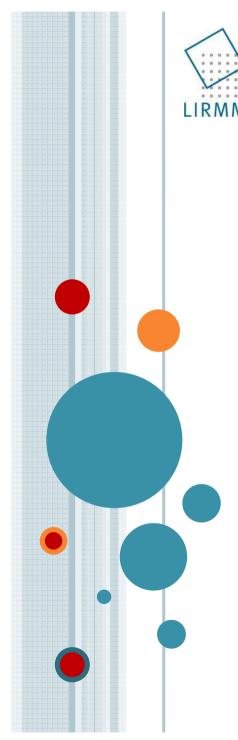


Modèles déformables pour l'analyse d'images

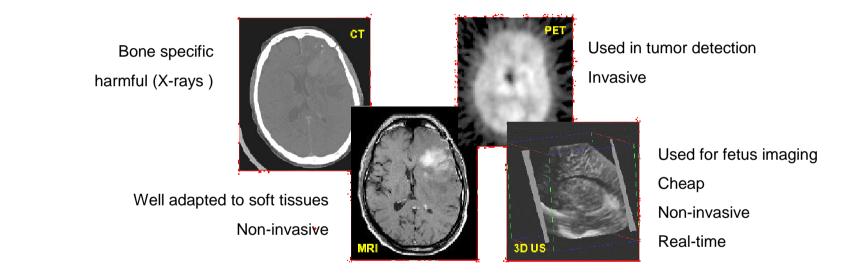
Benjamin GILLES

LIRMM, Equipes ICAR/DEMAR CNRS, Université de Montpellier



Context

Acquisition: Measurement of physical properties Several modalities:



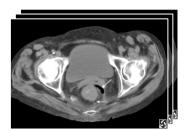
For computation, images are <u>discretized</u> (digitalized) :

In space : $(x,y,z) \rightarrow (n_x,n_y,n_z)$ samples

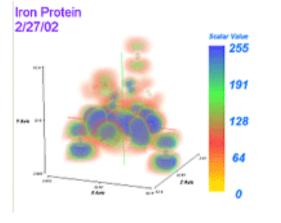
In time : $t \rightarrow n_t$ samples

In Intensity : Generally 256 levels (8 bits) or 2048 levels (11bits) = Grey levels

Raw data visualization



2D-slices



3D ray-casting

Iso-surfaces

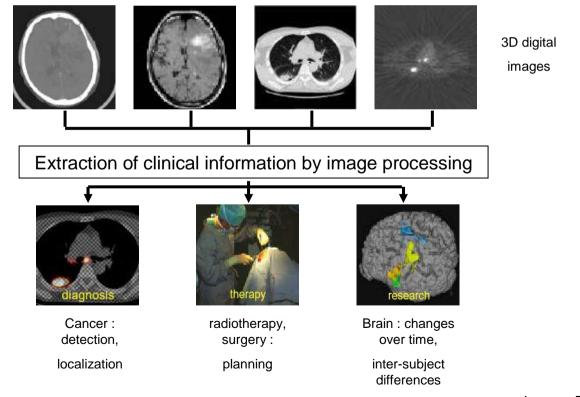
4

Context

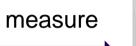
Today, imaging is a routine clinical tool

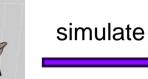
But we measure much more than we can understand...

→ <u>Image analysis</u> is required



Images to Models to Simulations

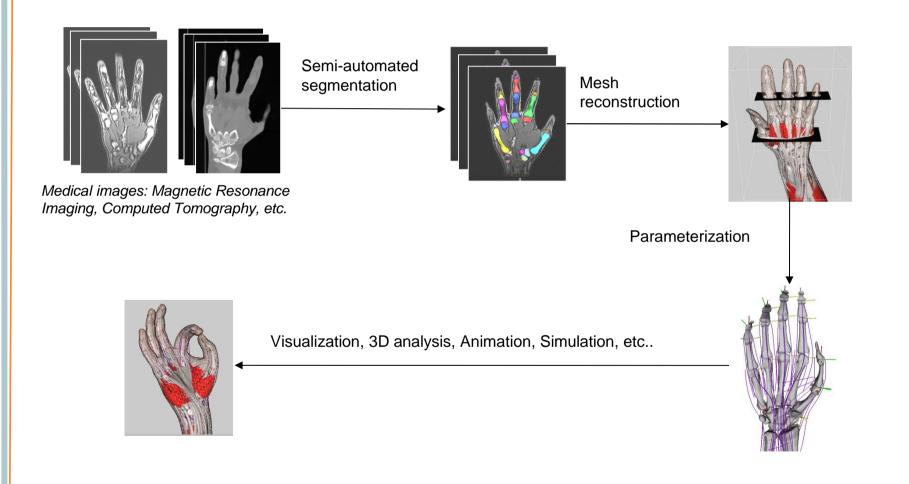




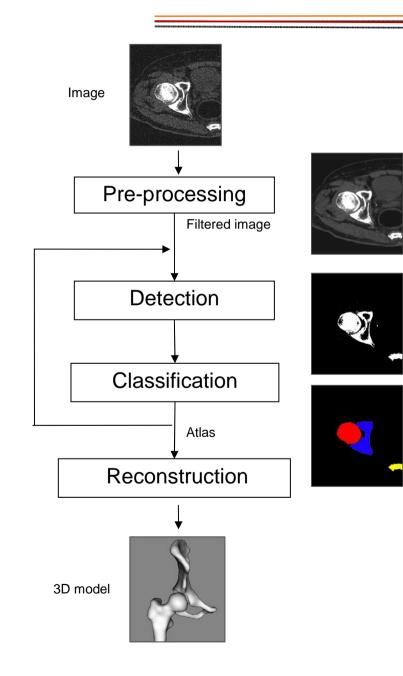
- Visualization
- Diagnosis
- Comparative anatomy
- Data fusion

- Computer animation
- Simulation
- Surgical planning

Standard modeling pipeline



Direct segmentation



Pre-Processing:

- noise removal [perona90]
- contour enhancement
- bias filtering

Detection:

- contour detection/closing
- histogram analysis
- texture analysis
- statistical approaches [staib92]

Classification:

- region growing
- region splitting

Reconstruction:

- Marching cubes [lorensen87]
- Constrained deformable models

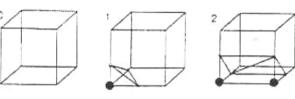
Reconstruction

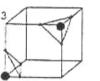
Transformation from binary volumes to surfaces :

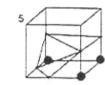
Marching-cubes algorithm

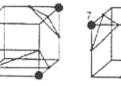
[lorensen87]

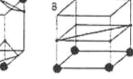
Spatial voxels configurations and associated surfaces :











Constrained reconstruction

Marching cubes

Main issues

Segmentation step:

- One organ = several intensities
- → Thresholding + morphological operations + manual corrections

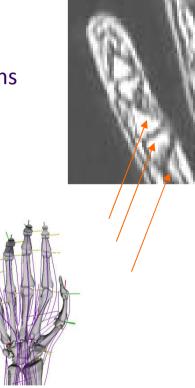
One type of organ = same intensities → Manual separation + labeling

Parameterization step

Interactive placement of the joint coordinate systems Definition of soft tissues / bones attachments Definition of material parameters

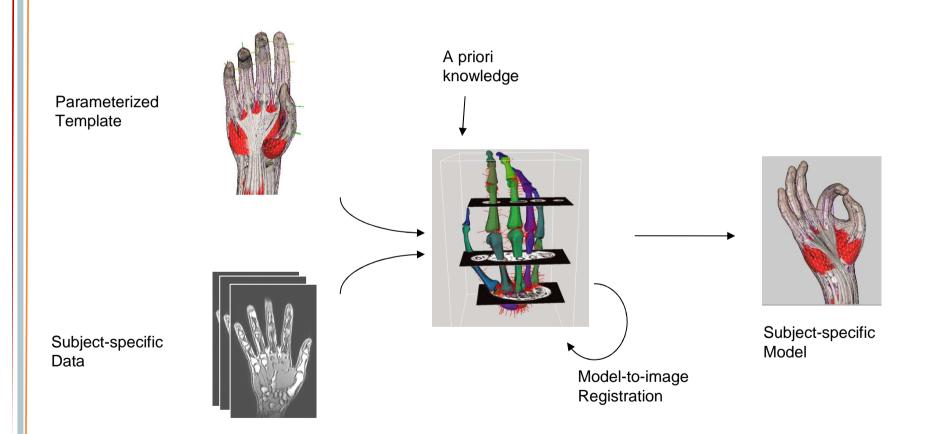
\rightarrow Time consuming

→ Requires a lot of anatomical knowledge



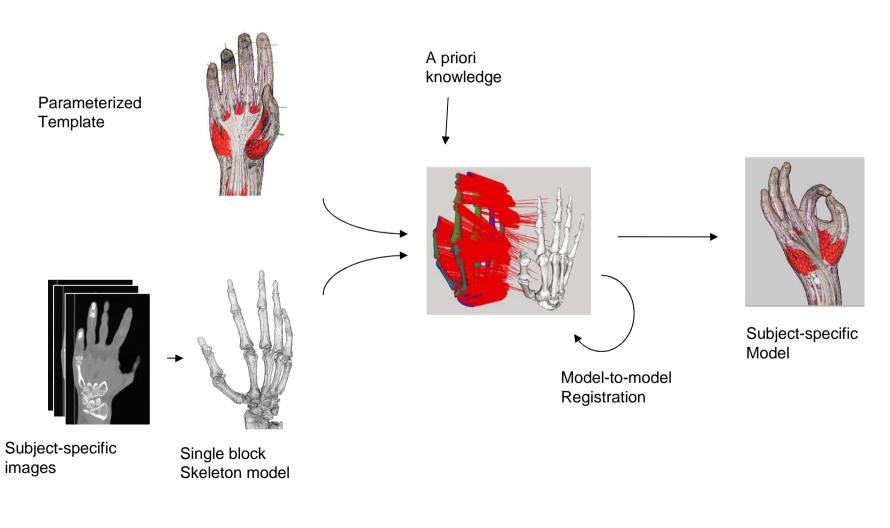
Template registration approach

Registration to images:



Segmentation + Registration

Registration to surfaces:



Introduction 5/7

Models for registration

Two approaches:

