a recurrent unit that integrates convolutional filters.
The output of the network at time t is exploited by the network itself at time t+1

[Shi15] X. Shi, Z. Chen, H. Wang, D.-Y. Yeung, W.-K. Wong, W.-c. Woo: Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting. NIPS 2015: 802-810



!26

ConvRNN

Deep Learning & 
Earth Observation (EO) Data

ConvRNNs are neural network models that combine Convolutional and Recurrent Neural 
Network together to manage spatio-temporal information characterised by spatial as well as 
temporal correlations.

The ConvRNN Unit is a recurrent unit that integrates convolutional filters.
The output of the network at time t is exploited by the network itself at time t+1

[Shi15] X. Shi, Z. Chen, H. Wang, D.-Y. Yeung, W.-K. Wong, W.-c. Woo: Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting. NIPS 2015: 802-810

[Shi15]

ConvRNN can be derived considering both:
• LSTM (Long-Short Term Memory)
• GRU (Gated Recurrent Unit)

In which the inner kernel is replaced by convolutional filters
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ConvRNN

Deep Learning & 
Earth Observation (EO) Data

ConvRNN can be employed to perform:

- Semantic Segmentation for Time Series

- Spatio-Spectral Analysis

- Change Detection

Semantic Segmentation  
for Time Series

The input is a Time Series of 
images and the output is the 
classification label for each pixel

Spatio-Spectral Analysis

The input is an hyper spectral 
signal with spatial context and 
the output is a label
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ConvRNN

Deep Learning & 
Earth Observation (EO) Data
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Deep Learning & 
Earth Observation (EO) Data

!28

Sparsely vs Densely Annotated Data

In classical Computer Vision we have (mainly) two scenarios:

- A label associated to each image (image classification)

- A label associated to each pixel (semantic segmentation)
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Deep Learning & 
Earth Observation (EO) Data
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Sparsely vs Densely Annotated Data

In classical Computer Vision we have (mainly) two scenarios:

- A label associated to each image (image classification)

- A label associated to each pixel (semantic segmentation)

On the other hand, in Remote Sensing we have (mainly) two scenarios:

- A label associated to each pixel (semantic segmentation)

- A label associated to a (small) sets of segments/objects in a geographical area
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Deep Learning & 
Earth Observation (EO) Data
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Sparsely vs Densely Annotated Data

In classical Computer Vision we have (mainly) two scenarios:

- A label associated to each image (image classification)

- A label associated to each pixel (semantic segmentation)

On the other hand, in Remote Sensing we have (mainly) two scenarios:

- A label associated to each pixel (semantic segmentation)

- A label associated to a (small) sets of segments/objects in a geographical area

Densely  
Annotated

Sparsely  
Annotated

The white pixels are:

- A specific class -> Densely Annotated

- No knowledge about the class  -> Sparsely Annotated
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RNN

CNN

Feature Fusion Fusion Classifier

RNN Auxiliary 
Classifier

CNN Auxiliary 
Classifier

Sentinel-2 Time Series 
at High Spatial Resolution

25 x 25  patch extracted from 
Spot 6/7 VHSR image

T2T1 T3 Tn

Time Series + VHSR [Benedetti18]

d

d

d/r

d/r

P-CNN (Panchromatic)

MS-CNN (Multispectral)

P-Features

MS-Features

c

Pan + MS information from VHSR 
[Gaetano18]

(Very High Spatial Resolution) 
VHSR + DEM [Audebert17]