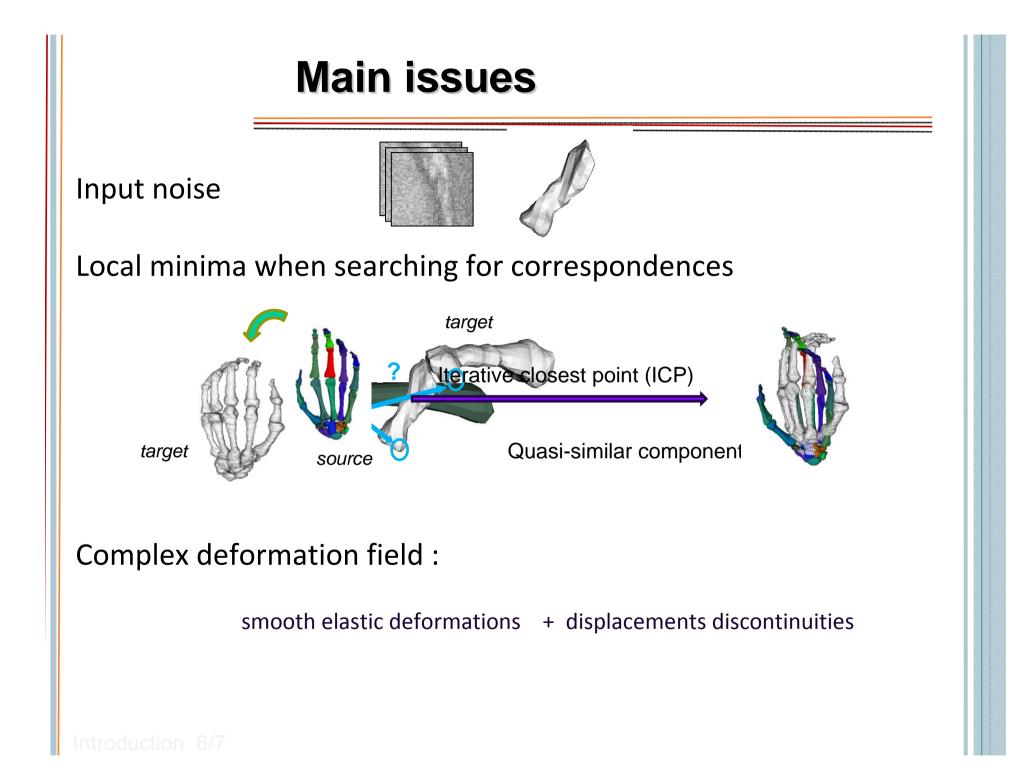
Model extraction in the two datasets

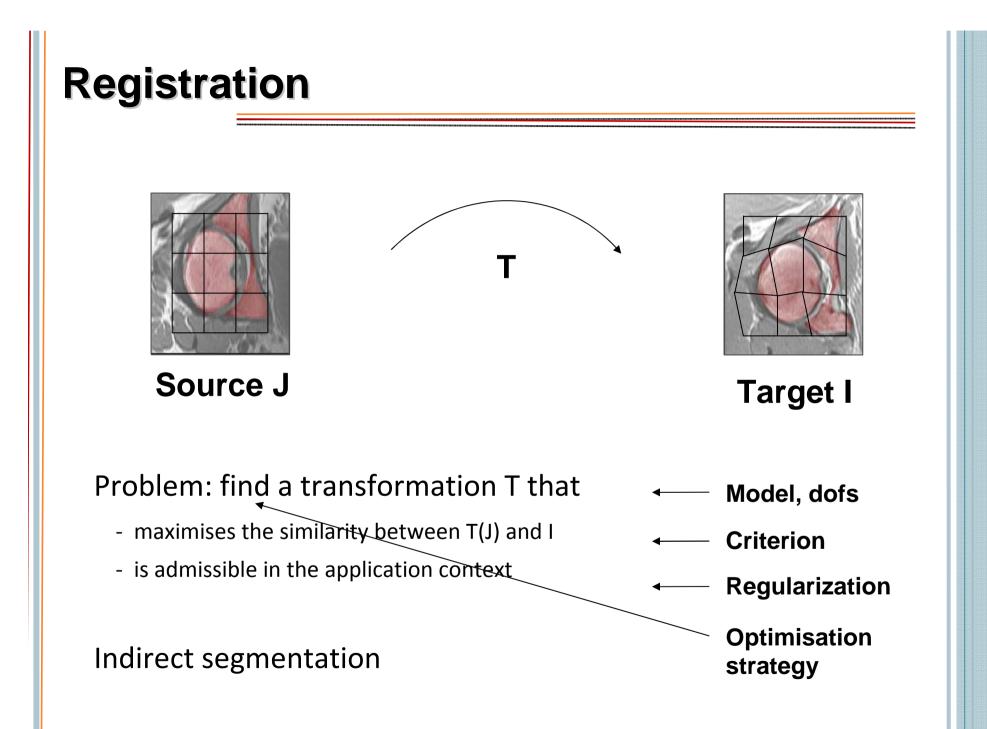
- + geometric registration [audette00]
 - \rightarrow direct segmentation

Model extraction in the source dataset + image registration [Zitova01], [maintz98], [cachier02] \rightarrow indirect segmentation Ad-hoc parameters for region/ contour detection

 $\rightarrow\,$ sensitive to noise and global intensity variations

Use of prior knowledge





Outline

What is registered: **Registration features**

Registration criterion: Similarity measure

How to constrain the problem: **Regularisation**

How the registration is performed: **Evolution**

Examples

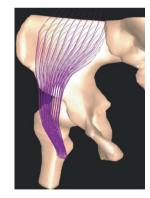
Registration features

Iconic features

photometric information: image intensities, gradient Regions of interest: voxel, template, intensity profile Feature vectors

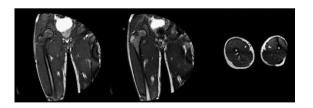
Geometric features

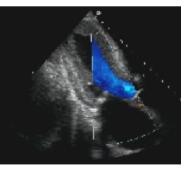
Points, curves, surfaces, volumes

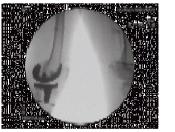


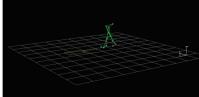
Acquisition modalities

Data	MRI	US	X-Rays/ CT	Other
Static	++	+	+	
Kinematics	+	++	+	МоСар
Dynamics	/			Force plates
				Strain gauges
Mechanics	+	+		Mech. devices
Physiology				EN/IG







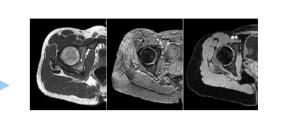


[ETHZ]

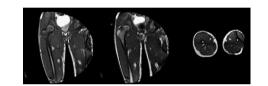
[anaesthesiaUK]

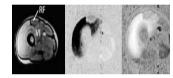
Acquisition modalities

Data	MRI	
Static	++	
Kinematics	+	
Dynamics		
Mechanics	+	
Physiology		

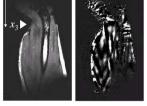


[heemskerk05]





[delp02]

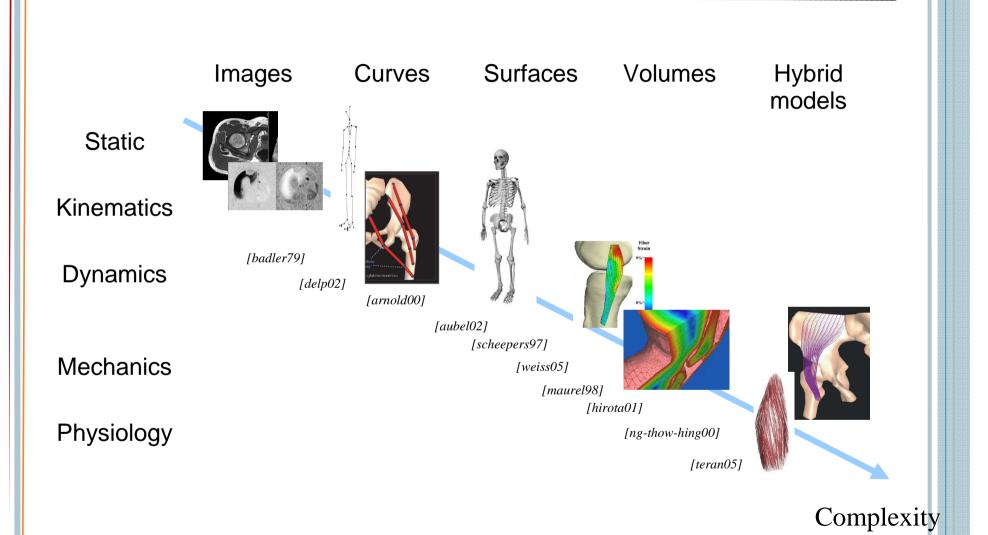


[papazoglou05]

Magnetic Resonance Imaging (MRI):

- Non-invasive
- most flexible imaging modality

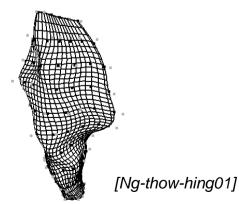
Model vs. data



Deformable models

Continuous models [kass88], [terzopoulos88], [cootes01]

- Mapping between material parameters and spatial coordinates
 - For example, in 3D: $\mathbf{u} \in [0,1]^p \rightarrow [\mathbf{x}(\mathbf{u}),\mathbf{y}(\mathbf{u}),\mathbf{z}(\mathbf{u})]^T \in \Re^3$
 - Explicit mapping (snakes) or use of parametric functions (splines)
- \odot Simple shape description through parametric function derivation \rightarrow analytic
- Interpolation
- \bigcirc Few degrees of freedom (e.g. control points) \rightarrow intrinsic regularisation
- Shapes are limited by the parametric function
- Θ Parameters \neq geodesic coordinates
- Spatial interactions

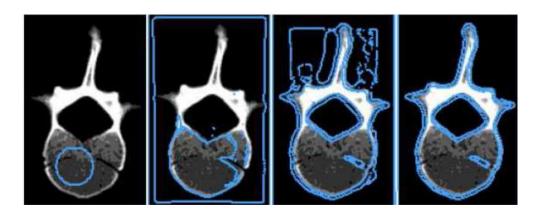


Deformable models

Implicit models [osher88], [vemuri03]

- Iso-value of a potential field
 - For example, in 3D: $\{\mathbf{p} \in \mathfrak{R}^3 \mid F(\mathbf{p})=0\}$
- Level sets, blobs, convolution surfaces, etc.

- Topological changes
- Spatial interactions
- 😕 Computational cost
- 😕 Rendering

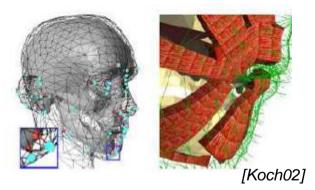


[Montagnat01]

Deformable models

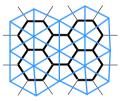
Discrete models [delingette94], [montagnat05], [lotjonen99], [szeliski96]

- Explicit positions in space (vertices)
 + connectivity relationships
- Flexibility
- Spatial interactions
- Computational cost
- Rendering
- Approximating



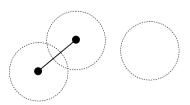
Discrete Models

- Abstract lattices:
 - Do not match object contours
 - \rightarrow problem to handle transformation discontinuities at boundaries
- Polygonal meshes:
 - - Constant cell connectivity vs. Constant vertex connectivity



- Polyline / 1-simplex meshes
 - Triangle / 2-simplex meshes

- Particle systems:
 - Non-constant connectivity •



Mixed implicit/discrete: medial axis

Medial axis = medial vertices + thickness

Reversible Simpler representation for smooth model Extension of action lines

The thickness is a relevant parameter

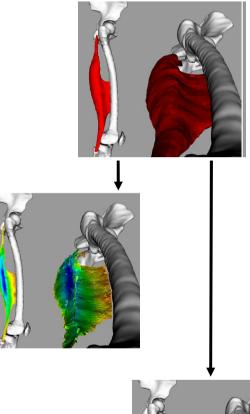
Two approaches:

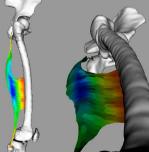
Pruning

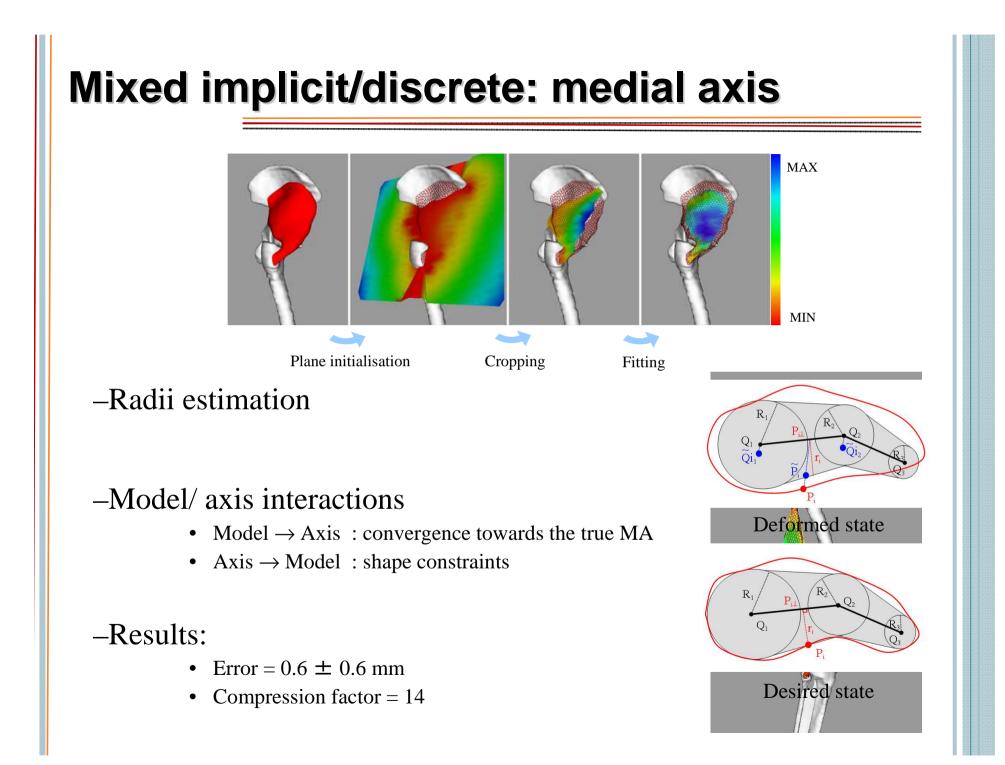
- Exact computation + Simplification
- + Direct computation
- No homotopy equivalence

Shape constraints

- Fitting of a simplified model
- Iterative computation
- + Homotopy equivalence



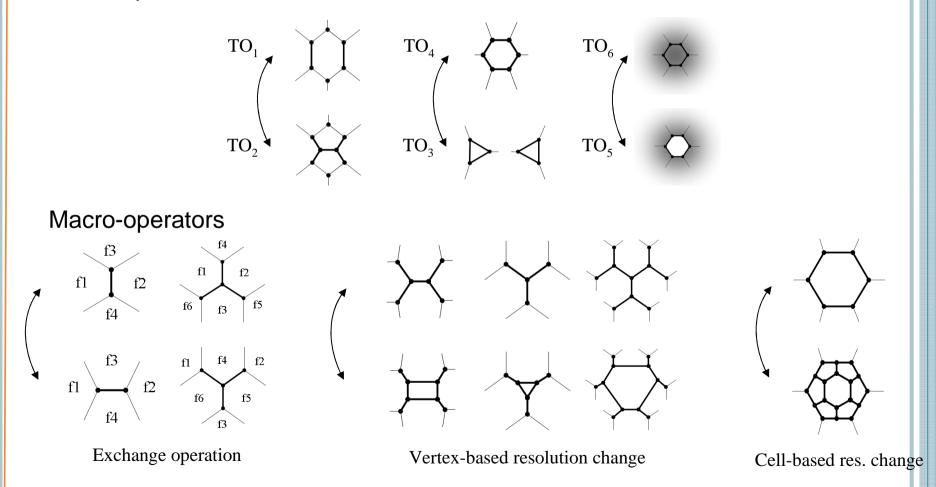




Topology of simplex meshes (1/3)

Simplex meshes -> simple topology description : each vertex \rightarrow (k+1) neighbors

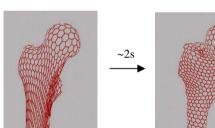
6 Basic operators [delingette94] [montagnat00]



Topology of simplex meshes (2/3)

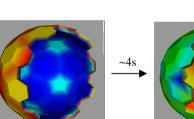
Regular mesh generation:

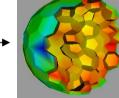
- \rightarrow Optimize
 - topological quality (number of vertex per face)
 - geometric quality (vertex repartition) according to a target edge length
- Results
 - Fast mesh adaptation to prede

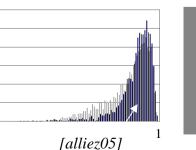


 \rightarrow Quasi-regular triangulation/ te

			-
. 1' .'			
Radius ratio			
nistogram			
C			
			4
		a na sa	
	0		1
	U		1

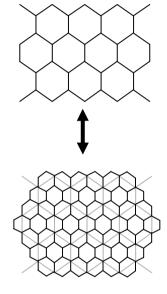


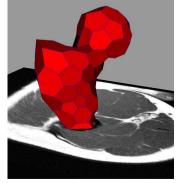


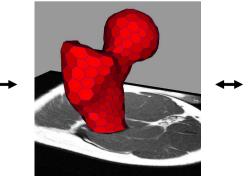


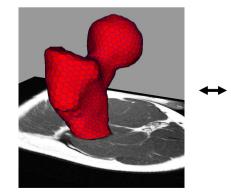
Topology of simplex meshes (3/3)

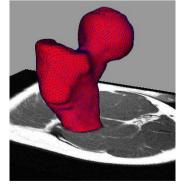
- Multi-resolution scheme
 - Global topology adaptation -> semi-regular mesh
 - Level of details (LOD) generation
 - Simple and systematic method: points linear combination
 - Shape features preservation









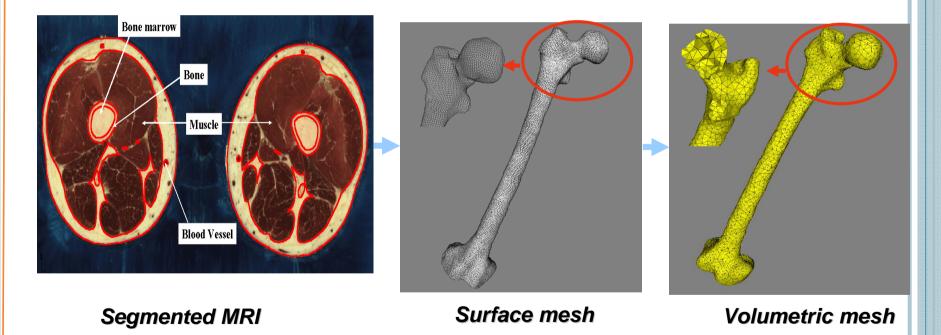


Local constraints Image forces

Global constraints Collision handling

Volumetric mesh generation (1/4)

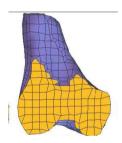
Construct volumetric mesh from surface Mesh Problem: regular tetrahedra do not tile space



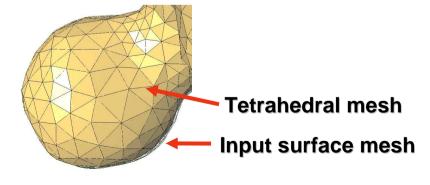
Volumetric mesh generation (2/4)

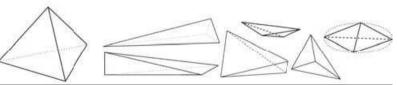
- •Requirements
- -Element type: Tetrahedron, Hexahedron, etc.
- -Element density
- •Quality measure
- -Boundary / input surface matching
- -Element quality: solid angle, radius ratio, etc.





Hexahedral mesh





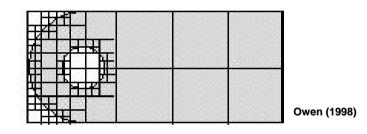
Different types of degeneracy (slivers, caps, needles and wedges)

Volumetric mesh generation (3/4)

Meshing techniques

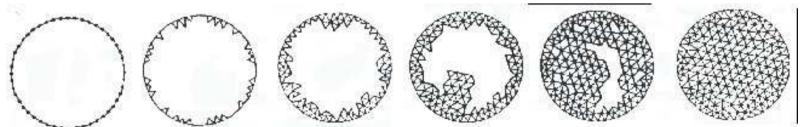
Octree recursively Subdivision [molino03]

- \rightarrow Poor quality elements generated near the boundary
- \rightarrow Require a large number of surface intersection calculations



Advancing front: cells propagation from boundaries [100]

- \rightarrow Difficult to compute ideal cell locations (local)
- \rightarrow Difficult to merge elements when they collide



Owen (1998)

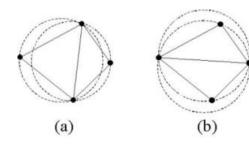
Volumetric mesh generation (4/4)

Delaunay \rightarrow optimal connectivity

- The Delaunay criterion 'empty sphere' : no node is contained within the circumsphere of any tetrahedron of the mesh.

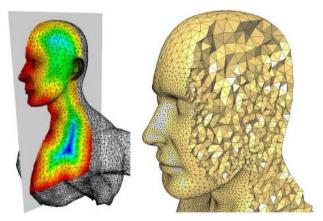
- Refine the tetrahedra locally by inserting new nodes to maintain the Delaunay criterion
- \rightarrow Degenerate tetrahedra 'slivers' appear

Variational approach [alliez05]: Global energy minimization Vertex repositioning



2D Delaunay criterion (a) Maintained (b) Not maintained

Owen (1998)



Conclusion

Choice of model and discretization driven by:

- Geometry: large/small variability ?
- Topology: constant or not ?
- Deformations: large/small ? discontinuities ?

Outline

What is registered: **Registration features**

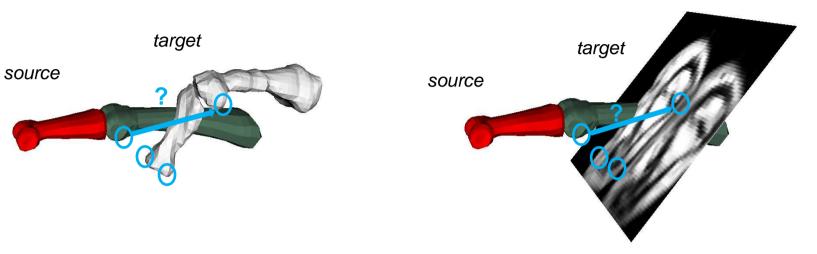
Registration criterion: Similarity measure

How to constrain the problem: **Regularisation**

How the registration is performed: **Evolution**

Examples

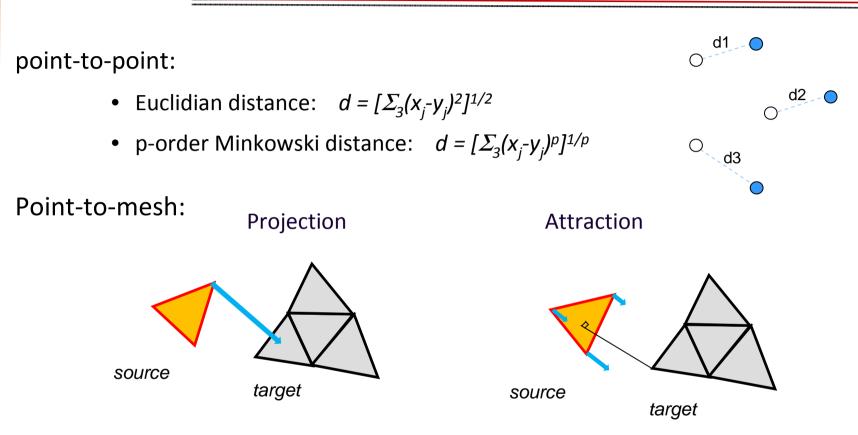
Correspondences



- Requirements:
 - Distinctiveness
 - Accuracy
 - Large capture range
 - Small number of local minima
 - Invariance :
 - Spatial transformations: rotations, translations, scale, shear, angles, isomorphism
 - Intensity changes, noise, topology

[Skerl06]

Closest point correspondences



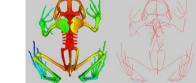
Mesh-to-mesh:

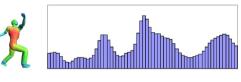
- Hausdorff distance: $d = max_{x \in X} \{ min_{y \in Y} \{ d(x, y) \} \}$
- Probabilistic measures (e.g. Mahalanobis)

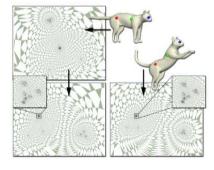
Global correspondences using descriptors

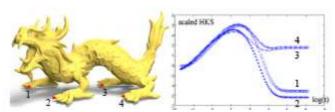
- Euclidean:
 - Spin images [Chang08],
 - Shape context [Belongie00],
 - SIFT [Lowe04], [Zaharescu09]
- Geodesic:
 - Multidimensional scaling [Elad01][Gal07][Bronstein08]
 - Reeb Graphs
- Spectral methods:
 - Laplacian Embedding [Belkin03] [Mateus07]
 - Mobius maps [Lipman09],
 - Diffusion distance [Lafon04]
 - Global Point Signature [Rustamov07]
 - Heat Kernel Signature [Sun09]

-> coupled with feature detection









Model/Image correspondences

→ Align the source model to contours in the target image Maximise gradient magnitude : $d = - || \nabla ||$ Align model and image gradient : $d = \pm \nabla |.n$