[Chen17] Y. Chen, C. Li, P. Ghamisi, X. Jia, Y. Gu: Deep Fusion of Remote Sensing Data for Accurate Classification. IEEE GRSL 14(8): 1253-1257 (2017) 
[Audebert17] N. Audebert, B. Le Saux, S. Lefèvre: Beyond RGB: Very High Resolution Urban Remote Sensing With Multimodal Deep Networks. ISPRS J. of Photogrammetry and Rem. Sens. 140, 20-32 (2018) 
[Benedetti18] P. Benedetti, D. Ienco, R. Gaetano, K. Ose, R. G. Pensa, S. Dupuy: M3Fusion: A Deep Learning Architecture for Multi-{Scale/Modal/Temporal} satellite data fusion. IEEE JSTARS (2018) 
[Gaetano18] R. Gaetano, D. Ienco, K. Ose, C. Cresson: MRFusion: A Deep Learning architecture to fuse PAN and MS imagery for land cover mapping CoRR abs/ (2018) 
[Ienco19] D. Ienco, R. Gaetano, R. Interdonato, K. Ose and D. Ho Tong Minh: Combining Sentinel-1 and Sentinel-2 time series via RNN for object-based Land Cover Classification. IGARSS (2019). 
[Cresson19] R. Cresson, D. Ienco, R. Gaetano, K. Ose and D. Ho Tong Minh: Optical images gap filling with deep convolutional autoencoder. IGARSS (2019).

Deep Learning & 
EO Data Fusion
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[Chen17] Y. Chen, C. Li, P. Ghamisi, X. Jia, Y. Gu: Deep Fusion of Remote Sensing Data for Accurate Classification. IEEE GRSL 14(8): 1253-1257 (2017) 
[Audebert17] N. Audebert, B. Le Saux, S. Lefèvre: Beyond RGB: Very High Resolution Urban Remote Sensing With Multimodal Deep Networks. ISPRS J. of Photogrammetry and Rem. Sens. 140, 20-32 (2018) 
[Benedetti18] P. Benedetti, D. Ienco, R. Gaetano, K. Ose, R. G. Pensa, S. Dupuy: M3Fusion: A Deep Learning Architecture for Multi-{Scale/Modal/Temporal} satellite data fusion. IEEE JSTARS (2018) 
[Gaetano18] R. Gaetano, D. Ienco, K. Ose, C. Cresson: MRFusion: A Deep Learning architecture to fuse PAN and MS imagery for land cover mapping CoRR abs/ (2018) 
[Ienco19] D. Ienco, R. Gaetano, R. Interdonato, K. Ose and D. Ho Tong Minh: Combining Sentinel-1 and Sentinel-2 time series via RNN for object-based Land Cover Classification. IGARSS (2019). 
[Cresson19] R. Cresson, D. Ienco, R. Gaetano, K. Ose and D. Ho Tong Minh: Optical images gap filling with deep convolutional autoencoder. IGARSS (2019).

Deep Learning & 
EO Data Fusion

Hyperspectral + DEM [Chen17]

+

GRU 
UNIT

RADAR Time Series

FC FC FC FC

FCFCFCFC

Attention Mechanism +

OPTICAL Time Series

FC

FC FC

FC FC

FC

FC

FC

Attention Mechanism

GRU 
UNIT

AUX 
Classifier

AUX 
Classifier

Combined 
Classifier

t0 t1 t2 tm t0 t1 t2 tn

Sentinel1	&	Sentinel2	Satellite	Image	
Time	Series	Classification	[Ienco19]

Sentinel1	&	Sentinel2	Satellite	Image	
Time	Series	Restoration	[Cresson19]
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DL & EO Data Fusion:
Applications Examples
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DL & EO Data Fusion:
Applications Examples

MRFusion: A DL approach to fuse 
PAN and MS for LC mapping

Single-Sensor Data Fusion on SPOT6: 
- Panchromatic Image (1.5m) 
- Multi-Spectral Image (6m)

d

d

d/r

d/r

P-CNN (Panchromatic)

MS-CNN (Multispectral)

P-Features

MS-Features

c
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DL & EO Data Fusion:
Applications Examples

MRFusion: A DL approach to fuse 
PAN and MS for LC mapping

Single-Sensor Data Fusion on SPOT6: 
- Panchromatic Image (1.5m) 
- Multi-Spectral Image (6m)

d

d

d/r

d/r

P-CNN (Panchromatic)

MS-CNN (Multispectral)

P-Features

MS-Features

c

TWINNS: fuse Radar/Optical Time 
Series for LC Mapping via DL

Multi-Sensor Multi-Temporal Data Fusion 
- Sentinel 1 Time Series Images (10m) 
- Sentinel 2 Time Series Images (10m)

Convolutional Gated 
Recurrent Unit + 

Attention

CNN

ConvGru Auxiliary 
Classifier

CNN Auxiliary 
Classifier

R2

R1

Convolutional Gated 
Recurrent Unit + 

Attention

CNN

ConvGru Auxiliary 
Classifier

CNN Auxiliary 
Classifier

O2

O1

R1

R2

O1

O2

Sentinel-1 Time Series

Sentinel-2 Time Series

Fully C
onnected Layers

Sentinel-1 Stream

Sentinel-2 Stream



MRFusion: A DL approach to fuse PAN and 
MS for LC mapping [Gaetano18]

[Gaetano18] R. Gaetano, D. Ienco, K. Ose, R. Cresson: "A Two-Branch CNN Architecture for Land Cover Classification of PAN and MS Imagery". Remote Sensing 10(11): 1746 (2018)
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Different Data fusion scenario [Schmitt16]: 
- Single-Sensor Data Fusion 
- Multiple-Sensor Data Fusion 
- Temporal Data Fusion 
- Machine Learning-Based Data Fusion 
- And so on….

[Schmitt16] M. Schmitt and X. X. Zhu, "Data Fusion and Remote Sensing: An ever-growing relationship". IEEE Geoscience and Remote Sensing Magazine 
4(4): 6--23, 2016

MRFusion: A DL approach to fuse 
PAN and MS for LC mapping
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PAN and MS for LC mapping

Single-Sensor Data Fusion on SPOT6: 
- Panchromatic Image (1.5m) 
- Multi-Spectral Image (6m)
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MRFusion: A DL approach to fuse 
PAN and MS for LC mapping

Single-Sensor Data Fusion on SPOT6: 
- Panchromatic Image (1.5m) 
- Multi-Spectral Image (6m)

To this end, we conceive a Deep Learning 
approach leveraging: 
- Convolutional Neural Network (PAN) 
- Convolutional Neural Network (MS) 

d
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d/r

d/r
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MRFusion: Single-Sensor Multi-Resolution data fusion architecture

MRFusion: A DL approach to fuse 
PAN and MS for LC mapping

d

d

d/r

d/r

P-CNN (Panchromatic)

MS-CNN (Multispectral)

P-Features

MS-Features

c
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MRFusion: Single-Sensor Multi-Resolution data fusion architecture

MRFusion: A DL approach to fuse 
PAN and MS for LC mapping

d

d

d/r

d/r

P-CNN (Panchromatic)

MS-CNN (Multispectral)

P-Features

MS-Features

c

d = patch size on the PAN image 
r = spatial ratio between PAN and MS (i.e. in SPOT6 is 4) 
c = number of channels in the MS image
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MRFusion: A DL approach to fuse 
PAN and MS for LC mapping

1@d x d 128 128 512256 256 512@1

Conv(128, 7x7)
MaxPooling(2x2, 
s=2)

MaxPooling(
2x2, s=2)Conv(256, 3x3)

Conv(512, 
3x3)

GlobalMax
Pooling

4@d/r x d/r 256 512 1024 1024@1

Conv(256, 3x3) Conv(1024, 
3x3)

GlobalMax
PoolingConv(512, 3x3)

PAN-CNN

CNNs for Spatial Information
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Relu 

Batch Norm.

MRFusion: A DL approach to fuse 
PAN and MS for LC mapping
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Relu 

Batch Norm.

MRFusion: A DL approach to fuse 
PAN and MS for LC mapping
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Ent-To-End Process from scratch 

One CNN Module dedicated for each source (PAN and MS) 

Multi-Scale and Multi-Source data fusion automatically managed by the architecture


This architecture avoids the use of Pansharpening or Interpolation preprocessing


The classification is performed at finer resolution (1.5m)

MRFusion: A DL approach to fuse 
PAN and MS for LC mapping
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Data Description