 \rightarrow Maximise the similarity btw icons

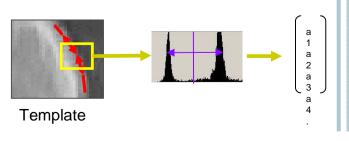
Region of Interest (vertex neighbourhood) :

• Blocks → template matching [ding01] Pre-processing: 3D convolution

• Direction of expected changes → Intensity profile matching [montagnat00] Pre-processing: 1D convolution (e.g. [-101] or [121])

Similarity between:

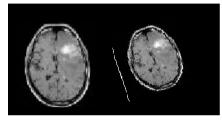
- scalars (e.g. intensities, gradient magnitudes, gradient cosines, etc.)
- Gradients
- Feature vector :
 - e.g. : SIFT [Lowe04], Histogram moments [Shen07]



Similarity measures

Intensity differences

 \rightarrow Assume intensity conservation: $I \approx T(J)$ Sum of absolute differences: $d_{SAD} = \sum_i |I_i - T(J)_i| / N$ Sum of squared differences: $d_{SAD} = \sum_i (I_i - T(J)_i)^2 / N$



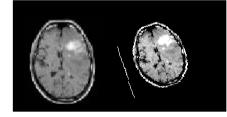
Optical Flow [Horn81], Demon algorithm [Thirion95]: combined with pairing $U_i = (I_i - T(J)_i)$. $\nabla(T(J)_i)$

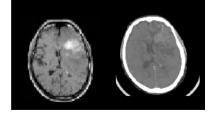
Intensity correlation [holden00]

 \rightarrow Assume affine correlation btw intensities: $I \approx \alpha T(J) + \beta$ Normalised cross-correlation: $d_{NCC} = Cov (I, T(J)) / (\sigma_I \sigma_{T(J)})$

Histogram correlation [viola95], [wells96], [maes97], [roche00], [woods92]

 \rightarrow Assume functional relation btw intensities: $I \approx \mathcal{O}(T(J))$ Normalised mutual information: $d_{NMI} = [H(I) + H(T(J))] / H(I,T(J))$ Correlation ratio: $d_{CR} = Var(I - \Phi^*(T(J)))/Var(I) = \sum_i N_i \sigma_i^2 / (N\sigma^2)$ Woods criterion: $d_W = \sum_i N_i \sigma_i / (m_i N)$





Similarity measures

	Different modalities	Different protocols	Large displacements	
Gradient [kass88] [xu98]	+	+		
Intensity differences [horn81], [thirion95]			+	
Intensity correlation [holden00]		+	+	
Histogram correlation [viola95], [woods92]	+	+	+	

Conclusion

Choice of similarity measure and discretization :

- Input data: surface/image?
- Appearance: Large/small variability ? Spatial properties ? Invariance ?
- Initialization ?

Outline

What is registered: **Registration features**

Registration criterion: Similarity measure

How to constrain the problem: Regularisation

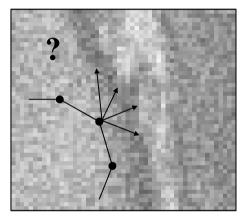
How the registration is performed: **Evolution**

Examples

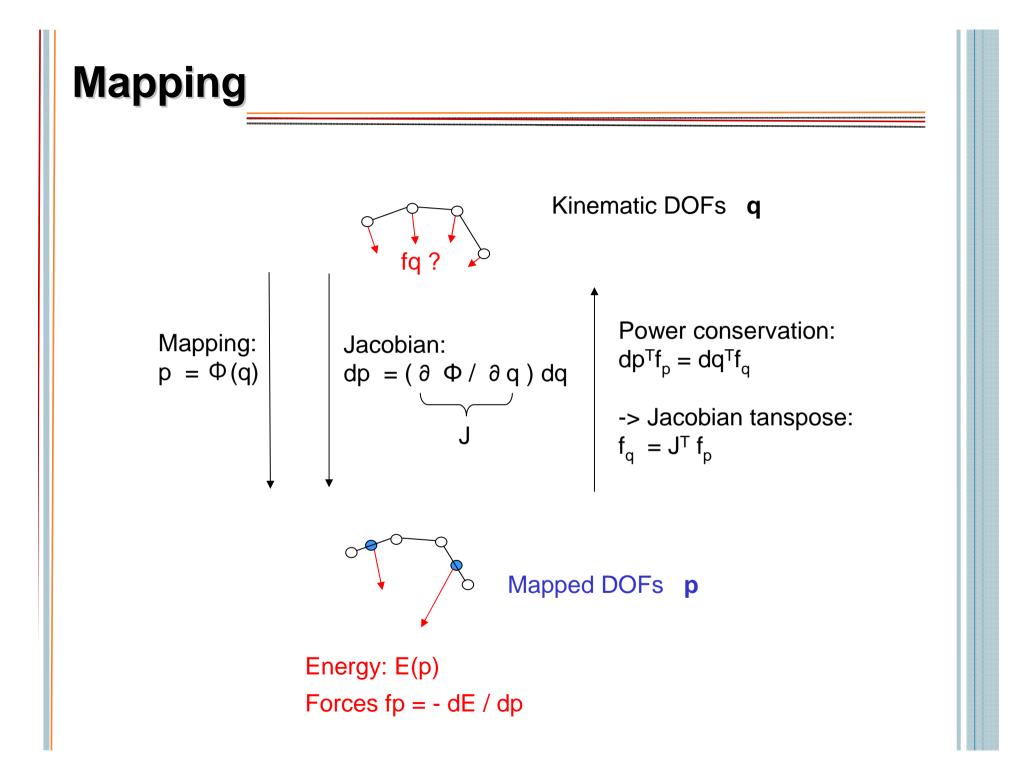
Regularisation

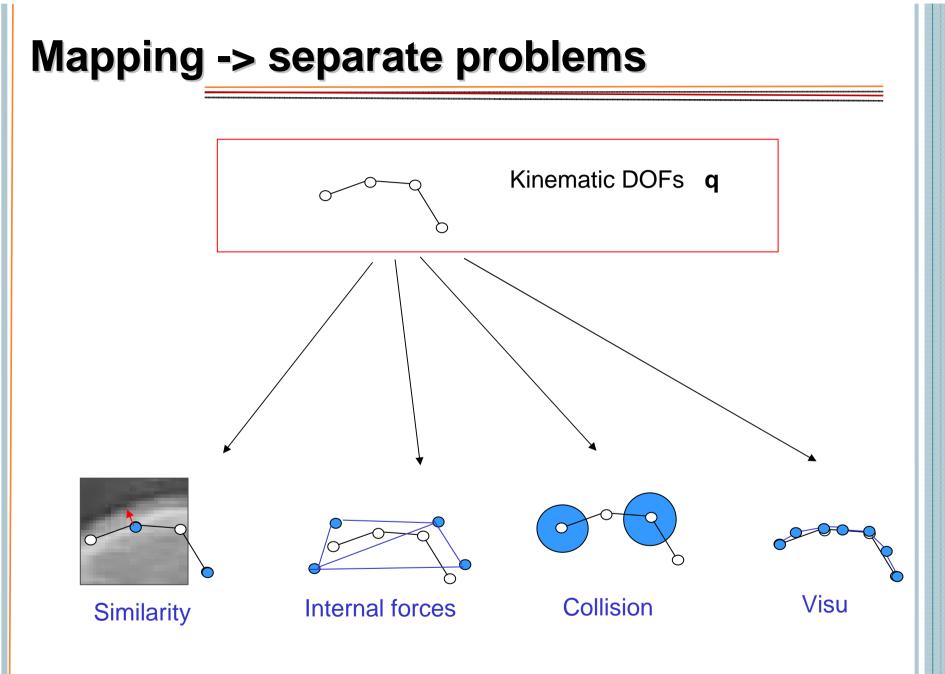
Noise

- + Local solutions
- + Aperture problem



 \rightarrow The problem need to be constrained through parameterisation and internal forces





Regularisation using parameterisation

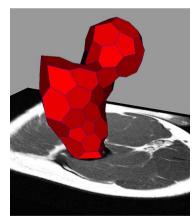
Hypothesis about the form of the solution T

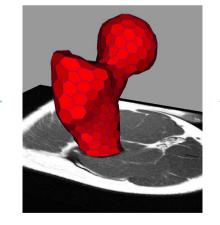
 \rightarrow Reduce the search space (DOF)

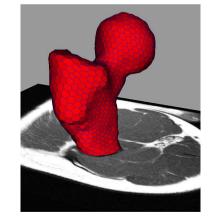
Subject

Coarse-to-fine approaches

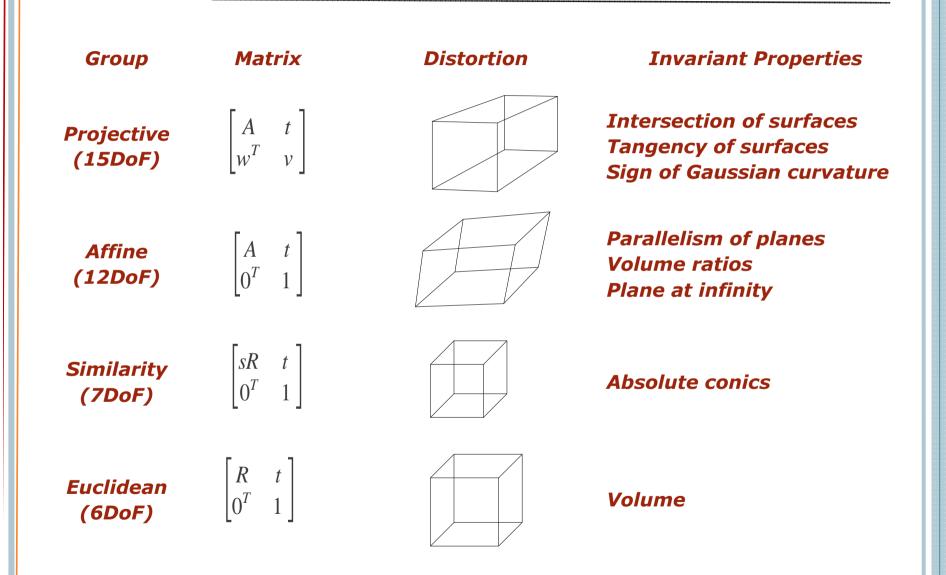
 \rightarrow Improve robustness and computational speed







Linear Transformations



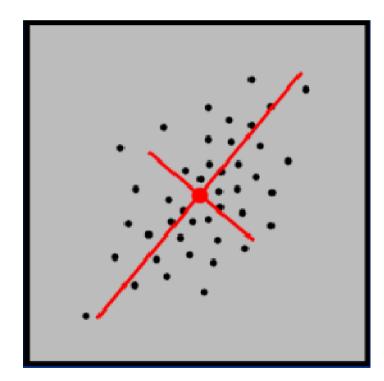
Non-linear methods

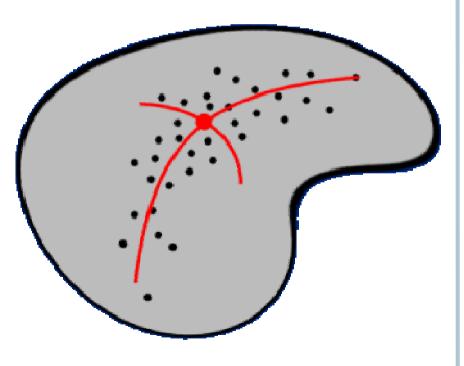
Transform	General form	
Free form deformation [sederberg86], [rueckert99]	$\delta \mathbf{p} = \sum_{i,j,k}^{Nx,Ny,Nz} f_{i,j,k}(\mathbf{p}) \delta \mathbf{p}_{\mathbf{i},\mathbf{j},\mathbf{k}}$	
Radial Basis functions [rohr96], [rohde03], [Lewis01]	$\delta \mathbf{p} = \sum_{i}^{N} \mathbf{w}_{i}(\delta \mathbf{p}_{i})\phi(\ \mathbf{p} - \mathbf{p}_{i}\) + \mathbf{f}(\mathbf{p})$ $\mathbf{W} = (\mathbf{\Phi}^{T} \mathbf{\Phi})^{-1} \mathbf{\Phi}^{T} \delta \mathbf{P}$	
Example-based [szekely95], [cootes01]	$\delta \mathbf{p} = \sum_{i}^{N} \delta w_{i} \mathbf{p}_{i}$	
Skinning deformation [Vlasic08][Chang09][Huang08]	dp=∑wi Ai p0	
Poly-Rigid, Affine [arsigny06]		
Spectral embedding [Umeyama88][Mateus07]		Laplacian Embedding
Moving Least Squares		Shape 1 Shape 2 Embed 1 Embed 2