Class Label # Objects # Pixels

1 Crop Cultivations 168 50061
2 Sugar cane 167 50100
3 Orchards 167 50092
4 Forest plantations 67 20100
5 Meadow 167 50100
6 Forest 167 50100
7 Shrubby savannah 173 50263
8 Herbaceous savannah 78 23302
9 Bare rocks 107 31587
10 Urban areas 125 36046
11 Greenhouse crops 49 14387
12 Water Surfaces 96 2711
13 Shadows 38 11400

Reunion Island Dataset: 
- Spot6 image 
- 13 Land Cover Classes 
- PAN Image 44374 x 39422 
- MS Image 11094 x 9856
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Data Description

Class Label # Objects # Pixels

1 Crop Cultivations 168 50061
2 Sugar cane 167 50100
3 Orchards 167 50092
4 Forest plantations 67 20100
5 Meadow 167 50100
6 Forest 167 50100
7 Shrubby savannah 173 50263
8 Herbaceous savannah 78 23302
9 Bare rocks 107 31587
10 Urban areas 125 36046
11 Greenhouse crops 49 14387
12 Water Surfaces 96 2711
13 Shadows 38 11400

Reunion Island Dataset: 
- Spot6 image 
- 13 Land Cover Classes 
- PAN Image 44374 x 39422 
- MS Image 11094 x 9856

Class Label # Objects # Pixels

1 Cereal Crops 167 50100
2 Other Crops 167 50098
3 Tree Crops 167 50027
4 Meadows 167 49997
5 Vineyard 167 50100
6 Forest 172 50273
7 Urban areas 222 50275
8 Water Surfaces 167 50100

Gard Dataset: 
- Spot6 image 
- 8 Land Cover Classes 
- Pan image 24110 x 33740 
- MS image 6028 x 8435
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Data Description

Gard Site 
South of France 
East of Montpellier

Reunion Island Site 
Indian Ocean 
East of Madagascar
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Experimental Settings

Data splits: 
30% of objects used as Train data and 70% of objects used as TEST


Results are averaged over 10 random splits 30%/70%

Competitors:  
- Random Forest applied on the pixel or patch information

- CNN approach applied on Pansharpened image

- DMIL[Liu18] a deep learning method recently introduced to combine PAN and MS for land 

cover mapping

Evaluation Measures (On Test Data):  
Accuracy (Global Accuracy)

F-Measure (it helps to take into account unbalance class distribution)

Kappa Measure

Deep Learning approaches are fed by patches: 
- 32 x 32 patch size for the PAN information 
- 8 x 8 patch size for the MS information

[Liu18] X. Liu, L. Jiao, J. Zhao, J. Zhao, D. Zhang, R. Liu, S. Yang, X. Tang: Deep Multiple Instance Learning-Based Spatial-Spectral 
Classification for PAN and MS Imagery. IEEE Trans. Geoscience and Remote Sensing 56(1): 461-473 (2018)
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Comparison Results

Accuracy F-Measure Kappa

RF(PIXEL) 24.87 ± 0.2 23.66 ± 0.2 0.1719 ± 0.0024

RF (PATCH) 72.22 ± 1.31 71.53 ± 1.4 0.6943 ± 0.0144

CNNPS 74.49 ± 1.20 74.25 ± 1.24 0.7195 ± 0.0131

DMIL 69.40 ± 1.11 69.34 ± 1.12 0.6637 ± 0.0121

MRFusion 79.65 ± 0.87 79.56 ± 0.91 0.7764 ± 0.0096

Reunion Island Results

Accuracy F-Measure Kappa

RF(PIXEL) 25.91 ± 0.16 25.52 ± 0.11 0.1532 ± 0.18
RF(PATCH) 69.93 ± 0.76 69.55 ± 0.77 0.6564 ± 0.87
CNNPS 66.14 ± 0.78 65.80± 0.77 0.6131 ± 0.0089
DMIL 61.96 ± 1.00 61.76 ± 1.01 0.5652 ± 0.0115
MRFusion 70.48 ± 0.55 70.19 ± 0.67 0.6627 ± 0.0063

Gard Results
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Comparison Results
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Map Details on  
some particular extracts
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Map Details on  
some particular extracts
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Different Data fusion scenario [Schmitt16]: 
- Single-Sensor Data Fusion 
- Multiple-Sensor Data Fusion 
- Temporal Data Fusion 
- Machine Learning-Based Data Fusion 
- And so on….