Example-based DOFs

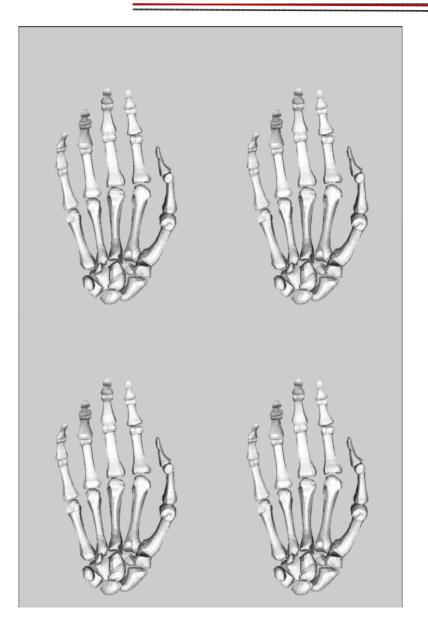
Linear Statistics : PCA

Curved Statistics : PGA

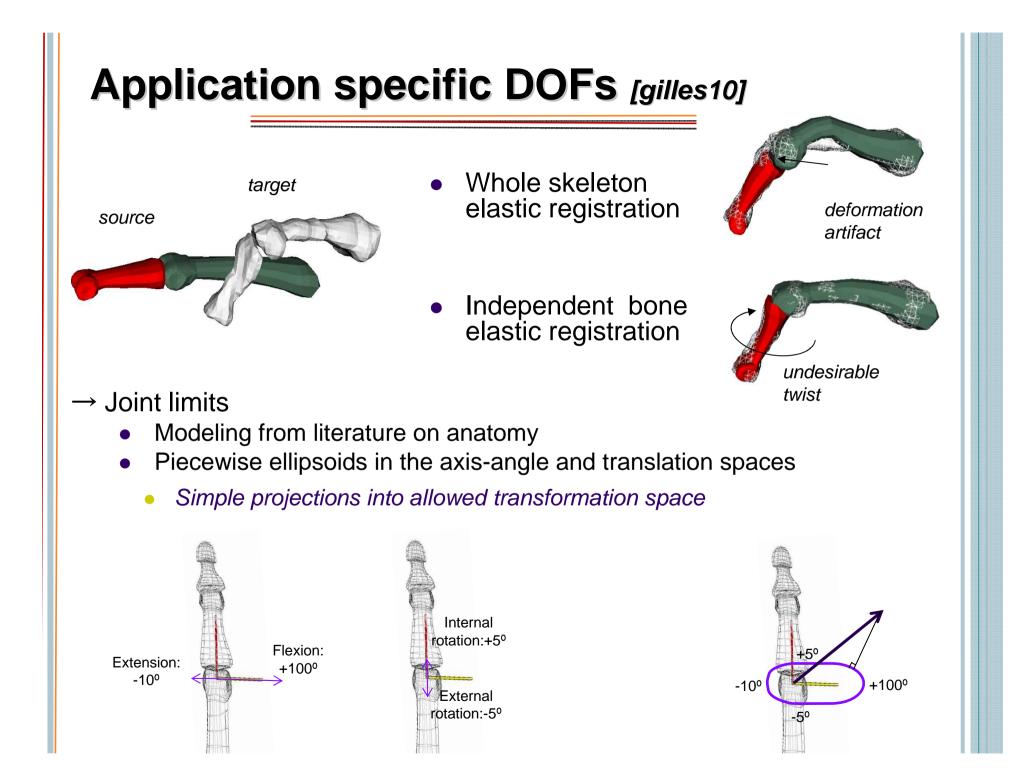


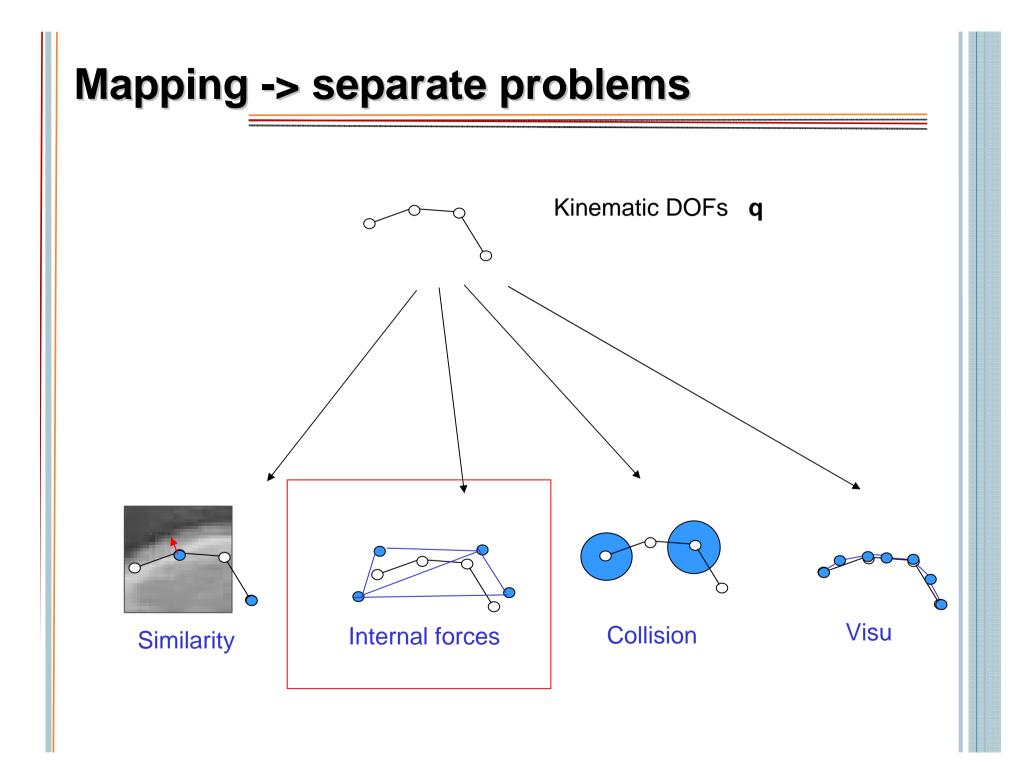


Example-based DOFs



PCA on 8 hands





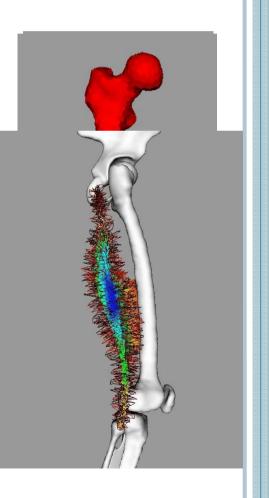
Internal forces

– Smoothing: Enforce shape continuity via energy minimisation Tikhonov differential stabilisers [terzopoulos87]. [mcinernev95]

Curves: $E_{reg} = \int \sum_{1 \le i \le p} w_i(u) \|\frac{\partial^i \mathbf{C}(u)}{\partial u^i}\|^2 du$ Surfaces: $E_{reg} = \int \sum_{1 \le i+j \le p} \frac{(i+j)!}{i!j!} w_{ij}(u,v) \|\frac{\partial^{i+j} \mathbf{S}(u,v)}{\partial u^i \partial v^j}\|^2 du dv$ Volumes: $E_{reg} = \int \sum_{1 \le i+j+k \le p} \frac{(i+j+k)!}{i!j!k!} w_{ijk}(u,v,w) \|\frac{\partial^{i+j+k} \mathbf{V}(u,v,w)}{\partial u^i \partial v^j \partial w^k}\|^2 du dv dw$

- Elastic forces (=Laplacian smoothing)
- \rightarrow curvature minimisation (1st order) [cohen91]
- Bending forces
- → curvature averaging (2nd order) [montagnat01]

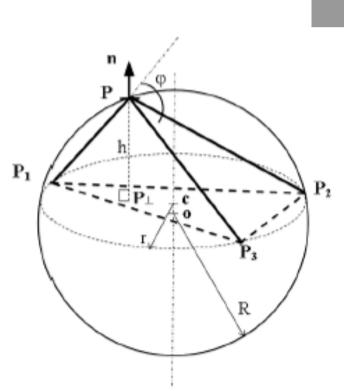
Radial forces \rightarrow thickness averaging [pizer03], [hamarneh04] Anisotropic smoothing based on images [horn81], [deriche95] Can be temporal [terzopoulos87] [montagnat05]



Internal forces

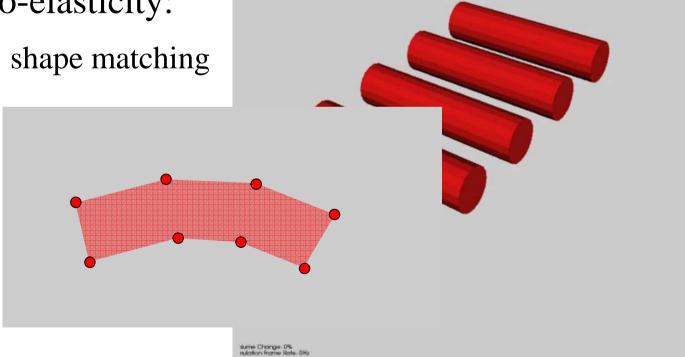
– Shape memory

- E.g. simplex surfaces
- Volume preservation



Internal forces

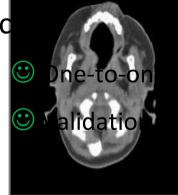
- Shape memory
 - E.g. simplex surfaces
- Volume preservation
- Pseudo-elasticity:
 - E.g. shape matching



Physically based regularization

Discretization of continuum with mass-springs, FDM, FEM or FVM Constitutive behavior: Linear elasticity (small displacements), hyperelastic, fluid Minimisation of the strain energy [christensen96], [bro-nielsen96], [wang00], [veress06] Collisions [park01]

Pros / d



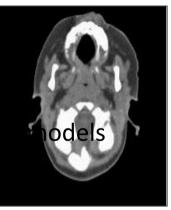
-to-on mapping, no negative volume

😕 High computational

😕 Inter-patient registra

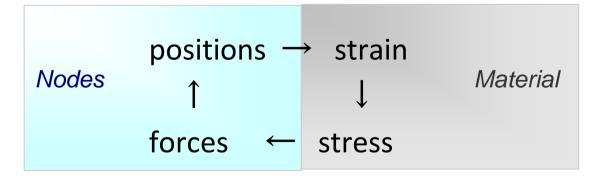
😕 Image forces ?

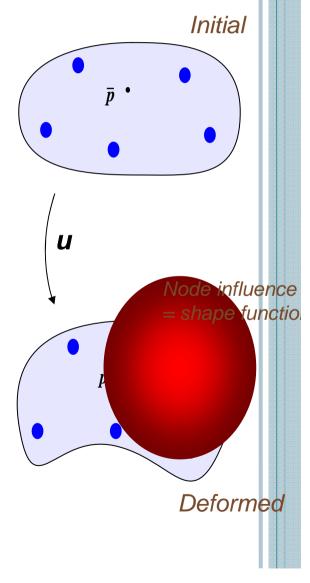
😕 Mechanical paramet

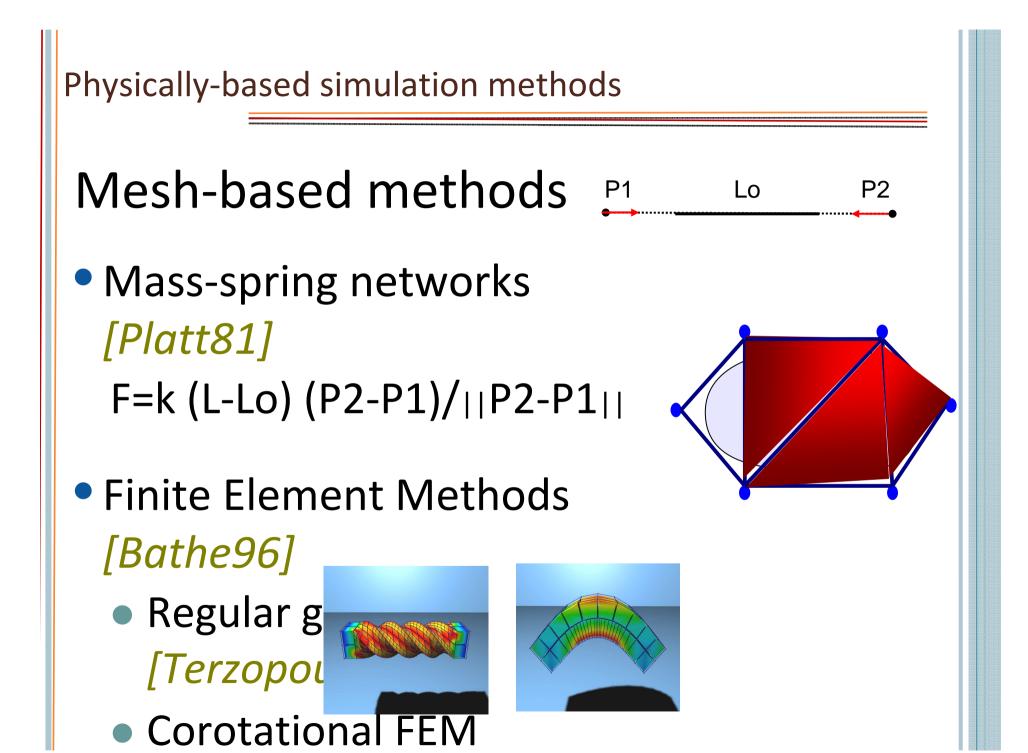


What is needed for physically-based simulation ?

- Define control nodes
 - = kinematic Degrees Of Freedom
- Interpolate a smooth displacement function
- Then, follow the classic continuum discretization:

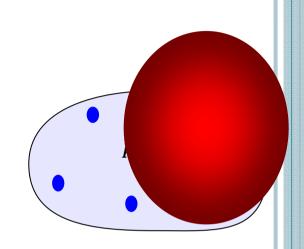




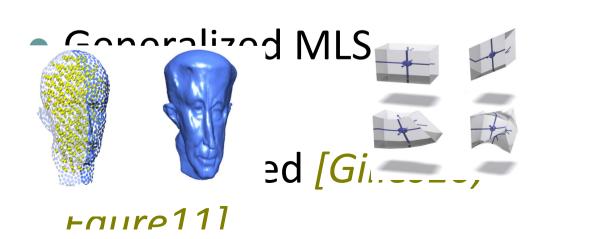


Physically-based simulation methods

 Point based animation [Müller04] [Gross07]

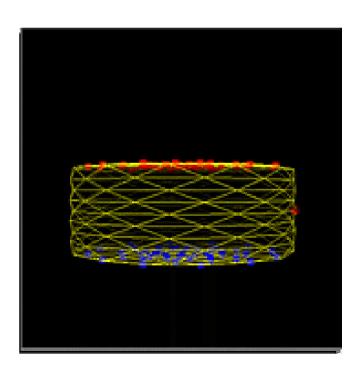


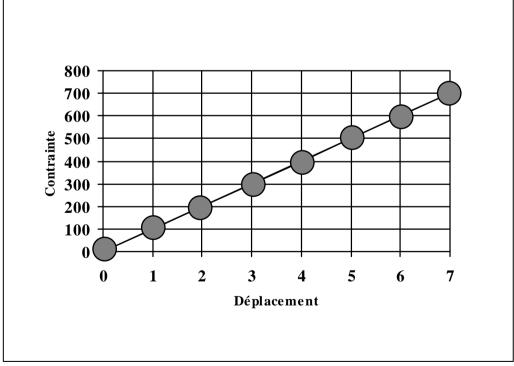
Moving Least Squares [Fries03]

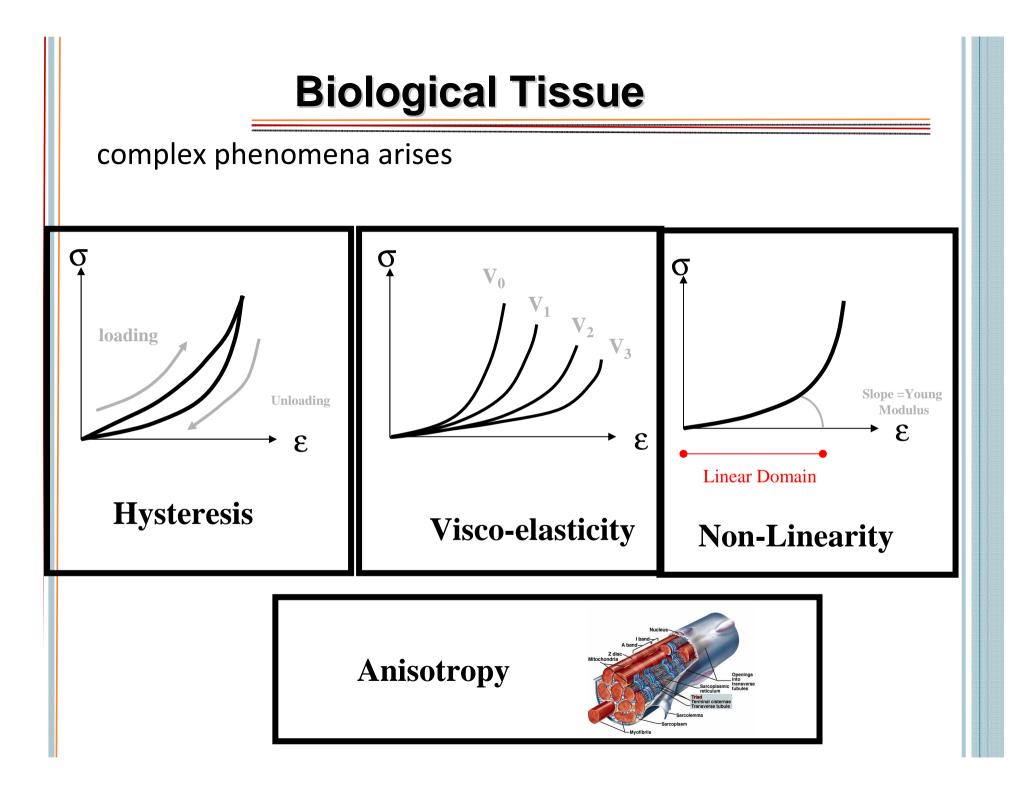


Linear Elastic Material

Simplest Material behaviour Only valid for small deformations (less than 5%)







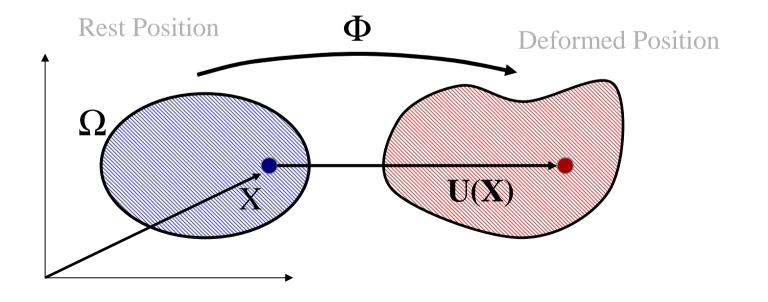
Mechanics

Deformation Function

$$X \in \Omega \alpha \quad \phi(X) \in \mathfrak{R}^3$$

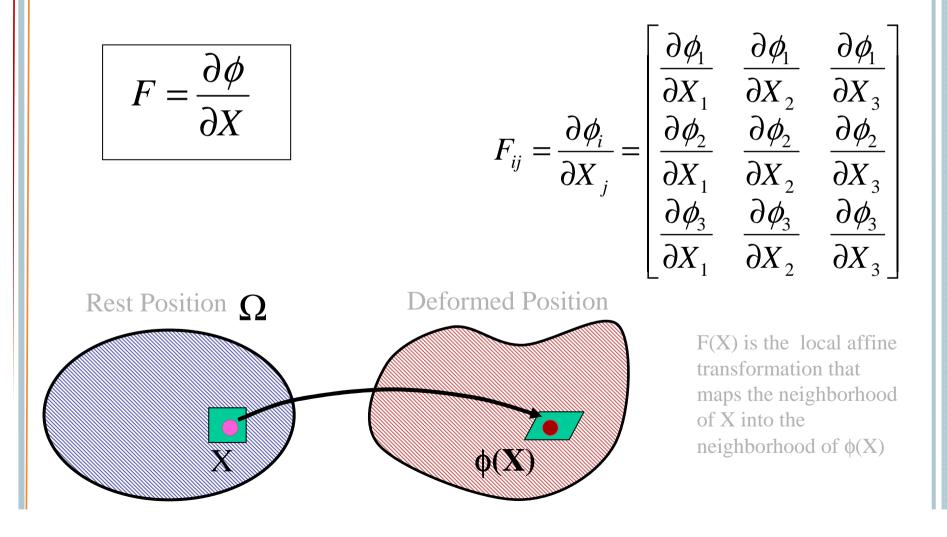
Displacement Function

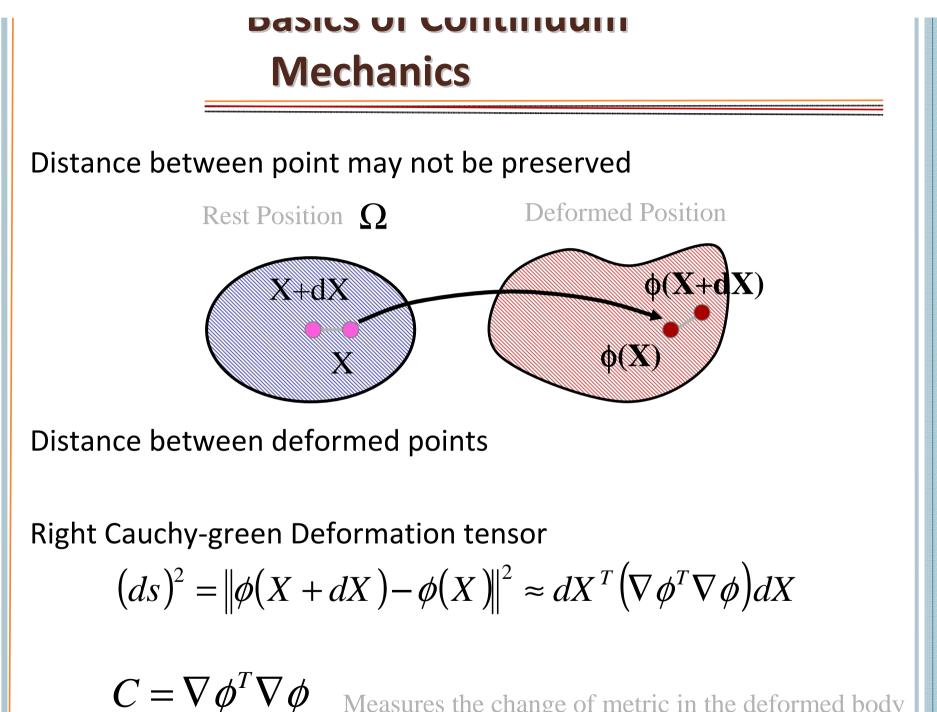
$$U(X) = \phi(X) - X$$



Mechanics

The local deformation is captured by the deformation gradient :