[Schmitt16] M. Schmitt and X. X. Zhu, "Data Fusion and Remote Sensing: An ever-growing relationship". IEEE Geoscience and Remote Sensing Magazine 
4(4): 6--23, 2016

TWINNS: fuse Radar/Optical Time 
Series for LC Mapping via DL
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Different Data fusion scenario [Schmitt16]: 
- Single-Sensor Data Fusion 
- Multiple-Sensor Data Fusion 
- Temporal Data Fusion 
- Machine Learning-Based Data Fusion 
- And so on….

[Schmitt16] M. Schmitt and X. X. Zhu, "Data Fusion and Remote Sensing: An ever-growing relationship". IEEE Geoscience and Remote Sensing Magazine 
4(4): 6--23, 2016

TWINNS: fuse Radar/Optical Time 
Series for LC Mapping via DL

Multiple-Sensor Data Fusion on S1/S2: 
- Sentinel 1 Time Series (10m) 
- Sentinel 2 Time Series (10m)

To this end, we conceive a Deep Learning 
approach leveraging: 
- Convolutional Neural Network - CNNs 
- Conv Recurrent Neural Networks - 

convRNNs

Convolutional Gated 
Recurrent Unit + 

Attention

CNN

ConvGru Auxiliary 
Classifier

CNN Auxiliary 
Classifier

R2

R1

Convolutional Gated 
Recurrent Unit + 

Attention

CNN

ConvGru Auxiliary 
Classifier

CNN Auxiliary 
Classifier

O2

O1

R1

R2

O1

O2

Sentinel-1 Time Series

Sentinel-2 Time Series

Fully C
onnected Layers

Sentinel-1 Stream

Sentinel-2 Stream
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TWINNS: fuse Radar/Optical Time 
Series for LC Mapping via DL

Convolutional Gated 
Recurrent Unit + 

Attention

CNN

ConvGru Auxiliary 
Classifier

CNN Auxiliary 
Classifier

R2

R1

Convolutional Gated 
Recurrent Unit + 

Attention

CNN

ConvGru Auxiliary 
Classifier

CNN Auxiliary 
Classifier

O2

O1

R1

R2

O1

O2

Sentinel-1 Time Series

Sentinel-2 Time Series

Fully C
onnected Layers

Sentinel-1 Stream

Sentinel-2 Stream

MRFusion: TWIn Neural Networks for Sentinel data

Exploit both CNN and convRNN to process the same information to introduce 
diversity in the data representation

Ent-To-End Process 
(from scratch) 

M u l t i - S e n s o r /
Temporal architecture



More detail on the (conv)RNN branch

GRU with Attention - Temporal Component



More detail on the (conv)RNN branch

GRU with Attention - Temporal Component

X1 X2 X3 Xn<X1,X2,X3,…,Xn>

 Data sequence: <X1,X2,X3,…,Xn>
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Gated Recurrent Unit: 
 - Lighter architecture than LSTM 
 - Recurrent Unit with gates 
 - Widely employed in NLP

We use DropOut to alleviate overfitting



More detail on the (conv)RNN branch

GRU with Attention - Temporal Component

va = tanh(H ·Wa + ba)

� = SoftMax(va · ua)

rnnfeat =
NX

i=1

�i · hti

Attention Mechanism 
Combine the information 
extracted at each 
timestamps together
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 - Lighter architecture than LSTM 
 - Recurrent Unit with gates 
 - Widely employed in NLP

We use DropOut to alleviate overfitting



M3F: Spatio-Temporal Data 
Fusion via Deep Learning

convRNN Module dedicated to manage Temporal Correlations 

CNN Module dedicated to manage Spatial Correlation between different timestamps 

Multi-Sensor and Multi-Temporal data fusion automatically managed by the architecture


Dedicated approach to fuse together Multi-Temporal information by Deep Learning

[Hou17] S. Hou, X. Liu, Z. Wang: DualNet: Learn Complementary Features for Image Recognition. ICCV 2017: 502-510