Measures the change of metric in the deformed body

Basics of Continuum Mechanics

Example : Rigid Body motion entails no deformation

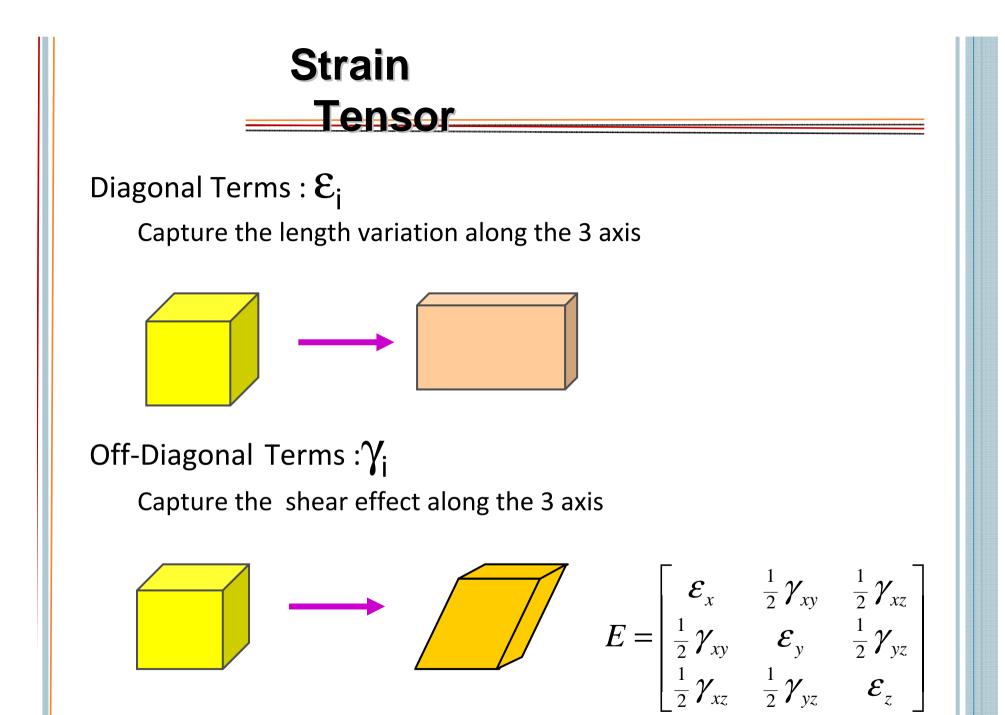
$$\phi(X) = RX + T$$

$$F(X) = \nabla \phi(X) = R \qquad C = R^T R = Id$$

Strain tensor captures the amount of deformation

It is defined as the "distance between C and the Identity matrix"

$$E = \frac{1}{2} \left(\nabla \phi^T \nabla \phi - Id \right) = \frac{1}{2} \left(C - Id \right)$$



Linearized Strain Tensor

Use displacement rather than deformation

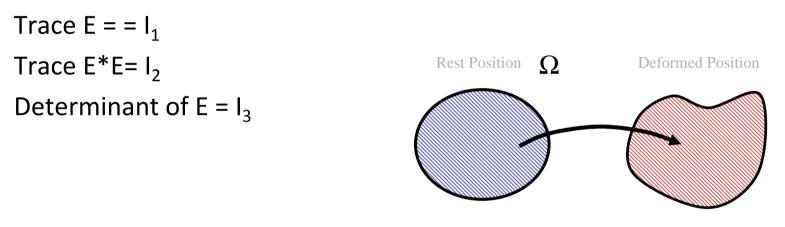
$$\nabla \phi(X) = Id + \nabla U(X)$$
$$E = \frac{1}{2} \left(\nabla U + \nabla U^T + \nabla U^T \nabla U \right)$$

Assume small displacements

$$E_{Lin} = \frac{1}{2} \left(\nabla U + \nabla U^T \right)$$

Hyperelastic Energy

The energy required to deform a body is a function of the invariants of strain tensor E :



$$W(\phi) = \int_{\Omega} w(I_1, I_2, I_3) dX$$
 Total Elastic Energy

Linear Elasticity = Hooke's law

Isotropic Energy

$$w(X) = \frac{\lambda}{2} (tr E_{Lin})^2 + \mu tr E_{Lin}^2$$

 (λ, μ) : Lamé coefficients

W(X) : density of elastic energy

Advantage :

Quadratic function of displacement

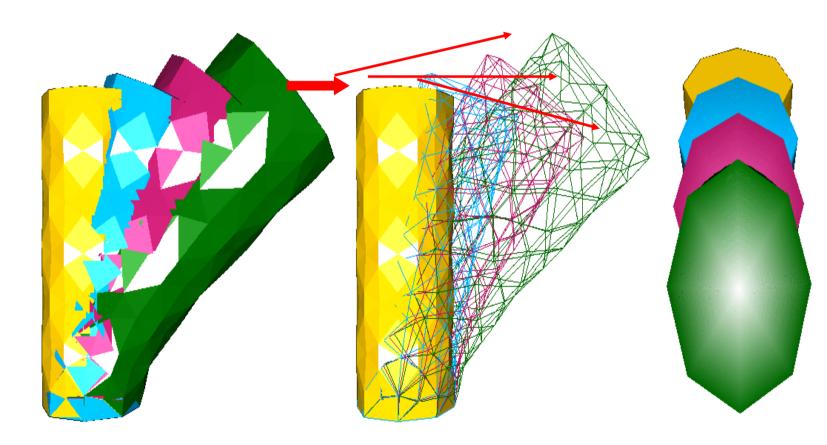
$$w = \frac{\lambda}{2} (div U)^2 + \mu \|\nabla U\|^2 - \frac{\mu}{2} \|rot U\|^2$$

Drawback :

Not invariant with respect to global rotation

elasticity

Non valid for « large rotations and displacements »



St-venant Kirchon Elasticity

Isotropic Energy

$$w(X) = \frac{\lambda}{2} (tr E)^2 + \mu tr E^2$$

(λ, μ) : Lamé coefficients

Advantage : Generalize linear elasticity Invariant to global rotations

Drawback :

Poor behavior in compression Quartic function of displacement

Other Hyperelastic Material

Neo-Hookean Model

$$w(X) = \frac{\mu}{2}trE + f(I_3)$$

• Fung Isotropic Model

$$w(X) = \frac{\mu}{2}e^{trE} + f(I_3)$$

- Fung Anisotropic Model $w(X) = \frac{\mu}{2}e^{trE} + \frac{k_1}{k_2}\left(e^{k_2(I_4-1)} 1\right) + f(I_3)$
- Veronda-Westman $w(X) = c_1 \left(e^{\gamma trE} \right) + c_2 trE^2 + f(I_3)$
- Mooney-Rivlin : $w(X) = c_{10}trE + c_{01}trE^2 + f(I_3)$

Conclusion

Choice of regularization method and discretization :

• Deformation: global/local ? Large/small ? Mechanical ? Discontinuities ? Volume/surface/curve ?

Outline
What is registered: Registration features
Registration criterion: Similarity measure
How to constrain the problem: Regularisation
How the registration is performed: Evolution

Examples

Explicit resolution

- Project correspondences to the closest allowed transform

- Analytical solution for simple transforms
- Example: affine transform:

$$\mathbf{A}^* = \Sigma_i (X_i - \mathcal{U}_X) (Y_i - \mathcal{U}_Y)^T [\Sigma_i (X_i - \mathcal{U}_X) (X_i - \mathcal{U}_X)^T]^{-1}$$

$$t^* = \mathcal{U}_Y - \mathbf{A}^* \mathcal{U}_X$$

Used in :

- Pair & smooth approach [cachier02]
-] Õ

 \bigcirc

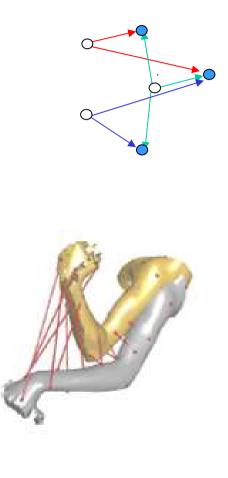
- Procrustes Analysis, Iterative closest point [besl92]
- Generalized gradient flows [Charpiat07][Eckstein07]
- Shape matching [Mueller05] [Rivers07] [Gilles08]

Graph Matching approaches

Solve assignment problem:

find map $T: pi \rightarrow qj$ st. E(T(pi)) is minimal

- Linearization [Jiang09]
- Voting [Lipman09]
- Greedy algorithm [Huang08]
- Global correspondences
- Combined with a dense method



Minimize internal + external energy

- Global methods:
 - Exhaustive or quasi-exhaustive methods (multigrid)
 - Simulated annealing [snyder92]
 - Allow energy increase according to the temperature

Ο

Ο

- Genetic algorithm [koza98]
 - A fitness function is optimised through gene crossing
- Dynamic programming [amini90]

 \rightarrow The global minimum is reached at the price of computations

Local methods = Oriented research

- Bracketing: simplex (amoeba) method [nelder65]
- Gradient descent

 $\rightarrow \delta P = - \nabla E(P).dt$ [thirion95]

- Powell's method → conjugate directions
- Newton (2nd order development)

 \rightarrow δP = - $\nabla^2 E(P)^{-1}$. $\nabla E(P)$ [vemuri97]

- Levenberg-Marquardt = Newton+ Gradient descent [Marquardt63]
- Newton-Raphson (1st order development)

 $\rightarrow \delta P = - // \nabla E(P) //^2 . E(P). \nabla E(P)$ [müller06]

Bayesan framework [staib92], [wang00], [chen00]

• Maximisation of shape probability given the image

Dynamic evolution

Discrete models = lumped mass particles submitted to forces

Newtonian evolution (1st order differential system):

$$\delta P = V.dt$$
$$\delta V = M^{-1}Fdt$$

Explicit schemes:

• Euler:
$$\begin{cases} \delta P = V_t . dt \\ \delta V = M^{-1} F_t dt \end{cases}$$

• Runge-Kutta: several evaluations to better extrapolate the new state [press92]

 \rightarrow Unstable for large time-step !!

Semi-Implicit schemes:

• Euler:
$$\begin{cases} \delta P = V_{t+dt} \cdot dt \\ \delta V = M^{-1}F_t dt \end{cases} \longrightarrow \begin{cases} P_{t+dt} = 2P_t - P_{t-dt} + M^{-1}F_t dt^2 \\ V_{t+dt} = (P_{t+dt} - P_t) dt^{-1} \end{cases}$$

• Verlet [teschner04]

Implicit schemes [terzopoulos87], [baraff98], [desbrun99], [volino01], [hauth01]

• First-order expansion of the force:

$$F_{t+dt} \approx F_t + \frac{\partial F}{\partial P} \frac{\partial P}{\partial P} + \frac{\partial F}{\partial V} \frac{\partial V}{\partial V}$$

• Euler implicit

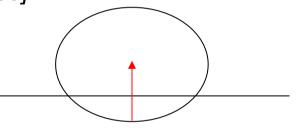
 $\rightarrow \begin{cases} \delta P = V_{t+dt} \cdot dt & H = I - M^{-1} \partial F / \partial V dt - M^{-1} \partial F / \partial P dt^2 \\ \delta V = H^{-1}Y & Y = M^{-1} F_t + M^{-1} \partial F / \partial P V_t dt^2 \end{cases}$

- Backward differential formulas (BDF) : Use of previous states
- \rightarrow Unconditionally stable for any time-step
- ... But requires the inversion of a large sparse system
 - Choleski decomposition + relaxation
 - Iterative solvers: Conjugate gradient, Gauss Seidel
 - Speed and accuracy can be improve through preconditioning (alteration of H)

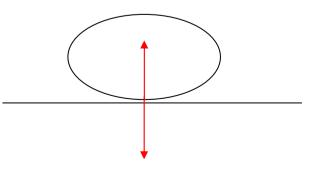
Enforcing constraints

Non-penetration, articulations, range of motion, etc.

- Penalty methods
 - Acceleration-based : (stiff) springs [Moore88]
 - Velocity-based: impulses [Mirtich94][Weinstein06]
 - Position-based [Gascuel94][Lee00]

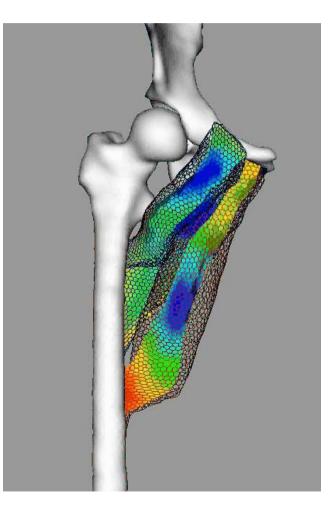


- Constrained dynamics [Barraf94][Faure99]
 - Lagrange multipliers



Collision handling using medial axis

- Exploit implicit representation
- Combined with BVH
- Correction of velocity and position



Joint constraints [gilles10]

Goal:

Estimate pose within joint limits Minimize displacements from current positions

Requirements:

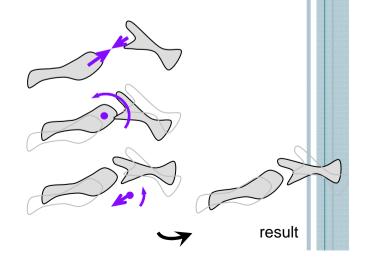
Handles loops Joint limits = unilateral constraints

Position-based

- Goal: reach feasible pose while minimizing displacements
- Greedy algorithm (=Gauss Seidel):

For each joint :

- Solve for translations (closed-form solution)
- Project to closest valid rotation
- Solve for the global rigid transform



Conclusion

Choice of evolution method :

Energy: Analytic solution ?
 Smooth ?
 Inertia ?
 # DOFs ?
 Constraints ?

Outline

What is registered: **Registration features**

Registration criterion: Similarity measure

How to constrain the problem: **Regularisation**

How the registration is performed: **Evolution**

Examples

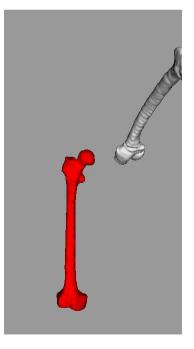
Example: Iterative closest point

Pair and smooth approach

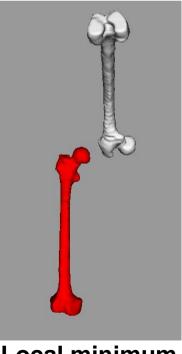
Explicit resolution

• rigid transforms

Closest Point similarity measure



Global minimum



Local minimum

Example: Iterative closest point

Bone tracking

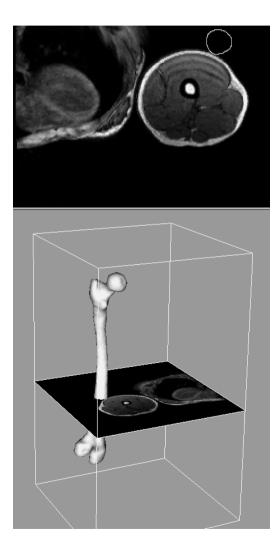
Pair and smooth approach

Explicit resolution

• rigid transforms

Iconic similarity measure

• Normalised cross-correlation



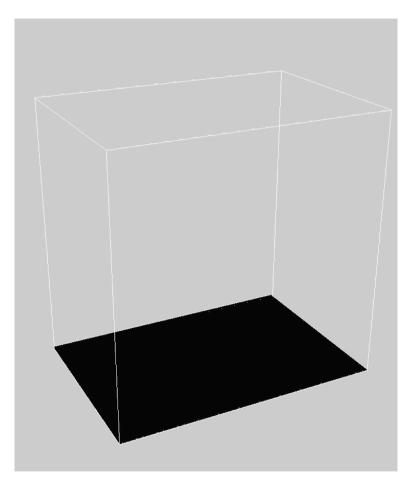
Example: constrained ICP

Subject-specific model:

- 27 bones
- 40 joints
- 7k vertices

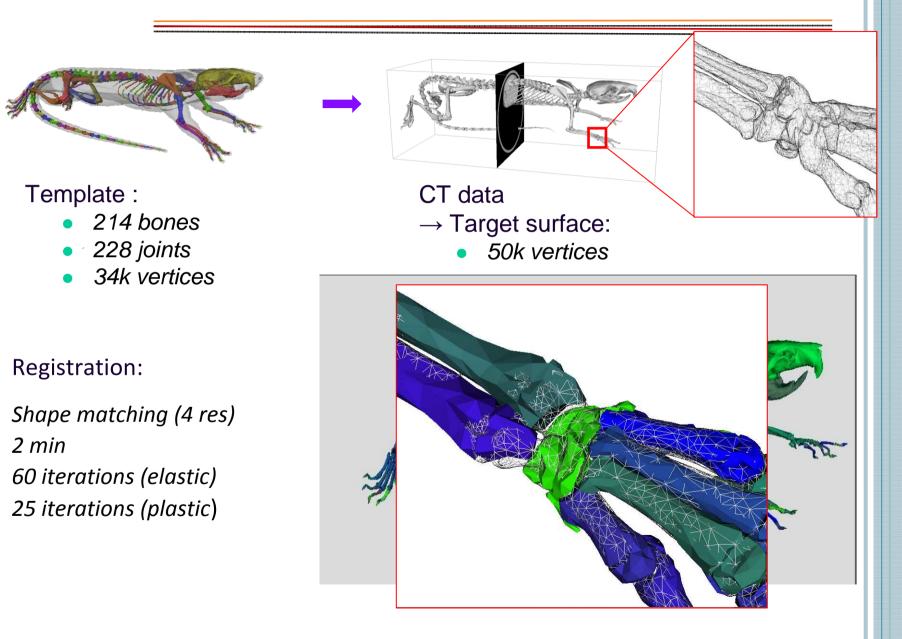
Registration:

3 min 50 iterations (elastic) 500 iterations (plastic)



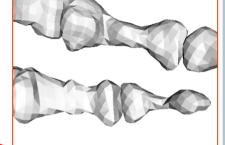
MRI data • 0.4 x 0.4 x 2mm

Surface registration : rat example



Surface registration : hand example

Control Contro



Template :

- 27 bones
- 40 joints
- 7k vertices

- \rightarrow Target surface:
 - 20k vertices

Registration:

Shape matching (4 res)
8 PCA samples
3 min
211 iterations (elastic)
58 iterations (plastic)

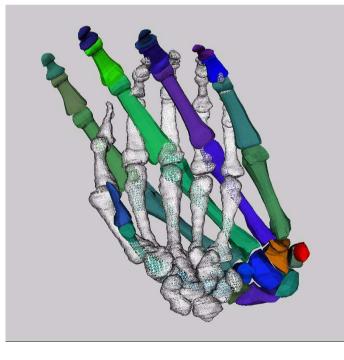


Image registration

Template :

- 27 bones
- 40 joints
- 7k vertices

Registration:

Shape matching (4 res) 8 PCA samples 3 min 490 iterations (elastic) 26 iterations (plastic) Distance to manual segmentation = 0.8mm

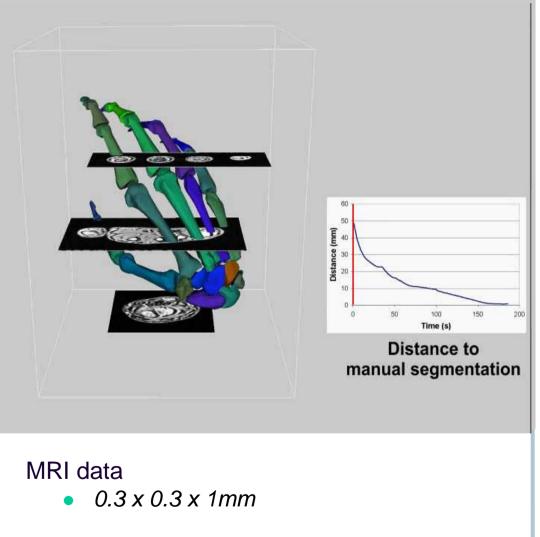
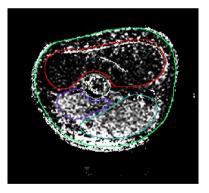
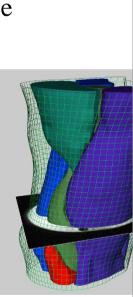


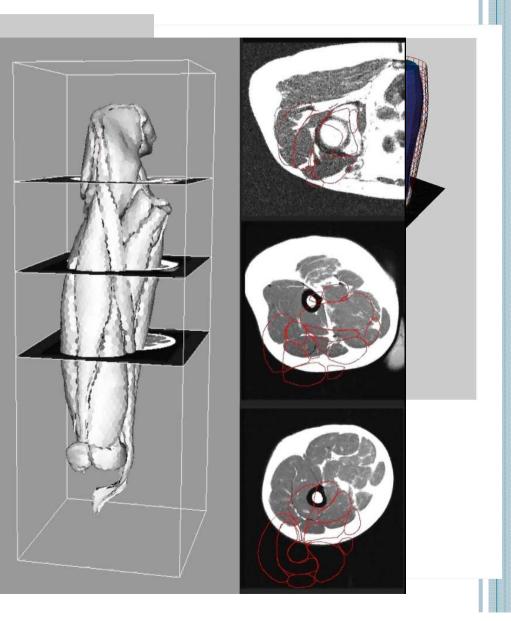
Image registration

- Comp. time ~2min
- Accuracy ~1.5mm
- Possibly interactive



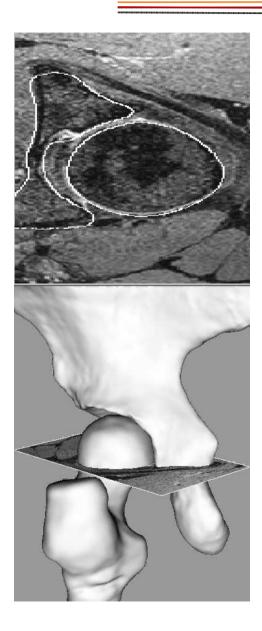
Upper arm actuation map

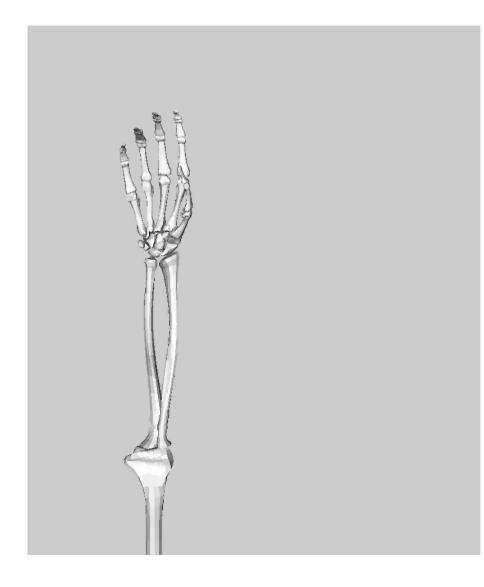




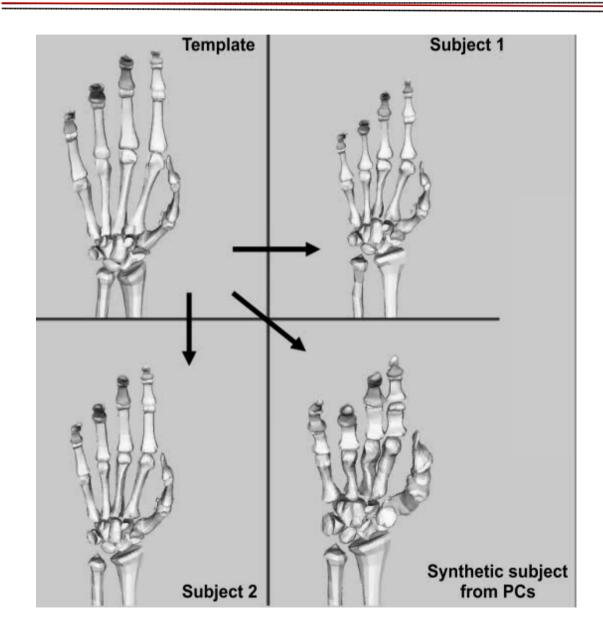
Deformable ICP						
 Comparison of different deformation methods : 						
As rigid as possible deformation						
Statistical shape model (PCA)						
• Frame-based						
Mass-spring network						
• FEM						

Estimation





Estimation



Conclusion						
Deformable models for segmentation:						
	Analysis	VS.	Prediction			
	Image-driven		Physics-driven			
	Abstract models		Anatomical models			
	Generic techniques		Ad-hoc techniques			
	Modelling		Simulation			
	Inter-patient registration		Intra-patient registration			
	Low complexity		High complexity			