M3F: Spatio-Temporal Data 
Fusion via Deep Learning

convRNN Module dedicated to manage Temporal Correlations 

CNN Module dedicated to manage Spatial Correlation between different timestamps 

Multi-Sensor and Multi-Temporal data fusion automatically managed by the architecture


Dedicated approach to fuse together Multi-Temporal information by Deep Learning

[Hou17] S. Hou, X. Liu, Z. Wang: DualNet: Learn Complementary Features for Image Recognition. ICCV 2017: 502-510

Auxiliary Classifiers adapted from [Hou17], the goal is to boost the discrimination power of 
each set fo features independently  

In our context, sources are naturally complementary w.r.t the work proposed in [Hou17]
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Data Description

Class Label # Objects # Pixels

1 Crop Cultivations 168 50061
2 Sugar cane 167 50100
3 Orchards 167 50092
4 Forest plantations 67 20100
5 Meadow 167 50100
6 Forest 167 50100
7 Shrubby savannah 173 50263
8 Herbaceous savannah 78 23302
9 Bare rocks 107 31587
10 Urban areas 125 36046
11 Greenhouse crops 49 14387
12 Water Surfaces 96 2711
13 Shadows 38 11400

Reunion Island Dataset: 
- 24 Sentinel-1 images (2 bands) 
- 34 Sentinel-2 images (10 bands 

+ 6 indices) 
- Spatial Extent: 6656 x 5913 

pixels 
- 13 Land Cover Classes 

(322748 pixels / 2656 objs)
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Data Description

Class Label # Objects # Pixels

1 Crop Cultivations 168 50061
2 Sugar cane 167 50100
3 Orchards 167 50092
4 Forest plantations 67 20100
5 Meadow 167 50100
6 Forest 167 50100
7 Shrubby savannah 173 50263
8 Herbaceous savannah 78 23302
9 Bare rocks 107 31587
10 Urban areas 125 36046
11 Greenhouse crops 49 14387
12 Water Surfaces 96 2711
13 Shadows 38 11400

Reunion Island Dataset: 
- 24 Sentinel-1 images (2 bands) 
- 34 Sentinel-2 images (10 bands 

+ 6 indices) 
- Spatial Extent: 6656 x 5913 

pixels 
- 13 Land Cover Classes 

(322748 pixels / 2656 objs)
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Koumbia Dataset: 
- 29 Sentinel-1 images (2 bands) 
- 23 Sentinel-2 images (10 bands 

+ 6 indices) 
- Spatial Extent: 5253 x 4797 

pixels 
- 7 Land Cover Classes (90123 

pixels / 1137 objs)

Class Label # Polygons # Pixels

0 Annual Cropland 671 31 075
1 Fallows 57 1 808
2 Natural Forest 64 15 843
3 Savannah 87 25 156
4 Grassland 142 12 883
5 Rocks 29 852
6 Built up 71 1 096
7 Water 16 1 410
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Reunion Island Site 
Indian Ocean 
East of Madagascar

Koumbia Site 
Province of Tuy 
Burkina Faso



Experimental Settings

Data splits (Training / Validation / Test): 
Reunion Island Dataset: 30% /  20% / 50% (at object level) repeated 10 times

Koumbia Dataset: 50% / 30% / 20% (at object level)  repeated 10 times

We consider patches of size 5x5
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Ablation Study:

- A version of TWINNS for each source (TWINNS(S1) and TWINNS(S2) )

- A version of TWINNS without Auxiliary Classifiers (TWINNS_NoAux)

- A version of TWINNS with only the CNN branches (FullCNN)

- A version of TWINNS with only the convRNN branches (FullRNN)
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Data splits (Training / Validation / Test): 
Reunion Island Dataset: 30% /  20% / 50% (at object level) repeated 10 times

Koumbia Dataset: 50% / 30% / 20% (at object level)  repeated 10 times

We consider patches of size 5x5

Competitors:  
- Multiple Random Forests competitors: 

- RF(S1,S2) 
- RFLF(S1,S2) 

- A two branch Convolutional LSTM  (2ConvLSTM)

- A RF competitor fed with the representation learnt by TWINNS - RF(TWINNS)
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Ablation Study:

- A version of TWINNS for each source (TWINNS(S1) and TWINNS(S2) )

- A version of TWINNS without Auxiliary Classifiers (TWINNS_NoAux)

- A version of TWINNS with only the CNN branches (FullCNN)

- A version of TWINNS with only the convRNN branches (FullRNN)

Evaluation Measures (On Test Data):  
Accuracy (Global Accuracy)

F-Measure (it helps to take into account unbalance class distribution)

Kappa Measure
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Experimental Evaluation

Ablation Study

F-Measure Kappa Accuracy
TWINNS(S1) 73.22 ± 1.23 0.6926 ± 0.0144 73.89 ± 1.24
TWINNS(S2) 84.29 ± 1.19 0.8159 ± 0.0143 84.26 ± 1.26
FullCNN 87.69 ± 0.85 0.8560 ± 0.0107 87.71 ± 0.92
FullRNN 88.23 ± 1.43 0.8620 ± 0.0169 88.22 ± 1.45
TWINNS

NoAux

83.92 ± 1.05 0.8109 ± 0.0117 83.84 ± 0.97
TWINNS 89.87 ± 0.65 0.8814 ± 0.0080 89.88 ± 0.69

Reunion Island

F-Measure Kappa Accuracy
TWINNS(S1) 80.93 ± 2.18 0.7530 ± 0.0283 81.84 ± 2.13
TWINNS(S2) 81.47 ± 4.12 0.7563 ± 0.0556 81.99 ± 4.30
FullCNN 86.81 ± 2.38 0.8303 ± 0.0303 87.51 ± 2.29
FullRNN 85.90 ± 2.72 0.8186 ± 0.0363 86.65 ± 2.75
TWINNS

NoAux

81.87 ± 4.43 0.7631 ± 0.0599 82.49 ± 4.61
TWINNS 86.65 ± 2.50 0.8298 ± 0.0322 87.50 ± 2.44

Koumbia
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Experimental Evaluation

Competitors

F-Measure Kappa Accuracy
RF (S1, S2) 86.10 ± 0.58 0.8402 ± 0.0065 86.42 ± 0.54
RFLF (S1, S2) 87.73 ± 0.58 0.8611 ± 0.0069 88.27 ± 0.59
2ConvLSTM 83.21 ± 0.90 0.8031 ± 0.0103 83.17 ± 0.90
TWINNS 89.87 ± 0.65 0.8814 ± 0.0080 89.88 ± 0.69
RF (TWINNS) 90.07 ± 1.04 0.8840 ± 0.0124 90.10 ± 1.07

Reunion Island

F-Measure Kappa Accuracy
RF (S1, S2) 79.79 ± 5.30 0.7424 ± 0.0694 81.25 ± 5.16
RFLF (S1, S2) 84.78 ± 2.36 0.8079 ± 0.0315 86.00 ± 2.35
2ConvLSTM 85.73 ± 2.24 0.8165 ± 0.0276 86.48 ± 2.08
TWINNS 86.65 ± 2.50 0.8298 ± 0.0322 87.50 ± 2.44
RF (TWINNS) 85.79 ± 2.62 0.8172 ± 0.0351 86.54 ± 2.68

Koumbia
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Experimental Evaluation

Reunion Island

RF

RFLF

RF(TWINNS)
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VHSR Image RF
LF

(S1, S2)

(a) (b)

2ConvLSTM TWINNS

(c) (d)

VHSR Image RF
LF

(S1, S2)

(e) (f)

2ConvLSTM TWINNS

(g) (h)

Figure 5: Qualitative investigation of Land Cover Map details produced on the Koumbia

study site by RF LF(S1,S2), 2ConvLSTM and TWINNS on a forest area (top) and a urban

area (bottom) . 38Koumbia

Map Details on  
some particular extracts
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2ConvLSTM TWINNS

(g) (h)
Crop Cultivations Sugar cane Orchards Forest plantations Meadow Forest Shrubby savannah

Herbaceous savannah Bare rocks Urban areas Greenhouse crops Water Surfaces Shadows

Figure 4: Qualitative investigation of Land Cover Map details produced on the Reunion Island

study site by RF LF(S1,S2), 2ConvLSTM and TWINNS on a coastal urban area (top) and

a area containing greenhouses and orchards (bottom) .

37

Reunion Island

Map Details on  
some particular extracts



To Wrap Up

Deep Learning seems a promising tool for task-driven multi source data fusion.


Two Deep Learning examples for data fusion considering land cover mapping:


- MRFusion: fuse together information from the same sensor, PAN and MS images from 
SPOT6 image


- TWINNS: fuse together Satellite Image Sentinel-1 and Sentinel-2 time series (Multi-Sensor/
Temporal) for land cover classification


Combine different basic blocks (RNN, CNN, convRNN, Attention, etc…) to manage different 
data sources to provide decision-level data fusion frameworks.



Current Trend

Different Research directions:


• Generative Adversarial network

• Spatio - Spectral - Temporal Domain Adaptation

• Hierarchical relationships to regularise the classification (fine-grained 

classification)

• Explore more the semi-supervised setting (reduce the human effort)

• Explore more weakly-supervised settings (the model is learned with 

weak supervision w.r.t. the task to solve)

• Integrate alternative sources of information: cross-modal (i.e. text or 

VGI=Volunteer Geographic Information )

• Data Fusion among different remote sensors (multi-scale, multi-

temporal, etc..)
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Generative Adversarial Network 

The framework involves:

- A generative network (G) that tries to simulate real examples

- A discriminator network (D) that tries to recognise real vs fake examples


Mainly employed to sample examples from a data distribution


In the remote sensing field, GANs can be exploited to generate new examples to 
enrich the training data

An interesting variant are cGANs (Conditional GANs) that constraint the generation process 
with a kind of supervision (for instance the label to predict).
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Spatio - Spectro - Temporal Domain 
Adaptation 

In a (unsupervised) domain adaptation (DA) setting:

- A source domain (S) has labelled examples

- A target domain (T) has no labelled examples


The goal is to transfer the model from S -> T leveraging the labelled examples in S
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Spatio - Spectro - Temporal Domain 
Adaptation 

In a (unsupervised) domain adaptation (DA) setting:

- A source domain (S) has labelled examples

- A target domain (T) has no labelled examples


The goal is to transfer the model from S -> T leveraging the labelled examples in S

In Remote Sensing field the source/target domains can be:

• Different sensors: Spot/Pléiades, Spot/Sentinel, Landsat/Sentinel (Spectral DA)

• Different geographical areas (Spatial DA)

• Information (Images or Time Series) acquired at different time (Temporal DA)

• …

�57



�58

In many real problems, the label space (classes) can be organised in a 
taxonomy or hierarchy.


When such relationships exist in the label space, they can be exploited to 
regularise the classification process.


In Remote Sensing (especially in Land Use / Land Cover scenario), classes can 
be naturally arranged in taxonomies.


Such kind of scenario is called: Fine-Grained Classification

Hierarchical Relationships 
Fine-Grained Classification 



Conclusion and Directions

Deep Learning seems a promising tool for task-driven multi source data fusion in Remote 
Sensing.


Most of the literature in Remote Sensing & Deep Learning exploits (almost) directly results 
from Computer Vision but… Remote Sensing has some peculiarity (multi-scale, multi-
sensors, multi-temporal, sparsely annotated data, etc…) -> Necessity for ad-hoc 
architectures.


In operational cases, when predictive analysis need to be deployed, some sensors can be 
damaged or unavailable. How to develop methods capable to work on misaligned  
(between training and test) information sources is mandatory in Remote Sensing.


Many efforts were done in creating and developing physical-based models and now? Data-
Driven models seem overpass previous work but…How to combine physical-based and 
(DL) data-driven models in Remote Sensing is a promising direction. Data Assimilation can 
be an answer.
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